JPH05322873A - Carbon content measuring instrument - Google Patents

Carbon content measuring instrument

Info

Publication number
JPH05322873A
JPH05322873A JP14851192A JP14851192A JPH05322873A JP H05322873 A JPH05322873 A JP H05322873A JP 14851192 A JP14851192 A JP 14851192A JP 14851192 A JP14851192 A JP 14851192A JP H05322873 A JPH05322873 A JP H05322873A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
gas
solution
sample liquid
acid gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14851192A
Other languages
Japanese (ja)
Other versions
JP3074938B2 (en
Inventor
Yozo Morita
洋造 森田
Takaharu Inoue
敬治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP04148511A priority Critical patent/JP3074938B2/en
Publication of JPH05322873A publication Critical patent/JPH05322873A/en
Application granted granted Critical
Publication of JP3074938B2 publication Critical patent/JP3074938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To highly sensitively measure the carbon content of a sample liquid without damaging the instrument used for the measurement even when the sample liquid contains hydrochloric acid at a high concentration by passing a gas sent from an oxidizing reaction section through a solution containing bivalent tin ions. CONSTITUTION:When a flow passage change-over valve is switched to a chlorine gas absorbing section 18 side at the time of measuring the organic carbon content of a sample liquid containing hydrochloric acid at a high concentration, a gas to be measured containing a hydrochloric acid gas from an oxidizing reaction section (TC combustion tube) is sent to a scrubber 31 from the change-over valve and discharged into a stannous chloride solution 32 as small bubbles through a diffusing tube 33. As a result, the hydrochloric acid gas is reduced into a complex by the bivalent tin ions contained in the solution 32 and the complex is absorbed (into the solution 32. Since the solution containing bivalent tin ions has an extremely high absorbing ability against hydrochloric acid gases, such as the hydrogen chloride gas, etc., the full quantity of the hydrochloric acid gas generated in the TC combustion tube can be absorbed. Therefore, the corrosion of the flow passage and each part after the TC combustion tube can be prevented and carbon dioxide concentration can be accurately measured without disturbance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高濃度の塩酸を含む溶
液中の炭素量を測定する炭素量測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon content measuring device for measuring carbon content in a solution containing a high concentration of hydrochloric acid.

【0002】[0002]

【従来の技術】試料液中の有機体炭素濃度を測定する場
合、従来より全有機体炭素計(TOC計)が使用されて
いる。TOC計による全有機体炭素濃度の測定方法を図
2により説明する。シリンジ14により試料容器から試
料液10を吸い上げ、4方弁13を切り替えた後、所定
量の試料液10をTC燃焼管15に送出する。試料液中
の炭素成分(C)はTC燃焼管15において酸化触媒の
下で高純度空気11により高温で酸化(燃焼)され、全
てCO2となる。このCO2を含む試料液の燃焼ガス(測
定ガス)はIC反応器16及び除湿・ガス処理部21を
通過して赤外線ガス分析部(NDIR)22に送られ、
そこでCO2濃度が測定される。このCO2濃度の値を基
に、制御部23が試料液中の全炭素(TC)量を算出す
る。次に、4方弁13を切り替え、所定量の試料液10
をシリンジ14により今度はIC反応器16に送出す
る。IC反応器16において、試料液中の無機体炭素
(IC)はそこに貯留されている酸と反応してCO2
なる。以後は上記のTC量測定の場合と同様、このCO
2の濃度がNDIR22により測定され、制御部23に
よりIC量が算出される。このようにして測定されたT
C量及びIC量から、全有機体炭素(TOC)量は、 TOC=TC−IC として算出される。
2. Description of the Related Art A total organic carbon meter (TOC meter) has been conventionally used to measure the organic carbon concentration in a sample solution. The method for measuring the total organic carbon concentration by the TOC meter will be described with reference to FIG. The sample liquid 10 is sucked up from the sample container by the syringe 14, the four-way valve 13 is switched, and then a predetermined amount of the sample liquid 10 is delivered to the TC combustion tube 15. The carbon component (C) in the sample liquid is oxidized (combusted) at a high temperature by the high-purity air 11 under the oxidation catalyst in the TC combustion tube 15 to become all CO 2 . The combustion gas (measurement gas) of the sample liquid containing CO 2 passes through the IC reactor 16 and the dehumidification / gas processing unit 21 and is sent to the infrared gas analysis unit (NDIR) 22.
There, the CO 2 concentration is measured. Based on the value of this CO 2 concentration, the control unit 23 calculates the total carbon (TC) amount in the sample liquid. Next, the four-way valve 13 is switched to set a predetermined amount of the sample solution 10
Is then delivered to the IC reactor 16 by the syringe 14. In the IC reactor 16, the inorganic carbon (IC) in the sample solution reacts with the acid stored therein to become CO 2 . After that, as in the case of the above TC amount measurement, this CO
The concentration of 2 is measured by the NDIR 22, and the control unit 23 calculates the IC amount. T measured in this way
From the amount of C and the amount of IC, the amount of total organic carbon (TOC) is calculated as TOC = TC-IC.

