JPH05322558A - Distance measurement device - Google Patents

Distance measurement device

Info

Publication number
JPH05322558A
JPH05322558A JP9971991A JP9971991A JPH05322558A JP H05322558 A JPH05322558 A JP H05322558A JP 9971991 A JP9971991 A JP 9971991A JP 9971991 A JP9971991 A JP 9971991A JP H05322558 A JPH05322558 A JP H05322558A
Authority
JP
Japan
Prior art keywords
light
light receiving
distance
image
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9971991A
Other languages
Japanese (ja)
Other versions
JP3035370B2 (en
Inventor
Masanori Otsuka
正典 大塚
Takanobu Tsunemiya
隆信 常宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14254885&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05322558(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9971991A priority Critical patent/JP3035370B2/en
Publication of JPH05322558A publication Critical patent/JPH05322558A/en
Application granted granted Critical
Publication of JP3035370B2 publication Critical patent/JP3035370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To improve distance measuring ability and precision of a short distance side and a long distance side by changing at least either size of a light projection spot image caused by a light projection means and a light receiving spot image caused by a light receiving means in response to a distance up to a object. CONSTITUTION:A microcomputer 1 serves to transmit a first control signal to a light projection circuit 2, in addition, receive a second control signal from a distance measuring operation circuit 3 to convert into a subject distance, transmit a third control signal to a light projection optical system drive means 4 and a light receiving optical system drive means 5 on the basis of the measured data and change the size of a light projection image and a light receiving image and a dim quantity. The drive means 4 serves to change a focus distance, a diaphragm and the like of a light projection optical system 8 and alter a focusing distance of signal light from an emission element 6. In addition, the drive means 5 serves to change another focusing distance and another diaphragm of a light receiving optical system 9 and image-form reflection light from a subject 7 of a specified distance on a light receiving sensor 10. And a light receiving lens of the light receiving optical system 9 is moved in the direction of a light axis in front and rear and the focusing distance for image-forming the reflection light from the subject on the sensor 10 is changed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、信号光を投射し、か
つ、その反射信号光を受光することにより、被写体まで
の距離を測定する、自動焦点カメラなどに好適なアクテ
ィブ方式の測距装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active distance measuring device suitable for an autofocus camera or the like, which measures the distance to a subject by projecting signal light and receiving the reflected signal light. Related to the improvement of.

【0002】[0002]

【従来の技術】自動焦点カメラなどにおいて、被写体に
信号光を投射し、かつ、被写体により反射されるその信
号光を受光して、三角測量の原理により被写体までの距
離を測定する、いわゆるアクティブ方式の測距装置は、
従来から広く使用されている。
2. Description of the Related Art In an autofocus camera or the like, a so-called active method is used in which a signal light is projected onto a subject and the signal light reflected by the subject is received to measure the distance to the subject by the principle of triangulation. The range finder of
Widely used from the past.

【0003】また、たとえば特公昭54−39731号
公報、特開昭60−19116号公報などに示されるよ
うに、受光手段として2分割された1対のシリコン・フ
ォトセル(SPC)などを用いて、可動部なしに測距可
能な測距装置も広く実用化されるようになっている。
Further, as disclosed in, for example, Japanese Patent Publication No. 54-39731 and Japanese Patent Laid-Open No. 60-19116, a pair of bisected silicon photocells (SPC) is used as a light receiving means. A range finder capable of measuring a range without a movable part has been widely put into practical use.

【0004】従来のアクティブ測距装置を図9に示す。
発光素子21からの信号光は、絞り22により所定の光
量に絞られた後、投光レンズ23により距離L2点に集
束されるようになっている。被写体24がL2点に存在
する場合は、発光素子21からの信号光は、被写体24
によって反射され、受光レンズ25、絞り26を介して
受光センサ27上のスポット位置cに結像される。
FIG. 9 shows a conventional active distance measuring device.
The signal light from the light emitting element 21 is focused by the diaphragm 22 to a predetermined light amount, and then focused by the light projecting lens 23 at the point of the distance L2. When the subject 24 exists at the point L2, the signal light from the light emitting element 21 is
Is reflected by the light receiving lens 25 and the diaphragm 26, and an image is formed at a spot position c on the light receiving sensor 27.

