JPH05322897A - Method for measuring enzyme immunity of bacterium using filter - Google Patents

Method for measuring enzyme immunity of bacterium using filter

Info

Publication number
JPH05322897A
JPH05322897A JP12850492A JP12850492A JPH05322897A JP H05322897 A JPH05322897 A JP H05322897A JP 12850492 A JP12850492 A JP 12850492A JP 12850492 A JP12850492 A JP 12850492A JP H05322897 A JPH05322897 A JP H05322897A
Authority
JP
Japan
Prior art keywords
filter
bacterium
antibody
enzyme
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12850492A
Other languages
Japanese (ja)
Inventor
Yasunari Tanaka
保成 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical BASF Co Ltd
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Chemical BASF Co Ltd
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical BASF Co Ltd, Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Chemical BASF Co Ltd
Priority to JP12850492A priority Critical patent/JPH05322897A/en
Publication of JPH05322897A publication Critical patent/JPH05322897A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain a bacterium detecting method by which a bacterium can be quickly and easily detected and, at the same time, the quantity of the bacterium can be determined. CONSTITUTION:The title method is used for measuring the enzyme immunity of a bacterium by catching the bacterium on a filter, causing an immunoreaction by adding the primary antibody and enzyme-labeled secondary antibody or an antibody-like substance to the bacterium on the filter. Then, after un-reacted antibodies are washed away from the filter, an enzyme reaction is caused between the composite product of an antigen-antibody reaction and a chromagenic substrate on the filter and the quantity of the bacterium is measured by detecting the chromagenic intensity on the filter. Since the bacterium is concentrated on the filter, the detection sensitivity can be improved and, since no culture is required for cultivating the bacterium, the measurement can be completed within several hours. In addition, no specific utensil, technique, facility, etc., are required.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】在郷軍人病(Legionnaires'disea
se)は、細菌性呼吸器感染症として確立されているが、
その原因菌はレジオネラ・ニューモフィラ(Legionella
pneumophila)(以下、レジオネラと称す)である。
[Industrial application] Legionnaires' disea
se) has been established as a bacterial respiratory infection,
The cause bacteria Legionella pneumophila (Legionella
pneumophila) (hereinafter referred to as Legionella).

【0002】本症の発症形式には、散発例と院内感染等
の集団発生例があるが、共にその感染経路は土壌、河川
水、空調装置又はビル内循環水等を介した空気感染と考
えられている。特に、集団発生の際には、空調用冷却塔
は代表的な感染源として重視されている。
The onset form of this disease includes sporadic cases and outbreaks such as nosocomial infections. In both cases, the route of infection is considered to be air infection through soil, river water, air conditioners or circulating water in buildings. Has been. In particular, when a mass outbreak occurs, the cooling tower for air conditioning is regarded as a representative source of infection.

【0003】空調用冷却塔でのレジオネラ保有率は一般
的にかなり高頻度(40%以上)であり(中浜力、感染
症誌、57:643-655(1983),伊藤直美、感染症誌、57:682
-694(1983),斉藤厚ら、感染症誌、55:439-446(198
1))、そのすべてを消毒することは困難と考えられる。
しかし、定期的な清掃や、要すれば消毒も必要である。
The Legionella retention rate in air-conditioning cooling towers is generally quite high (40% or more) (Riki Nakahama, Infectious Diseases Journal, 57: 643-655 (1983), Naomi Ito, Infectious Diseases Magazine. , 57: 682
-694 (1983), Atsushi Saito et al., Infectious Diseases Magazine, 55: 439-446 (198
1)), it is considered difficult to disinfect all of them.
However, regular cleaning and, if necessary, disinfection are also necessary.