【0003】ここで、例えば一部の廃液等のように試料
液中に塩酸が含まれている場合には、TC燃焼管15に
おける燃焼酸化反応により(以下、この部分を総称して
酸化反応部と呼ぶ)、塩化水素(HCl)、塩素(C
l)、塩素酸ガス(Cl02)等の腐食性のガス(以
下、これらを塩酸ガスと呼ぶ)が発生する。これらの塩
酸ガスは、NDIR22によるCO2濃度測定の際に測
定値に影響を与えたり、酸化反応部以降の流路や除湿・
ガス処理部21及びNDIR22の各部分を腐食させた
りする。このようなことを避けるため、従来のTOC計
では、(1)試料液を予め希釈しておく、(2)酸化反
応部から出たガスを硝酸銀のような銀イオンを含む溶液
や塩化第一鉄溶液で洗気する、(3)酸化反応部から出
たガスを銀、スズ等の金属のペレット(小粒)が充填さ
れたカラムを通過させる、等の対策を講じていた。
Here, when hydrochloric acid is contained in the sample liquid such as, for example, a part of the waste liquid, a combustion oxidation reaction in the TC combustion pipe 15 (hereinafter, this portion is generically referred to as an oxidation reaction part). ), Hydrogen chloride (HCl), chlorine (C
l), corrosive gas such as chloric acid gas (ClO 2 ) (hereinafter, referred to as hydrochloric acid gas) is generated. These hydrochloric acid gases affect the measured value when measuring the CO 2 concentration by the NDIR22, and the flow path and the dehumidification / dehumidification after the oxidation reaction part.
It may corrode each part of the gas processing part 21 and the NDIR 22. In order to avoid such a situation, in the conventional TOC meter, (1) the sample solution is diluted in advance, (2) the gas discharged from the oxidation reaction part is a solution containing silver ions such as silver nitrate, or a first chloride solution. Measures were taken such as flushing with an iron solution and (3) passing the gas emitted from the oxidation reaction section through a column filled with pellets (small particles) of a metal such as silver or tin.

【0004】[0004]