【0005】同様に、被写体24がL1(近距離)の位
置に存在する場合は受光センサ27上のスポット位置n
に、更に、被写体24がL3(遠距離)の位置に存在す
る場合は受光センサ27上のスポット位置fに結像され
る。
Similarly, when the subject 24 is located at the position L1 (short distance), the spot position n on the light receiving sensor 27 is increased.
Further, when the subject 24 is present at the position L3 (long distance), the image is formed at the spot position f on the light receiving sensor 27.

【0006】この受光センサ27上のスポット位置n,
c,fを検出し、これを演算することによって被写体ま
での距離を求める。なお、受光レンズ25の焦点位置
(受光センサ27上でシャープに結像する距離)はL2
に調整してあるものとする。
The spot position n on the light receiving sensor 27,
The distances to the subject are obtained by detecting c and f and calculating them. The focal position of the light receiving lens 25 (the distance at which a sharp image is formed on the light receiving sensor 27) is L2.
It has been adjusted to.

【0007】[0007]

【発明が解決しようとする課題】このように構成された
測距装置において、受光センサ27上に結像するスポッ
ト像を図10に示す。同図に示すように、受光レンズ2
5の焦点距離が被写体距離L2の位置においてスポット
像Cとしてシャープに結像するように構成されているた
めに、被写体がL1あるいはL3に存在する場合には、
L1,L3がL2から離れるに従って、受光センサ27
上のスポット像がNあるいはFのようにボケて大きくな
ってしまう。この時の受光センサ27上のスポット像の
重心位置に対する測距データは、図11の従来の被写体
までの距離と測距データとの関係を示す図に示すよう
に、本来なら点線のように直線性を保っていればよい
が、スポット像がボケて受光センサ27から外れてくる
と、距離の変化に対して重心位置が動かなくなり、実線
で示すように直線性が失われるようになる。
FIG. 10 shows a spot image formed on the light receiving sensor 27 in the distance measuring device constructed as described above. As shown in FIG.
Since the focal length of 5 is sharply formed as the spot image C at the position of the object distance L2, when the object exists at L1 or L3,
As L1 and L3 move away from L2, the light receiving sensor 27
The upper spot image is blurred like N or F and becomes large. At this time, the distance measurement data with respect to the position of the center of gravity of the spot image on the light receiving sensor 27 is originally a straight line such as a dotted line as shown in the figure showing the relationship between the distance to the conventional subject and the distance measurement data. However, if the spot image is blurred and deviates from the light receiving sensor 27, the position of the center of gravity does not move with respect to the change in distance, and linearity is lost as shown by the solid line.

【0008】撮影レンズの焦点距離が望遠側にも伸びて
くると、測距装置の測距能力もより広範囲に必要となる
が、遠距離側の曲がりにより必要な測距精度が得られ
ず、従って、測距能力が満足できなくなっていた。ま
た、近距離側の測距精度も、近距離側の曲がりのために
不適正なものとなり、撮影してもボケた写真になった
り、あるいは、ボケを防止するためには、至近警告範囲
を遠くせざるを得なくなっていた。
When the focal length of the taking lens extends to the telephoto side, the range finding ability of the range finding device is also required in a wider range, but the necessary range finding accuracy cannot be obtained due to the bending on the long range side. Therefore, the distance measuring ability cannot be satisfied. In addition, the distance measurement accuracy on the short-distance side is also inadequate due to the bend on the short-distance side, and even if you take a picture, it will be a blurred picture, or in order to prevent blurring, the close warning range is set. I had to go far.

【0009】また、特開昭59−195631号公報に
おいて、通常撮影モードと近接撮影モードを測距結果に
基づいて自動的に切り換える技術が開示されている。
Further, Japanese Patent Laid-Open No. 59-195631 discloses a technique for automatically switching between the normal photographing mode and the close-up photographing mode based on the distance measurement result.