【0004】レジオネラの汚染度のチェックを迅速に行
える検査法があれば、清掃や消毒の必要な時期を、的確
に把握することが可能となる。本発明を応用したレジオ
ネラ検査は、特定の器具、技術及び施設等を必要とせ
ず、迅速にレジオネラを検出することができる。
If there is an inspection method capable of promptly checking the degree of contamination of Legionella, it becomes possible to accurately grasp the time when cleaning or disinfection is necessary. The Legionella test to which the present invention is applied does not require a specific instrument, technique, facility, etc., and can rapidly detect Legionella.

【0005】[0005]

【従来の技術】現行のレジオネラの検出方法としては、
培養法(Bueschig,W.J. ら,J.Clin.Microbiol.,17,1153
(1983))、直接蛍光抗体法(Cherry,W.B. 及びMckinne
y,R.M.,U.S.Department of Health,Education,and Well
fare,C.D.C Georgia,U.S.A.,92-103(1979) )、DNA
プローブハイブリダイゼーション法(Edelstein,P.H.,
J.Clin.Microbiol.,23(3),481(1986))等が知られてい
る。
2. Description of the Related Art As a current method for detecting Legionella,
Culture method (Bueschig, WJ et al., J. Clin. Microbiol., 17,1153
(1983)), direct fluorescent antibody method (Cherry, WB and Mckinne
y, RM, USDepartment of Health, Education, and Well
fare, CDC Georgia, USA, 92-103 (1979)), DNA
Probe hybridization method (Edelstein, PH,
J. Clin. Microbiol., 23 (3), 481 (1986)) and the like are known.

【0006】培養法は、検体を培地に接種し、混在菌の
発育を抑制して、5〜7日間培養した後、集落を確認培
地に植え継ぎ、発育の確認をし、発育があれば抗レジオ
ネラ抗体とのスライド凝集反応を行い同定する方法であ
る。しかしながら、感度を増加させるための培養の際
の、混在菌の抑制条件の設定が難しい。抑制が弱いと混
在菌の発育が進み、レジオネラの釣菌は不可能であり、
強い抑制では混在菌の発育のみならず、レジオネラの発
育まで抑制されてしまう。また、判定に1週間〜2週間
もの日数が必要である。
The culture method is as follows: inoculate a sample into a medium to suppress the growth of mixed bacteria, and after culturing for 5 to 7 days, subculture the colony into a confirmation medium, confirm the growth, and if there is growth, This is a method of identifying by performing a slide agglutination reaction with a Legionella antibody. However, it is difficult to set the condition for suppressing the mixed bacteria during the culture for increasing the sensitivity. If the suppression is weak, the growth of mixed bacteria will progress, and fishing of Legionella is impossible,
Strong suppression suppresses not only the growth of mixed bacteria but also the growth of Legionella. Further, it takes 1 to 2 days for the determination.

【0007】直接蛍光抗体法は、迅速診断法として用い
られている。検体を無蛍光スライド上に塗抹乾燥し、固
定する。一次抗体として抗レジオネラ抗体を30分間反
応させ、PBS(リン酸緩衝食塩液)で洗浄した後、F
ITC(fluorescein isothiocyanate) 等の蛍光物質を
標識した二次抗体を30分間反応させる。最終的に蒸留
水で洗浄後、グリセロールで封入して蛍光顕微鏡で観察
する。蛍光の強さ及び菌の形態で陽性菌を判定する。本
法の特異性は99%と高いが、感度が低く、全視野中に
陽性菌が10個以下のことも多く、注意深い観察が必要
である。
The direct fluorescent antibody method is used as a rapid diagnostic method. The sample is smeared on a non-fluorescent slide, dried, and fixed. Anti-Legionella antibody was reacted as a primary antibody for 30 minutes, washed with PBS (phosphate buffered saline), and then F
A secondary antibody labeled with a fluorescent substance such as ITC (fluorescein isothiocyanate) is reacted for 30 minutes. Finally, after washing with distilled water, it is sealed with glycerol and observed with a fluorescence microscope. Positive bacteria are judged based on the intensity of fluorescence and the form of the bacteria. The specificity of this method is as high as 99%, but the sensitivity is low, and the number of positive bacteria is often 10 or less in the entire visual field, so careful observation is required.