【発明が解決しようとする課題】従来のTOC計におけ
る上記各方策では、通常の廃液等のように、せいぜい数
%程度の塩酸しか含まれない試料液に対しては有効であ
るが、試料液にそれ以上の高濃度の塩酸が含まれる場合
には、それらの方策では全く不十分であった。例えば、
電子工業においては半導体基板のエッチングのために高
純度かつ高濃度(濃度10%以上)の塩酸を含む液を使
用するが、TOC計でそのような試料液のTOC量を測
定しようとすると、酸化反応部において多量の塩酸ガス
が発生し、従来のような銀イオン溶液、塩化第一鉄溶
液、銀、スズペレット等では十分に除去することができ
ない。また、電子工業において用いられる濃塩酸のTO
C量は一般に1ppm以下という極微量であるため、試
料液を予め希釈することは測定精度の点から困難であ
る。さらに、このようにTOC量が微量であるため、高
感度測定を行なう必要があることから、一方では、通常
よりも多量の試料を注入する必要があるのに対し、他方
では、多量の試料からは多量の塩酸ガスが発生し、銀イ
オン溶液等で除去しきれずにNDIR22に入る塩酸ガ
スがCO2濃度測定の妨害成分となって測定誤差を生じ
る。また、流路等を腐食させるという問題も当然ある。
本発明はこのような課題を解決するために成されたもの
であり、その目的とするところは、高濃度の塩酸を含む
試料液であっても、測定装置を傷めることなく、高感度
に測定を行なうことのできる炭素量測定装置を提供する
ことにある。
The above-mentioned respective measures in the conventional TOC meter are effective for a sample liquid containing only a few percent of hydrochloric acid at most, such as an ordinary waste liquid, but the sample liquid However, these measures were completely inadequate when the solution contained hydrochloric acid at a higher concentration. For example,
In the electronics industry, a solution containing hydrochloric acid having a high purity and a high concentration (concentration of 10% or more) is used for etching a semiconductor substrate, but when trying to measure the TOC amount of such a sample solution with a TOC meter, oxidation occurs. A large amount of hydrochloric acid gas is generated in the reaction part and cannot be sufficiently removed by a conventional silver ion solution, ferrous chloride solution, silver, tin pellets, or the like. In addition, concentrated hydrochloric acid used in the electronics industry
Since the amount of C is generally an extremely small amount of 1 ppm or less, it is difficult to dilute the sample solution in advance in terms of measurement accuracy. Furthermore, since the TOC amount is so small that high-sensitivity measurement needs to be performed, it is necessary to inject a larger amount of sample than usual on the one hand, while on the other hand, a large amount of sample must be injected. A large amount of hydrochloric acid gas is generated, and the hydrochloric acid gas that cannot be completely removed by a silver ion solution or the like and enters the NDIR 22 becomes a disturbing component of the CO 2 concentration measurement, resulting in a measurement error. There is also a problem of corroding the flow path and the like.
The present invention has been made to solve such a problem, and its object is to measure with high sensitivity without damaging the measuring device even with a sample solution containing a high concentration of hydrochloric acid. The object of the present invention is to provide a carbon content measuring device capable of carrying out.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に成された本発明では、酸化反応部において試料液中の
炭素を酸化して二酸化炭素に変換し、二酸化炭素測定部
において二酸化炭素濃度を測定することにより、試料液
中の炭素量を測定する炭素量測定装置において、酸化反
応部から送出されるガスを、2価のスズイオンを含む溶
液中を通過させた後、二酸化炭素測定部に送出するよう
にしたことを特徴とする。
According to the present invention made to solve the above problems, carbon in a sample solution is oxidized and converted into carbon dioxide in an oxidation reaction section, and a carbon dioxide concentration is measured in a carbon dioxide measurement section. In a carbon amount measuring device for measuring the amount of carbon in a sample solution by measuring, the gas sent from the oxidation reaction part is passed through a solution containing divalent tin ions, and then the carbon dioxide measurement part The feature is that it is sent out.

【0006】[0006]