【0010】しかし、この場合受光レンズは、通常撮影
時に測距するための主レンズ部と、マクロ撮影時の補助
レンズ部とに分けられ、測距距離に基づいて、マスクが
2つの受光レンズの内のいずれかの受光レンズを覆うと
いう方式を採用しているために、1つの受光センサの同
一信号時においても、通常撮影時とマクロ撮影時で別々
の被写体距離となるので、撮影レンズに別のマクロレン
ズを挿入しなければならず、構造が複雑でカメラ本体も
大きくなるなど、煩わしいものであった。その上、各々
の光学系による受光センサ上のスポット位置と被写体距
離との関係を別々に設定し、かつ、調整補正を行わなけ
ればならず、量産性を損なうものとなっていた。更に、
マクロ撮影時の受光レンズにおいては、その範囲内でス
ポット像のボケや大きさについて考慮されておらず、同
様に近距離側曲がりの問題が発生していた。
In this case, however, the light-receiving lens is divided into a main lens section for distance measurement during normal photographing and an auxiliary lens section for macro photography, and the mask has two light-receiving lenses based on the distance measurement distance. Since a method of covering any of the light receiving lenses in the above is adopted, even when the same signal of one light receiving sensor is used, the subject distances are different for normal shooting and macro shooting, so it is necessary to use different shooting lenses. The macro lens had to be inserted, and the structure was complicated and the camera body was large, which was troublesome. In addition, the relationship between the spot position on the light receiving sensor by each optical system and the subject distance must be set separately and adjustment correction must be performed, which impairs mass productivity. Furthermore,
With respect to the light receiving lens at the time of macro photography, the blurring and size of the spot image are not taken into consideration within that range, and similarly, the problem of bending at the short distance side occurs.

【0011】本発明の目的は、上述の課題を解決し、近
距離側及び遠距離側の測距能力・測距精度を向上させる
ことができる、簡単な構造の測距装置を提供することで
ある。
An object of the present invention is to solve the above problems and to provide a distance measuring device having a simple structure capable of improving the distance measuring ability and distance measuring accuracy on the short distance side and the long distance side. is there.

【0012】[0012]

【課題を解決するための手段】本発明は、対象物までの
距離に応じて、投光手段による投光スポット像と受光手
段による受光スポット像の少なくとも一方の大きさを変
化させるスポット像調節手段を設けたことを特徴とす
る。
SUMMARY OF THE INVENTION The present invention is a spot image adjusting means for changing the size of at least one of the light projected spot image by the light projecting means and the light received spot image by the light receiving means according to the distance to the object. Is provided.

【0013】[0013]

【作用】本発明においては、最初の測距動作により演算
手段が演算した対象物までの距離に応じて、対象物上の
投光スポット像、あるいは受光素子上の受光スポット
像、あるいは両方のスポット像をシャープに結像させ、
その状態で測距動作を行う。
According to the present invention, depending on the distance to the object calculated by the calculating means in the first distance measuring operation, the projected spot image on the object, the received light spot image on the light receiving element, or both spots. Form an image sharply,
In that state, the distance measurement operation is performed.

【0014】[0014]

【発明の実施例】図1は、本発明の一実施例である測距
装置を示すブロック図である。
1 is a block diagram showing a distance measuring device according to an embodiment of the present invention.

【0015】マイクロコンピュータ1は、投光回路2に
制御信号を発出し、また、測距演算回路3より制御信号
を受信して被写体距離に換算し、この測距データを基
に、本発明のスポット像調節手段に相当する投光光学系
駆動手段4及び受光光学系駆動手段5に制御信号を発出
して、投光像及び受光像の大きさとボケ量を変化させ
る。
The microcomputer 1 outputs a control signal to the light projecting circuit 2 and also receives a control signal from the distance measuring arithmetic circuit 3 to convert it into a subject distance. Based on this distance measuring data, the present invention is realized. A control signal is issued to the light projecting optical system driving means 4 and the light receiving optical system driving means 5 corresponding to the spot image adjusting means to change the size and blur amount of the light projecting image and the light receiving image.

【0016】投光回路2は、マイクロコンピュータ1よ
り制御信号を受け、発光素子6により被写体7に所定光
量で所定波長の信号光を投射する。投光光学系8は、発
光素子6からの信号光を集束させる。投光光学系駆動手
段4は投光光学系8の焦点距離や絞りなどを変化させ
て、発光素子6からの信号光の集束距離を変化させる。
The light projecting circuit 2 receives a control signal from the microcomputer 1 and projects a signal light having a predetermined light amount and a predetermined wavelength onto the subject 7 by the light emitting element 6. The light projecting optical system 8 focuses the signal light from the light emitting element 6. The light projecting optical system driving means 4 changes the focal length and the diaphragm of the light projecting optical system 8 to change the focusing distance of the signal light from the light emitting element 6.