【0008】DNAプローブハイブリダイゼーション法
は、被検体から抽出した染色体DNAをフォトビオチン
で標識し、固相に吸着させたレジオネラの染色体DNA
とハイブリダイズさせ、さらにペルオキシダーゼ標識ス
トレプトアビジン、(TBZ)、H22 にて発色させ
る。特異性、感度ともに高いが、特殊な器具と技術が必
要である。
According to the DNA probe hybridization method, chromosomal DNA extracted from a subject is labeled with photobiotin and is adsorbed on a solid phase chromosomal DNA of Legionella.
And hybridized with peroxidase-labeled streptavidin, (TBZ), and H 2 O 2 . It has high specificity and sensitivity, but requires special equipment and technology.

【0009】これらの方法はすべて、特定の器具、技術
及び施設が必要である。実際の冷却塔におけるレジオネ
ラの汚染は高頻度であり、そのすべてを消毒することは
困難である。また、消毒剤の効果がなくなれば、早けれ
ば2〜3週間で再び自然増殖する。したがって、定期的
に迅速検査を行う必要性があるが、現行の方法では不可
能である。
All of these methods require specific equipment, technology and facilities. Contamination of Legionella in actual cooling towers is frequent and it is difficult to disinfect all of them. If the effect of the disinfectant disappears, it will spontaneously grow again in a few weeks at the earliest. Therefore, it is necessary to carry out rapid inspections on a regular basis, which is not possible with current methods.

【0010】[0010]

【発明が解決しようとする課題】従来実施されている細
菌検出法は、一定水準の感度と特異性を維持するため
に、判定に数週間かかるものが多く、また、特定の器
具、技術及び施設が必要である。レジオネラのように急
速に病状が悪化する感染症の場合、迅速性、簡易性及び
定量性を併せ持つ菌検出法が必要である。
In the conventional bacterial detection methods, it often takes several weeks to make a determination in order to maintain a certain level of sensitivity and specificity, and it is also necessary to use a specific instrument, technique and facility. is necessary. In the case of infectious diseases such as Legionella whose condition worsens rapidly, it is necessary to have a bacterial detection method that has both rapidity, simplicity, and quantitativeness.

【0011】[0011]

【課題を解決するための手段】本発明は、(1)フィル
ター上に細菌を捕捉し、(2)該細菌に対する一次抗
体、及び該抗体に対する酵素で標識された二次抗体もし
くは抗体様物質を、フィルター上に順次加えて抗原抗体
反応を行わせ、(3)フィルター上の未反応の一次抗体
及び二次抗体又は抗体様物質を洗浄し、(4)ニ次抗体
もしくは抗体様物質の標識酵素と反応して発色する基質
をフィルター上に加えて発色させ、(5)その発色強度
を検出することを特徴とする細菌の酵素免疫測定法であ
る。さらに本発明は、該細菌がレジオネラ属細菌である
酵素免疫測定法である。
Means for Solving the Problems The present invention comprises (1) capturing a bacterium on a filter, and (2) a primary antibody against the bacterium and a secondary antibody or antibody-like substance labeled with an enzyme for the antibody. Then, the antigen-antibody reaction is carried out by sequentially adding it onto the filter, (3) unreacted primary antibody and secondary antibody or antibody-like substance on the filter are washed, and (4) secondary enzyme or antibody-like substance labeling enzyme. The enzyme immunoassay method for bacteria is characterized in that a substrate that develops a color upon reacting with is added onto the filter to develop a color, and (5) the intensity of the color development is detected. Furthermore, the present invention is an enzyme immunoassay method in which the bacterium is a bacterium of the genus Legionella.