【作用】試料液中に塩酸が含まれる場合、酸化反応部に
おいて塩酸から塩化水素(HCl)、塩素(Cl)、塩
素酸ガス(Cl02)等のガス(塩酸ガス)が発生す
る。なお、ここでいう酸化反応部とは、触媒の存在下で
試料液を高温で酸化させる(燃焼させる)高温酸化部
(上記TOC計の例ではTC燃焼管15)をいう。これ
らの塩酸ガスは2価のスズイオンを含む溶液中で還元さ
れ、その溶液中に吸収される。この2価のスズイオンを
含む溶液が塩化水素ガス等の塩酸ガスを吸収する能力
は、従来の銀イオンを含む溶液や塩化第一鉄溶液のそれ
に対して10倍以上であるため、高濃度の塩酸を含む試
料液であっても、酸化反応部において生成される塩酸ガ
スの全量を吸収し、二酸化炭素測定部へそれらのガスを
送出させない。従って、酸化反応部以降の流路や二酸化
炭素部等各部の腐食が防止され、また、二酸化炭素測定
部では妨害のない正確な二酸化炭素濃度の測定を行なう
ことができる。
When the sample solution contains hydrochloric acid, a gas (hydrochloric acid gas) such as hydrogen chloride (HCl), chlorine (Cl), and chloric acid gas (Cl0 2 ) is generated from hydrochloric acid in the oxidation reaction part. The term "oxidation reaction section" as used herein refers to a high temperature oxidation section (TC combustion tube 15 in the above TOC meter example) that oxidizes (burns) the sample liquid at a high temperature in the presence of a catalyst. These hydrochloric acid gases are reduced in a solution containing divalent tin ions and absorbed in the solution. Since the ability of this solution containing divalent tin ions to absorb hydrochloric acid gas such as hydrogen chloride gas is 10 times or more that of conventional solutions containing silver ions or ferrous chloride solutions, high concentration hydrochloric acid is used. Even with a sample liquid containing, the total amount of hydrochloric acid gas generated in the oxidation reaction part is absorbed, and those gases are not sent to the carbon dioxide measurement part. Therefore, corrosion of each part such as the flow path and the carbon dioxide part after the oxidation reaction part can be prevented, and the carbon dioxide measuring part can accurately measure the carbon dioxide concentration without interference.

【0007】[0007]

【実施例】本発明の一実施例である全有機体炭素計(T
OC計)を図1及び図2により説明する。本実施例のT
OC計は、図2に示した従来の基本的なTOC計に図1
に示すような塩酸ガス吸収部18を付加したものであ
り、この塩酸ガス吸収部18を使用する場合と使用しな
い場合とを切り替えることができるように、IC反応器
16と除湿・ガス処理部21との間に流路切替弁20を
設けている。
EXAMPLE An all-organic carbon meter (T
The OC meter will be described with reference to FIGS. 1 and 2. T of this embodiment
The OC meter is similar to the conventional basic TOC meter shown in FIG.
The hydrochloric acid gas absorption part 18 as shown in FIG. 2 is added, and the IC reactor 16 and the dehumidification / gas treatment part 21 can be switched to use or not to use the hydrochloric acid gas absorption part 18. A flow path switching valve 20 is provided between and.

【0008】図1に示すように、塩酸ガス吸収部18に
はスクラバー31、検知管34、固体吸収管36、及
び、ポンプ39等のスクラバー液交換システムが設けら
れている。スクラバー31は、ガラス製容器の内部に8
%塩化第一スズ(SnCl2)溶液(スクラバー液)3
2を装填し、上部からスクラバー液32内に散気管33
を挿入したものである。なお、塩化第一スズ溶液32に
は、塩化第一スズ結晶(SnCl2・2H2O)が加水分
解して白色沈澱を生ずるのを防止するために少量の塩酸
を加えておくとよい。検知管34は、ガラス管の内部に
有機色素を含む塩酸ガス検知剤35を固定したものであ
る。固体吸収管36は、ガラス管の内部に径約1〜2m
mの粒状の銅(銅ペレット)37を充填したもので、管
の下部にガス導入口が、上部に排出口が設けられてい
る。
As shown in FIG. 1, the hydrochloric acid gas absorption section 18 is provided with a scrubber 31, a detection tube 34, a solid absorption tube 36, and a scrubber liquid exchange system such as a pump 39. The scrubber 31 is installed inside the glass container.
% Stannous chloride (SnCl 2 ) solution (scrubber solution) 3
2 into the scrubber liquid 32 from the top, and the air diffuser 33
Is inserted. It should be noted that a small amount of hydrochloric acid may be added to the stannous chloride solution 32 in order to prevent the stannous chloride crystal (SnCl 2 .2H 2 O) from being hydrolyzed to form a white precipitate. The detection tube 34 is formed by fixing a hydrochloric acid gas detection agent 35 containing an organic dye inside a glass tube. The solid absorption tube 36 has a diameter of about 1 to 2 m inside the glass tube.
It is filled with m granular copper (copper pellets) 37, and a gas inlet is provided at the bottom of the tube and an outlet is provided at the top.