【0017】受光光学系9は、被写体7からの反射光を
2分割シリコン・フォトセル(SPC)或いは半導体位
置検出素子(PSD)などの受光センサ10上に結像さ
せる。測距演算回路3は受光センサ10からの出力を演
算し、被写体距離としてマイクロコンピュータ1に伝達
する。受光光学系駆動手段5は受光光学系9の焦点距離
や絞りを変化させて、所定距離の被写体7からの反射光
を受光センサ10上に結像させる。
The light receiving optical system 9 forms an image of the reflected light from the subject 7 on a light receiving sensor 10 such as a two-part silicon photocell (SPC) or a semiconductor position detecting element (PSD). The distance measurement calculation circuit 3 calculates the output from the light receiving sensor 10 and transmits it to the microcomputer 1 as a subject distance. The light receiving optical system driving means 5 changes the focal length and the diaphragm of the light receiving optical system 9 to form an image of the reflected light from the subject 7 at a predetermined distance on the light receiving sensor 10.

【0018】図2(a)は、図1の測距装置において、
受光光学系9の制御により受光像のスポット光の大きさ
を変化させるスポット像調節手段の一例を示す図であ
り、図2(a)では、受光レンズ11を光軸方向に前後
に移動させることによって、被写体7からの反射光を受
光センサ10上に結像させる集束距離を変化させる。結
像する所定距離を遠くしようとする場合は、モータ12
に通電してギア13を回転させ、受光レンズ11と一体
化された支持部14を左側に移動させる。なお、この時
の初期位置及びモータ12の回転量は、不図示の受光レ
ンズ位置検出回路により検出される。
FIG. 2A shows the distance measuring device of FIG.
FIG. 3 is a diagram showing an example of a spot image adjusting unit that changes the size of the spot light of a received image by controlling the light receiving optical system 9. In FIG. 2A, the light receiving lens 11 is moved back and forth in the optical axis direction. Changes the focusing distance at which the reflected light from the subject 7 is imaged on the light receiving sensor 10. When trying to increase the predetermined distance for image formation, the motor 12
Is energized to rotate the gear 13 and move the supporting portion 14 integrated with the light receiving lens 11 to the left. The initial position and the amount of rotation of the motor 12 at this time are detected by a light receiving lens position detection circuit (not shown).

【0019】また、結像する所定距離を近くしようとす
る場合には、モータ12に逆方向の電流を通電し、受光
レンズ11を右側に移動させる。
When a predetermined distance for forming an image is to be approached, a reverse current is applied to the motor 12 to move the light receiving lens 11 to the right.

【0020】図2(b)は、測距装置において、受光レ
ンズ11の代わりに受光センサ10を光軸方向に前後に
移動させることにより、被写体7からの反射光を受光セ
ンサ10上に結像させる集束距離を変化させ、受光像の
スポット光の大きさを変化させるスポット像調節手段の
他の例を示す図である。この場合には、図2(a)に示
す例とは移動させる受光センサ10の駆動方向は逆とな
り、結像する所定距離を遠くしようとする時は受光セン
サ10を右側に移動させ、また、近くしようとする時に
は受光センサ10を左側に移動させる。
In FIG. 2B, in the distance measuring device, the light receiving sensor 10 instead of the light receiving lens 11 is moved back and forth in the optical axis direction so that the reflected light from the subject 7 is imaged on the light receiving sensor 10. It is a figure which shows the other example of the spot image adjustment means which changes the focusing distance made to change, and changes the magnitude | size of the spot light of a received light image. In this case, the driving direction of the light receiving sensor 10 to be moved is opposite to that in the example shown in FIG. 2A, and the light receiving sensor 10 is moved to the right when the predetermined distance for image formation is to be increased, and When approaching, the light receiving sensor 10 is moved to the left.