【0012】本発明は、フィルターを用いることによる
菌の濃縮、固定、酵素免疫測定法との組合せから、菌量
を色調の強さで捉えようとしたものである。すなわち、
フィルターを反応の支持体として用い、フィルター上に
菌を集め、直接、抗原抗体反応及び酵素反応を行わせ、
菌量を測定する方法である。本方法では、フィルター上
に菌を集め、濃縮することにより感度を高めることがで
きる。したがって、培養を必要とせず、数時間で判定が
可能であり、さらに測定に必要な特定の器具、技術及び
施設等がいらないので、迅速、簡易に菌の検出を行うこ
とができる。また、直接蛍光抗体法と基本原理は同じな
ので特異性は高い。
[0012] The present invention is intended to capture the amount of bacteria by the strength of color tone in combination with concentration of bacteria by using a filter, fixation, and enzyme immunoassay. That is,
Using the filter as a support for the reaction, collecting the bacteria on the filter and directly performing the antigen-antibody reaction and the enzyme reaction,
This is a method of measuring the amount of bacteria. In this method, the sensitivity can be increased by collecting and concentrating the bacteria on the filter. Therefore, culturing is not required, determination can be performed in a few hours, and no specific equipment, technique, facility, etc. necessary for measurement are required, so that bacteria can be detected quickly and easily. Moreover, since the basic principle is the same as the direct fluorescent antibody method, the specificity is high.

【0013】本発明を応用したレジオネラの検出法を例
にとり説明する。まず、材料中に含まれる夾雑物は、プ
レフィルターにより除去する必要がある。プレフィルタ
ーは微細な粒子の保持能があるものを用いるが、保持能
の微妙な違いでその後の操作に支障をきたす。例えば、
保持能が弱いと微細な夾雑物が通り抜け、反応用フィル
ターへの濾過の際に目詰まりをおこす可能性が強い。逆
に保持能が強いと、微細な夾雑物のみならず、目的とす
る細菌までも捉えてしまい、反応用フィルターへは細菌
が集まらない。レジオネラの検出に用いるプレフィルタ
ーは、粒子保持能が1.2〜1.6μm 、材質はガラス
繊維性のものが好ましい。
A method for detecting Legionella to which the present invention is applied will be described as an example. First, the impurities contained in the material need to be removed by a prefilter. The pre-filter used has the ability to retain fine particles, but subtle differences in retention interfere with subsequent operations. For example,
If the retention capacity is weak, fine contaminants will pass through, and there is a strong possibility that clogging will occur during filtration with the reaction filter. On the contrary, if the retention capacity is strong, not only fine contaminants but also target bacteria are captured, and bacteria do not collect in the reaction filter. The prefilter used for detection of Legionella preferably has a particle retention capacity of 1.2 to 1.6 μm and is made of glass fiber.

【0014】プレフィルトレーション後の試料に含まれ
る細菌を集めるために、反応用フィルターを用いて濾過
し、フィルター上に細菌を収集する。ここで用いるフィ
ルターは、測定対象となる細菌が収集可能な特定の孔径
及び酵素免疫反応に適合する材質が必要とされる。本測
定では0.45μm の孔径のものを用いる。これよりも
孔径の小さいものでは試料の通過速度が遅くなり、最終
的に目詰まりを起こす。また、酵素免疫反応をフィルタ
ー上で行ううえで、未反応の抗体を洗浄するためには、
蛋白質の吸着ができるだけ少ない材質のものが好まし
く、セルロースアセテート、ポリビニリデンジフルオリ
ド(PVDF)製のものが好ましい。
In order to collect the bacteria contained in the sample after prefiltration, filtration is performed using a reaction filter, and the bacteria are collected on the filter. The filter used here is required to have a specific pore size capable of collecting bacteria to be measured and a material compatible with enzyme immunoreaction. In this measurement, a pore size of 0.45 μm is used. If the pore diameter is smaller than this, the passage speed of the sample becomes slow, and eventually clogging occurs. In addition, in order to wash the unreacted antibody when performing the enzyme immunoreaction on the filter,
A material that absorbs proteins as little as possible is preferable, and one made of cellulose acetate or polyvinylidene difluoride (PVDF) is preferable.