【0009】本TOC計で塩酸濃度の高い(濃度が数%
以上の)試料液10の有機体炭素量を測定する場合は、
流路切替弁20を塩酸ガス吸収部18側(図1の実線)
に切り替える。試料容器からシリンジ14で吸引された
試料液10は、4方弁13の切り替えにより、TC燃焼
管15又はIC反応器16へ送出され、そこで試料液1
0中の炭素成分(TC燃焼管15では全炭素、IC反応
器16では無機体炭素)が二酸化炭素(CO2)に変換
される。しかし、TC燃焼管15で燃焼される場合、試
料液10に塩酸が含まれていると塩化水素(HCl)、
塩素(Cl)、塩素酸ガス(Cl02)等のガス(塩酸
ガス)が発生し、本来の測定対象であるCO2と一緒に
除湿・ガス処理部21及びNDIR22へ送出されてし
まう。本実施例ではそれを防止するために、塩酸ガス吸
収部18で予め塩酸ガスを除去する。
The TOC meter has a high hydrochloric acid concentration (concentration is several%.
When measuring the amount of organic carbon in the sample liquid 10 (above),
The flow path switching valve 20 is connected to the hydrochloric acid gas absorption section 18 side (solid line in FIG. 1)
Switch to. The sample solution 10 sucked from the sample container by the syringe 14 is sent to the TC combustion tube 15 or the IC reactor 16 by switching the four-way valve 13, and the sample solution 1 is there.
The carbon component in 0 (total carbon in the TC combustion tube 15 and inorganic carbon in the IC reactor 16) is converted into carbon dioxide (CO 2 ). However, when the sample liquid 10 contains hydrochloric acid when burned in the TC combustion tube 15, hydrogen chloride (HCl),
Gas (hydrochloric acid gas) such as chlorine (Cl) and chloric acid gas (ClO 2 ) is generated and sent to the dehumidifying / gas processing unit 21 and the NDIR 22 together with CO 2 which is the original measurement target. In this embodiment, in order to prevent this, the hydrochloric acid gas absorption unit 18 removes the hydrochloric acid gas in advance.

【0010】塩酸ガスを含んだ測定ガスは、まず、流路
切替弁20からスクラバー31に送られ、その散気管3
3により塩化第一スズ溶液32中に細かい泡として放出
される。測定ガス中に含まれる塩酸ガスはこの泡の表面
で塩化第一スズ溶液32中の2価のスズイオンにより還
元され、錯体を形成して塩化第一スズ溶液32中に吸収
される。測定ガスはその後検知管34及び固体吸収管3
6を通過し、流路切替弁20を経て除湿・ガス処理部2
1及びNDIR22に送出される。
The measurement gas containing hydrochloric acid gas is first sent from the flow path switching valve 20 to the scrubber 31, and its diffusing pipe 3
3 is discharged as fine bubbles into the stannous chloride solution 32. The hydrochloric acid gas contained in the measurement gas is reduced by the divalent tin ions in the stannous chloride solution 32 on the surface of the foam, forms a complex, and is absorbed in the stannous chloride solution 32. The measurement gas is then fed to the detection tube 34 and the solid absorption tube 3
6 through the flow path switching valve 20 to dehumidify / gas treatment unit 2
1 and NDIR 22.