【0021】図2(c)は、図1の測距装置において、
受光レンズ11と受光センサ10との間に、受光光学系
9の一部として固定絞り15を挿入し、その位置を前後
に移動させることで擬似的に絞り口径を変化させて、ス
ポット光のボケ量を変えるようにした、受光光学系9の
制御により受光像のスポット光を変化させるスポット像
調節手段の他の例を示す図である。この場合は、結像す
る所定距離を遠距離側に合わせておき、被写体が近距離
側に近づくにつれて絞り15を左側に移動させれば、絞
り口径は実効的に小さくなり、ボケ量は減少する。な
お、近距離側では反射光の力(光量)が遠距離側より大
きいので、多少絞っても測距精度にそれ程影響を生じな
い。
FIG. 2C shows the distance measuring device of FIG.
A fixed diaphragm 15 is inserted between the light receiving lens 11 and the light receiving sensor 10 as a part of the light receiving optical system 9, and the position of the fixed diaphragm 15 is moved back and forth to artificially change the diaphragm aperture and blur the spot light. It is a figure which shows the other example of the spot image adjusting means which changes the quantity and which changes the spot light of a received light image by control of the light receiving optical system 9. In this case, if the predetermined distance for forming an image is adjusted to the far side and the diaphragm 15 is moved to the left as the subject approaches the near side, the diaphragm aperture is effectively reduced and the amount of blurring is reduced. .. Since the power (light amount) of the reflected light on the short distance side is larger than that on the long distance side, even if the aperture is slightly narrowed, the distance measuring accuracy is not so affected.

【0022】図3(a)は、図2(c)の例と同様に、
図1の測距装置において、受光レンズ11と受光センサ
10との間に、受光光学系9の一部として可変絞り16
を挿入し、その絞り口径を直接変化させることによって
ボケ量を変えるようにした、受光光学系9の制御により
受光像のスポット光の大きさを変化させるスポット像調
節手段の他の例を示す図である。この場合も結像する所
定距離を遠距離側に合わせておき、被写体が近づくにつ
れて可変絞り16の絞り口径を小さくすることでボケ量
を減少させる。
FIG. 3A is similar to the example of FIG. 2C,
In the distance measuring device of FIG. 1, a variable diaphragm 16 is provided between the light receiving lens 11 and the light receiving sensor 10 as a part of the light receiving optical system 9.
FIG. 6 is a view showing another example of the spot image adjusting means for changing the size of the spot light of the received image by the control of the light receiving optical system 9 in which the amount of blur is changed by directly inserting the aperture and changing the aperture diameter thereof. Is. In this case as well, the predetermined distance at which the image is formed is adjusted to the far side, and the amount of blur is reduced by reducing the aperture diameter of the variable aperture 16 as the subject approaches.

【0023】図3(b)は、図1の測距装置において、
受光レンズ11の光軸に垂直方向に均一に力を加えて、
受光レンズ11の焦点距離を変化させることで、受光セ
ンサ10上のスポット像のボケ量を変えるようにした、
受光光学系9の制御により受光像のスポット光の大きさ
を変化させるスポット像調節手段の他の例を示す図であ
る。結像する所定距離を長くしようとする場合には、受
光レンズ11の遠心方向に力を加え、球面をなだらかに
してスポット像のボケ量を小さくする。また、逆に結像
する所定距離を短くしようとする場合には、受光レンズ
11の求心方向に力を加え、球面をきつくしてスポット
像のボケ量を小さくする。
FIG. 3B shows the distance measuring device of FIG.
Applying force uniformly in the direction perpendicular to the optical axis of the light receiving lens 11,
By changing the focal length of the light receiving lens 11, the blur amount of the spot image on the light receiving sensor 10 is changed.
FIG. 11 is a diagram showing another example of the spot image adjusting means for changing the size of the spot light of the received image by the control of the light receiving optical system 9. When the predetermined distance for forming an image is to be lengthened, a force is applied in the centrifugal direction of the light receiving lens 11 to make the spherical surface gentle and reduce the blur amount of the spot image. On the contrary, when the predetermined distance for forming an image is to be shortened, a force is applied in the centripetal direction of the light receiving lens 11 to tighten the spherical surface and reduce the blur amount of the spot image.

【0024】図3(c)は、図3(b)の例と同様に、
図1の測距装置において、受光レンズ11の焦点距離を
変化させ、受光センサ10上のスポット像のボケ量を小
さくするようにした、受光光学系9の制御により受光像
のスポット光の大きさを変化させるスポット像調節手段
の他の例を示す図であり、受光レンズ11に電圧を加
え、それにより受光レンズ11の屈折率を変化させて焦
点距離を変えようとするものである。
FIG. 3 (c) is similar to the example of FIG. 3 (b),
In the distance measuring device of FIG. 1, the size of the spot light of the received image is controlled by the light receiving optical system 9 in which the focal length of the light receiving lens 11 is changed to reduce the blur amount of the spot image on the light receiving sensor 10. It is a figure which shows the other example of the spot image adjusting means which changes. The voltage is applied to the light receiving lens 11 to change the refractive index of the light receiving lens 11 to change the focal length.