【0015】次に反応用フィルターに残ったレジオネラ
を、抗体との反応のために緩衝液でpH7.0付近に調整
する。pH調整には、リン酸緩衝生理食塩液(10mMPB
S,pH7.2)、トリス緩衝生理食塩液(10mMTB
S,pH7.2)が使用できる。レジオネラと特異的に反
応する抗レジオネラ抗体は、非特異的反応を防ぐために
モノクローナル抗体が好ましく、例えばMAB−830
(ケミコン社製)、69−955(ICN社製)等が使
用できる。酵素標識二次抗体としては、通常使用されう
るものであれば、本方法に適用可能である。また、酵素
標識抗体様物質には、非特異的反応性の少ないものを選
ぶ必要があり、ペルオキシダーゼ標識プロテイン−Gが
用いられる。
Next, the Legionella remaining on the reaction filter is adjusted to around pH 7.0 with a buffer solution for the reaction with the antibody. For pH adjustment, phosphate buffered saline (10 mM PB
S, pH 7.2), Tris buffered saline (10 mM TB)
S, pH 7.2) can be used. The anti-Legionella antibody that specifically reacts with Legionella is preferably a monoclonal antibody in order to prevent non-specific reaction, for example, MAB-830.
(Chemicon company), 69-955 (ICN company) etc. can be used. Any enzyme-labeled secondary antibody that can be usually used can be applied to this method. Further, as the enzyme-labeled antibody-like substance, it is necessary to select a substance having low nonspecific reactivity, and peroxidase-labeled protein-G is used.

【0016】フィルター上の未反応の一次抗体、酵素標
識二次抗体又は抗体様物質の非特異的吸着物を除去する
ために、フィルターを特定の洗浄液により洗浄する。こ
のためには非イオン性界面活性剤であるトライトンX−
100を含んだ緩衝液、例えば、PBS/5%トライト
ンX−100等が使用できる。抗体蛋白、酵素標識抗体
様物質のフィルターへの吸着は強固であるため、ここで
用いる界面活性剤トライトンX−100は高濃度にする
必要がある。また、5%濃度のトライトンX−100は
酵素反応を抑制するので、例えばPBS/5%トライト
ンX−100で洗浄後はPBSで置換する必要がある。
In order to remove unreacted primary antibody, enzyme-labeled secondary antibody or non-specifically adsorbed substance of antibody-like substance on the filter, the filter is washed with a specific washing solution. For this purpose, Triton X- which is a nonionic surfactant
A buffer containing 100, for example, PBS / 5% Triton X-100 can be used. Since the adsorption of the antibody protein and the enzyme-labeled antibody-like substance on the filter is strong, the surfactant Triton X-100 used here needs to have a high concentration. Also, since Triton X-100 at a concentration of 5% suppresses the enzymatic reaction, it is necessary to replace with PBS after washing with PBS / 5% Triton X-100, for example.

【0017】発色基質は、吸収極大波長を可視領域に持
ち、高感度で、判別しやすく、経時的安定性の高いもの
が好ましい。その条件を満たすためにはペルオキシダー
ゼ系の発色基質が好ましく、例えば、テトラメチルベン
ジジン(TMBZ)、オルトフェニレンジアミン(OP
D)等が使用可能である。
The color-developing substrate is preferably one having a maximum absorption wavelength in the visible region, high sensitivity, easy discrimination, and high stability over time. In order to satisfy the condition, a peroxidase-based color-developing substrate is preferable, and examples thereof include tetramethylbenzidine (TMBZ) and orthophenylenediamine (OP
D) or the like can be used.

【0018】フィルター上に発色した色素の色調の度合
いから菌量を判定する。陰性では、フィルター上の発色
はほとんどみられない。
The amount of bacteria is judged from the degree of color tone of the dye developed on the filter. When negative, almost no color is seen on the filter.