【0011】従来のTOC計でも、試料に少量の塩酸が
含まれる場合を考慮して、それにより発生する塩酸ガス
を除去するために上記同様のスクラバーを用いたものが
あったが、そこでは硝酸銀溶液又は塩化第一鉄溶液を用
いていた。しかし、硝酸銀溶液や塩化第一鉄溶液の塩酸
ガス吸収能力は高くないため、高濃度の塩酸を含む試料
を測定する場合には測定ガス中の塩酸ガスを十分吸収す
ることができず、NDIR22におけるCO2濃度測定
時に干渉を起こしたり、流路、部品等を腐食させるとい
う問題が生じる。それに対し本実施例のTOC計ではス
クラバー31中の溶液として塩化第一スズ溶液32を用
いているが、塩化第一スズ溶液32中の2価のスズイオ
ンは塩酸ガスを吸収する能力が従来用いられていた銀イ
オン等のそれの10倍以上である。このため、測定ガス
中の塩酸ガスは本実施例のスクラバー31によりほぼ完
全に除去される。
Some conventional TOC meters also use a scrubber similar to the above in order to remove the hydrochloric acid gas generated by considering the case where the sample contains a small amount of hydrochloric acid. A solution or ferrous chloride solution was used. However, since the hydrochloric acid gas absorption capacity of the silver nitrate solution and the ferrous chloride solution is not high, when measuring a sample containing a high concentration of hydrochloric acid, the hydrochloric acid gas in the measurement gas cannot be sufficiently absorbed, and the NDIR22 When measuring the CO 2 concentration, there arises a problem that interference is caused and a flow path, parts and the like are corroded. On the other hand, in the TOC meter of the present embodiment, the stannous chloride solution 32 is used as the solution in the scrubber 31, but the divalent tin ion in the stannous chloride solution 32 has conventionally used the ability to absorb hydrochloric acid gas. It is 10 times more than that of silver ions. Therefore, the hydrochloric acid gas in the measurement gas is almost completely removed by the scrubber 31 of this embodiment.

【0012】本実施例のTOC計の塩酸ガス吸収能力を
従来のTOC計のそれと比較するため、TOCを0.3
〜0.8ppm含む濃度36%の試薬級の塩酸を試料液
10として用意し、双方のTOC計で測定を行なった。
従来のTOC計では測定ガス中の塩酸ガスを十分に除去
することができないため、NDIR22におけるCO2
濃度測定時に干渉ピークを生じ、正確なCO2濃度の測
定を行なうことができなかった。一方、本実施例のTO
C計では、合計40ml(250μl×160回)の上
記試料液10のTOC測定を行なっても、NDIR22
における干渉は起こらず、また、流路、部品等の腐食も
生じなかった。
In order to compare the hydrochloric acid gas absorption capacity of the TOC meter of this embodiment with that of the conventional TOC meter, the TOC was set to 0.3.
A reagent grade hydrochloric acid having a concentration of 36% containing 0.8 ppm was prepared as the sample solution 10, and the measurement was performed by both TOC meters.
Since the conventional TOC meter cannot sufficiently remove the hydrochloric acid gas in the measurement gas, the CO 2 in the NDIR 22 cannot be removed.
An interference peak was generated during the concentration measurement, and the CO 2 concentration could not be measured accurately. On the other hand, the TO of this embodiment
With the C meter, even if TOC measurement of 40 ml (250 μl × 160 times) of the sample liquid 10 in total was performed, the NDIR22
No interference occurred, and no corrosion of the flow path or parts occurred.

【0013】ただし、塩化第一スズ溶液32も塩酸ガス
の吸収により変質するため、塩酸ガス吸収能力がいずれ
はなくなる。この場合には、スクラバー31を出た測定
ガス中に塩酸ガスが残留することがあり得るが、固体吸
収管36中の銅ペレット37がそれを確実に捕捉し、除
湿・ガス処理部21やNDIR22に送出されることを
防止する。また、このとき、検知管34中の塩酸ガス検
知剤35の色が変化し、スクラバー31中の塩化第一ス
ズ溶液32を交換すべきことを知らせる。劣化した溶液
32は電磁弁38を通ってドレイン41へ排出され、新
しい塩化第一スズ溶液(補充用スクラバー液)40が貯
留槽からポンプ39により汲み上げられ、スクラバー3
1に送入される。
However, since the stannous chloride solution 32 also changes in quality by absorbing hydrochloric acid gas, its ability to absorb hydrochloric acid gas eventually disappears. In this case, hydrochloric acid gas may remain in the measurement gas discharged from the scrubber 31, but the copper pellet 37 in the solid absorption tube 36 surely captures it, and the dehumidification / gas treatment unit 21 and the NDIR 22. To be sent to. In addition, at this time, the color of the hydrochloric acid gas detecting agent 35 in the detecting tube 34 changes to notify that the stannous chloride solution 32 in the scrubber 31 should be replaced. The deteriorated solution 32 is discharged to the drain 41 through the solenoid valve 38, and a new stannous chloride solution (supplementary scrubber solution) 40 is pumped up from the storage tank by the pump 39, and the scrubber 3
Sent to 1.