【0019】[0019]

【発明の効果】以上のように、本発明による細菌の測定
法は、フィルター上に集めた細菌を直接、フィルター上
で酵素免疫測定法により検出する方法である。フィルタ
ー上に細菌を濃縮することが可能なため、検出感度を高
めることができ、培養が不要なので2〜3時間で判定す
る迅速性を併せ持つ。
As described above, the method for measuring bacteria according to the present invention is a method in which bacteria collected on a filter are directly detected on the filter by an enzyme immunoassay. Since the bacteria can be concentrated on the filter, the detection sensitivity can be increased, and since the culture is not necessary, the determination can be performed in 2 to 3 hours.

【0020】目的の細菌に特異的に反応する抗体で検出
する方法であり、非特異的吸着物は洗浄で除去されるた
め、目的の細菌に対する特異性が高い。
This is a method of detection with an antibody that specifically reacts with the target bacterium. Since the non-specifically adsorbed substances are removed by washing, the specificity to the target bacterium is high.

【0021】特定の器具、技術及び施設等を必要としな
いので、当事者が直接、細菌汚染の程度の判定を行うこ
とができる簡単な検査キットとして適用することができ
る。この発明の応用により、水媒介性の細菌、例えば大
腸菌、腸炎ビブリオ、赤痢菌、チフス、サルモネラ及び
コレラ等の検出に対しても応用することができる。
Since no specific equipment, technique, facility, etc. are required, it can be applied as a simple test kit by which the parties can directly judge the degree of bacterial contamination. The application of the present invention can be applied to the detection of water-borne bacteria such as Escherichia coli, Vibrio parahaemolyticus, Shigella, typhoid, Salmonella, and cholera.

【0022】[0022]

【実施例】図1は、本発明を応用したレジオネラの検出
法のフローチャートを示したものである。試料として、
空調用冷却塔の冷却水を21施設から採取した。20ml
用ディスポーザブルシリンジに試料水を採り、プレフィ
ルター(ガラス繊維,ポアサイズ1.2μm )を先端に
接続して濾過した。試料水は1試料につき100mlずつ
用いた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a flowchart of a method for detecting Legionella to which the present invention is applied. As a sample
The cooling water for the air conditioning cooling tower was collected from 21 facilities. 20 ml
Sample water was taken in a disposable syringe for use, and a prefilter (glass fiber, pore size 1.2 μm) was connected to the tip and filtered. 100 ml of sample water was used for each sample.

【0023】10ml用ディスポーザブルシリンジに濾過
水を採り、反応フィルター(セルロースアセテート,ポ
アサイズ0.45μm )を先端に接続して濾過した。標
準として、ホルマリン殺菌固定した1×106 CFU/
ml、1×105 CFU/ml、1×104 CFU/mlのレ
ジオネラ標準菌株(Legionella pneumophila,ATCC
33152)懸濁液、陰性対照として、滅菌蒸留水を
それぞれ1ml用ディスポーザブルシリンジに1mlを採
り、別々の反応フィルターで濾過した。
Filtered water was taken in a disposable syringe for 10 ml, and a reaction filter (cellulose acetate, pore size 0.45 μm) was connected to the tip and filtered. As standard, 1 × 10 6 CFU / formalin sterilized and fixed
ml, 1 × 10 5 CFU / ml, 1 × 10 4 CFU / ml, Legionella pneumophila , ATCC
33152) Suspension, and as a negative control, 1 ml of sterile distilled water was placed in a disposable syringe for 1 ml and filtered with a separate reaction filter.

【0024】2.5ml用ディスポーザブルシリンジにP
BSを満たし、試料、陽性対照、陰性対照の各反応フィ
ルターを2回洗浄した。抗レジオネラ抗体(×500希
釈)及びペルオキシダーゼ標識プロテイン−G(×40
00希釈)の混合液を1ml用ディスポーザブルシリンジ
に採り、約0.5mlずつ各反応フィルターに注入し、室
温で1時間反応させた。
P to a disposable syringe for 2.5 ml
The sample, positive control, and negative control reaction filters were filled with BS and washed twice. Anti-Legionella antibody (× 500 dilution) and peroxidase-labeled protein-G (× 40
The diluted solution (diluted with 00) was taken in a disposable syringe for 1 ml, and about 0.5 ml was injected into each reaction filter, and the mixture was reacted at room temperature for 1 hour.