【0014】なお、図3に示すように、スクラバー31
に電位差測定器44を設け、塩化第一スズ溶液32の2
価のスズイオンが塩酸ガスと反応して4価のスズイオン
に変化するときの電位の変化を検出することにより、塩
化第一スズ溶液32の劣化を検出するようにしてもよ
い。この場合には、制御部43(図2の制御部23と共
用してもよい)により電磁弁38及びポンプ39を運転
させ、スクラバー31内の塩化第一スズ溶液32を自動
的に更新させることができる。
As shown in FIG. 3, the scrubber 31
A potentiometer 44 is installed in the stannous chloride solution 32
Deterioration of the stannous chloride solution 32 may be detected by detecting a change in potential when a valent tin ion reacts with hydrochloric acid gas and changes into a tetravalent tin ion. In this case, the solenoid valve 38 and the pump 39 are operated by the control unit 43 (may be shared with the control unit 23 of FIG. 2) to automatically update the stannous chloride solution 32 in the scrubber 31. You can

【0015】[0015]

【発明の効果】本発明の炭素量測定装置で用いる2価の
スズイオンを含む溶液が塩化水素ガス等のガスを吸収す
る能力は、従来の銀イオンを含む溶液や塩化第一鉄溶液
のそれに対して10倍以上である。そのため、高濃度の
塩酸を含む試料液であっても、酸化反応部において生成
される塩化水素ガス等の腐食性ガスの全量を吸収するこ
とができ、二酸化炭素測定部へそれらのガスを送出させ
ない。従って、酸化反応部以降の流路や二酸化炭素部等
各部の腐食が防止され、また、二酸化炭素測定部では妨
害のない正確な二酸化炭素濃度の測定を行なうことがで
きる
EFFECTS OF THE INVENTION The ability of the solution containing divalent tin ions used in the carbon content measuring apparatus of the present invention to absorb a gas such as hydrogen chloride gas is higher than that of conventional solutions containing silver ions or ferrous chloride solutions. 10 times or more. Therefore, even a sample liquid containing high-concentration hydrochloric acid can absorb all the corrosive gas such as hydrogen chloride gas generated in the oxidation reaction part, and does not send the gas to the carbon dioxide measurement part. .. Therefore, corrosion of each part such as the flow path and the carbon dioxide part after the oxidation reaction part is prevented, and the carbon dioxide measuring part can accurately measure the carbon dioxide concentration without interference.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例である全有機体炭素量測定
装置(TOC計)の概略構成図。
FIG. 1 is a schematic configuration diagram of a total organic carbon content measuring apparatus (TOC meter) which is an embodiment of the present invention.

【図2】 実施例のTOC計の塩酸ガス吸収部の構成
図。
FIG. 2 is a configuration diagram of a hydrochloric acid gas absorption unit of the TOC meter of the embodiment.

【図3】 スクラバー液を自動的に更新する装置を備え
たスクラバーの構成図。
FIG. 3 is a configuration diagram of a scrubber equipped with a device for automatically updating the scrubber liquid.

【符号の説明】[Explanation of symbols]