【0025】PBS/5%トライトンX−100溶液を
2.5ml用ディスポーザブルシリンジに採り、各反応フ
ィルターを5回洗浄し、さらにPBSで2回洗浄した。
発色基質(TMBZ溶液)を2.5ml用ディスポーザブ
ルシリンジに採り、約0.5mlずつ各反応フィルターに
注入し、室温で30分反応させた。
The PBS / 5% Triton X-100 solution was placed in a disposable syringe for 2.5 ml, and each reaction filter was washed 5 times, and further washed twice with PBS.
The color-developing substrate (TMBZ solution) was taken in a disposable syringe for 2.5 ml, and about 0.5 ml was injected into each reaction filter, and the reaction was carried out at room temperature for 30 minutes.

【0026】陰性対照と比較して判定したところ、標準
のうち、1×106 CFU、1×105 CFUは明らか
に差がみられたが、1×104 CFUでは差がみられな
かった。このことから反応系の最低検出感度は1×10
5 CFUと推定された。試料は21例中9例が陰性対照
と比較して差が見られ、試料水100ml中に最低1×1
5 CFU以上の菌量があることを示した。
When judged by comparison with the negative control, among the standards, 1 × 10 6 CFU and 1 × 10 5 CFU clearly showed a difference, but 1 × 10 4 CFU did not show a difference. .. From this, the minimum detection sensitivity of the reaction system is 1 × 10
It was estimated to be 5 CFU. 9 out of 21 samples showed a difference compared to the negative control, and at least 1 x 1 in 100 ml of sample water.
0 5 shows that there is a fungus of higher CFU.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を応用した、レジオネラの検出法のフロ
ーチャートである。
FIG. 1 is a flowchart of a method for detecting Legionella to which the present invention is applied.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (1)フィルター上に細菌を捕捉し、
(2)該細菌に対する一次抗体、及び該抗体に対する酵
素で標識された二次抗体もしくは抗体様物質を、フィル
ター上に順次加えて抗原抗体反応を行わせ、(3)フィ
ルター上の未反応の一次抗体及び二次抗体又は抗体様物
質を洗浄し、(4)ニ次抗体もしくは抗体様物質の標識
酵素と反応して発色する基質をフィルター上に加えて発
色させ、(5)その発色強度を検出することを特徴とす
る細菌の酵素免疫測定法。
1. (1) Bacteria are captured on a filter,
(2) A primary antibody against the bacterium and a secondary antibody or antibody-like substance labeled with an enzyme against the antibody are sequentially added onto the filter to cause an antigen-antibody reaction, and (3) unreacted primary on the filter. After washing the antibody and the secondary antibody or antibody-like substance, (4) a substrate that reacts with the labeling enzyme of the secondary antibody or antibody-like substance to develop color is added on the filter to develop color, and (5) the intensity of color development is detected. An enzyme immunoassay method for bacteria, which comprises:
【請求項2】 細菌がレジオネラ属細菌である請求項1
記載の方法。
2. The bacterium is a bacterium of the genus Legionella.
The method described.
JP12850492A 1992-05-21 1992-05-21 Method for measuring enzyme immunity of bacterium using filter Pending JPH05322897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12850492A JPH05322897A (en) 1992-05-21 1992-05-21 Method for measuring enzyme immunity of bacterium using filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12850492A JPH05322897A (en) 1992-05-21 1992-05-21 Method for measuring enzyme immunity of bacterium using filter

Publications (1)

Publication Number Publication Date
JPH05322897A true JPH05322897A (en) 1993-12-07