10…試料液 15…TC燃焼
管 16…IC反応器 18…塩酸ガス
吸収部 20…流路切替弁 31…スクラバ
ー 32…塩化第一スズ溶液(スクラバー液) 33…散気管 34…検知管 35…塩酸ガス
検知剤 36…固体吸収管 37…銅ペレッ
ト 38…電磁弁 39…ポンプ 44…電位差測定器
10 ... Sample solution 15 ... TC combustion tube 16 ... IC reactor 18 ... Hydrochloric acid gas absorption section 20 ... Flow path switching valve 31 ... Scrubber 32 ... Stannous chloride solution (scrubber solution) 33 ... Diffuser tube 34 ... Detection tube 35 ... Hydrochloric acid gas detecting agent 36 ... Solid absorption tube 37 ... Copper pellet 38 ... Electromagnetic valve 39 ... Pump 44 ... Potentiometer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化反応部において試料液中の炭素を酸
化して二酸化炭素に変換し、二酸化炭素測定部において
二酸化炭素濃度を測定することにより、試料液中の炭素
量を測定する炭素量測定装置において、 酸化反応部から送出されるガスを、2価のスズイオンを
含む溶液中を通過させた後、二酸化炭素測定部に送出す
るようにしたことを特徴とする炭素量測定装置。
1. A carbon amount measurement for measuring the carbon amount in a sample liquid by oxidizing carbon in the sample liquid in the oxidation reaction part to convert it into carbon dioxide and measuring the carbon dioxide concentration in the carbon dioxide measuring part. In the apparatus, the gas delivered from the oxidation reaction section is passed through a solution containing divalent tin ions, and then delivered to a carbon dioxide measurement section.
JP04148511A 1992-05-15 1992-05-15 Carbon content measuring device Expired - Lifetime JP3074938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04148511A JP3074938B2 (en) 1992-05-15 1992-05-15 Carbon content measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04148511A JP3074938B2 (en) 1992-05-15 1992-05-15 Carbon content measuring device

Publications (2)

Publication Number Publication Date
JPH05322873A true JPH05322873A (en) 1993-12-07
JP3074938B2 JP3074938B2 (en) 2000-08-07

Family

ID=15454406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04148511A Expired - Lifetime JP3074938B2 (en) 1992-05-15 1992-05-15 Carbon content measuring device

Country Status (1)

Country Link
JP (1) JP3074938B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141185A (en) * 2010-12-28 2012-07-26 Shimadzu Corp Total organic carbon measuring device
CN112147287A (en) * 2020-10-21 2020-12-29 西安热工研究院有限公司 Online measurement system and method for HCl in flue gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141185A (en) * 2010-12-28 2012-07-26 Shimadzu Corp Total organic carbon measuring device
CN112147287A (en) * 2020-10-21 2020-12-29 西安热工研究院有限公司 Online measurement system and method for HCl in flue gas
CN112147287B (en) * 2020-10-21 2024-01-23 西安热工研究院有限公司 Online measurement system and method for HCl in flue gas

Also Published As

Publication number Publication date
JP3074938B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
US5900042A (en) Method for the removal of elemental mercury from a gas stream
US5827947A (en) Piezoelectric sensor for hydride gases, and fluid monitoring apparatus comprising same
Andreae et al. Determination of antimony (III), antimony (V), and methylantimony species in natural waters by atomic absorption spectrometry with hydride generation
US20060012794A1 (en) Optical sensor system and method for detection of hydrides and acid gases
US6284545B1 (en) Filter for gas sensor
EP0469773B1 (en) Iron (II) concentration monitoring for determining corrosion in boiler systems
US5080867A (en) Portable carbonyl sulfide analyzer
US7744815B2 (en) Device for determining chlorine dioxide and method
JP3074938B2 (en) Carbon content measuring device
KR20030094327A (en) Pickle liquor acid analyzer
JP2692275B2 (en) Total organic carbon meter
Miller et al. Automated iodometric method for determination of trace chlorate ion using flow injection analysis
US5977687A (en) Piezoelectric end point sensor for detection of breakthrough of fluid, and fluid processing apparatus comprising same
US4977093A (en) Process for analyzing carbonyl sulfide in a gas
Themelis et al. Determination of low concentrations of chlorite and chlorate ions by using a flow-injection system
EP0466303B1 (en) Method and system for continuously monitoring and controlling a process stream for dechlorination residual
Coetzee et al. Potentiometric gas sensor for the determination of free chlorine in static or flow injection analysis systems
JP4765976B2 (en) Water quality analyzer
JPS6041976B2 (en) Sulfur dioxide gas removal method
JP2692276B2 (en) Total organic carbon meter with blank check mechanism
JP2008232695A (en) Water quality analyzer
Johannesson Determination of microgram quantities of free iodine using o-tolidine reagent
JPH0532699B2 (en)
US3494838A (en) Method for the instantaneous quantitative analysis of ozone
JPH0713633B2 (en) Total organic carbon meter