Family

ID=14986382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12850492A Pending JPH05322897A (en) 1992-05-21 1992-05-21 Method for measuring enzyme immunity of bacterium using filter

Country Status (1)

Country Link
JP (1) JPH05322897A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048712A1 (en) * 2000-12-13 2002-06-20 The Additional Director (Ipr), Defence Research & Development Organisation A method of detection of e-coli, other coliforms and pathogenic organisms in water
JP2012505648A (en) * 2008-10-17 2012-03-08 ビオメリュー Reaction medium for detecting and / or identifying Legionella bacteria
CN102879565A (en) * 2012-09-26 2013-01-16 四川大学 Microorganism sample rapid detection method and detection device thereof
CN111007242A (en) * 2019-12-20 2020-04-14 苏州和迈精密仪器有限公司 Fluorescence immunoassay method and device based on multilayer high molecular porous membrane and application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048712A1 (en) * 2000-12-13 2002-06-20 The Additional Director (Ipr), Defence Research & Development Organisation A method of detection of e-coli, other coliforms and pathogenic organisms in water
JP2012505648A (en) * 2008-10-17 2012-03-08 ビオメリュー Reaction medium for detecting and / or identifying Legionella bacteria
CN102879565A (en) * 2012-09-26 2013-01-16 四川大学 Microorganism sample rapid detection method and detection device thereof
CN102879565B (en) * 2012-09-26 2014-12-03 四川大学 Microorganism sample rapid detection method and detection device thereof
CN111007242A (en) * 2019-12-20 2020-04-14 苏州和迈精密仪器有限公司 Fluorescence immunoassay method and device based on multilayer high molecular porous membrane and application

Similar Documents

Publication Publication Date Title
US5821066A (en) Simple, rapid method for the detection, identification and enumeration of specific viable microorganisms
JPH0767693A (en) Detecting method for living organism body
AU681845B2 (en) Method of detecting microorganisms
JP2006510002A (en) Assays for detecting or quantifying bacterial or viral pathogens and contaminants
JP2001258590A (en) Method for dyeing bacterium and method for detecting the bacterium
AU2009269581C1 (en) Method, kit and system for culturable cell count
KR102084688B1 (en) Method for detecting microorganisms using multiple probe hybridization
CN101432739A (en) Ultrasensitive sensor and rapid detection of analytes
Chitarra et al. The application of flow cytometry and fluorescent probe technology for detection and assessment of viability of plant pathogenic bacteria
US6803208B2 (en) Automated epifluorescence microscopy for detection of bacterial contamination in platelets
PT643838E (en) METHOD FOR THE DETECTION OF ANTIBODIES IN SERONEGATIVE INDIVIDUALS
Jönsson et al. The Cobas Amplicor MTB test for detection of Mycobacterium tuberculosis complex from respiratory and non-respiratory clinical specimens
JPH05322897A (en) Method for measuring enzyme immunity of bacterium using filter
Sanders et al. Routine detection of human rota virus by latex agglutination: Comparison with enzyme-linked immunosorbent assay, electron microscopy and polyacrylamide gel electrophoresis
Moosai et al. Detection of rotavirus by a latex agglutination test, Rotalex: comparison with electron microscopy, immunofluorescence, polyacrylamide gel electrophoresis, and enzyme linked immunosorbent assay.
US20030059839A1 (en) Method for detecting pathogens using immunoassays
US20210405050A1 (en) Sensor
JP2002181823A (en) Detection method for microorganism
RU2079138C1 (en) Method of assay of microbiological water pollution
JP2005172680A (en) Apparatus and method for speedily detecting microorganism
JP2001004631A (en) Rapid assay for microbe using magnetic bead immobilized antibody
Jaschhof Sampling Virus Aerosols Using the Gelatin Membrane Filter
US20090221013A1 (en) Method for quantifying living coliform microorganisms in a water sample
GB2034464A (en) Assay of infected cells and kit therefor
OA20188A (en) Sensor.