【0025】図2および図3は、受光スポット像のボケ
量を減少させる例であるが、図4および図5に示すよう
に、図2および図3における受光センサ10を発光素子
6に、また、受光レンズ11を投光レンズ16にそれぞ
れ置き換えることにより、そのまま、測距装置において
投光光学系8あるいは発光素子6の制御により投光像の
スポット光の大きさを変化させるスポット像調節手段の
各例とすることができる。
2 and 3 are examples of reducing the blur amount of the received light spot image. As shown in FIGS. 4 and 5, the light receiving sensor 10 in FIGS. By replacing the light receiving lens 11 with the light projecting lens 16, the spot image adjusting means for changing the size of the spot light of the projected image by controlling the light projecting optical system 8 or the light emitting element 6 in the distance measuring device. Each can be an example.

【0026】図6は、図1の測距装置において、受光光
学系9の制御により受光像のスポット光の大きさを変化
させる実施例の測距動作を説明するフローチャートであ
る。ここでは、投光光学系8は固定し、図2(a)に示
す、受光光学系9の受光レンズ11を光軸方向に動かす
ことによって被写体7からの反射光を受光センサ10上
に結像させる集束距離を変化させて、スポット像のボケ
量を減少させるスポット像調節手段を有する実施例につ
いて説明する。
FIG. 6 is a flow chart for explaining the distance measuring operation of the embodiment in which the size of the spot light of the received light image is changed by the control of the light receiving optical system 9 in the distance measuring device of FIG. Here, the light projecting optical system 8 is fixed, and the reflected light from the subject 7 is imaged on the light receiving sensor 10 by moving the light receiving lens 11 of the light receiving optical system 9 shown in FIG. An embodiment having spot image adjusting means for reducing the blur amount of the spot image by changing the focusing distance is described.

【0027】先ず、ステップ1で、不図示の受光レンズ
位置検出手段により受光レンズ11が初期位置にあるか
が検出判断され、もし受光レンズ11が初期位置にない
場合には、ステップ2で、それを初期位置に戻すように
モータ12を回転させる。
First, in step 1, the light receiving lens position detecting means (not shown) determines whether or not the light receiving lens 11 is in the initial position. If the light receiving lens 11 is not in the initial position, then in step 2, The motor 12 is rotated so as to return to the initial position.

【0028】ステップ3で、マイクロコンピュータ1は
投光回路2に所定光量、所定波長での点灯開始を指示
し、発光素子6が投光を開始する。この投射光は投光光
学系8を介して被写体7に投射され、ステップ4で、そ
の反射光が受光光学系9を介して受光センサ10上にス
ポット像を結像される。
In step 3, the microcomputer 1 instructs the light projecting circuit 2 to start lighting with a predetermined light amount and a predetermined wavelength, and the light emitting element 6 starts projecting light. This projection light is projected onto the subject 7 via the projection optical system 8, and in step 4, the reflected light forms a spot image on the light receiving sensor 10 via the light receiving optical system 9.

【0029】受光センサ10はスポット位置に応じて信
号を出力し、ステップ5で、その信号を測距演算回路3
により被写体距離に相当する信号に変換してマイクロコ
ンピュータ1に伝達し、測距演算を行う。
The light receiving sensor 10 outputs a signal in accordance with the spot position, and in step 5, the signal is output to the distance measuring calculation circuit 3
Then, the signal is converted into a signal corresponding to the object distance and transmitted to the microcomputer 1 for distance measurement calculation.

【0030】ステップ6では、ピントを合わせてある受
光レンズ11の初期位置と測距データによる位置とを減
算し、どちらの方向にどれだけ受光レンズ11を移動さ
せれば、スポット像のボケ量が最小になるかを演算す
る。
In step 6, the initial position of the light-receiving lens 11 that is in focus and the position based on the distance measurement data are subtracted, and by moving the light-receiving lens 11 in either direction, the blur amount of the spot image is reduced. Calculate whether it becomes the minimum.

【0031】ステップ7では、この量が実際に受光レン
ズ11を移動させられる範囲の移動量かを判定し、最大
移動量を超えている場合には、ステップ8で、最大移動
量に再設定し、ステップ9で、受光レンズ11を所定方
向に所定量動かして、スポット像のボケ量を小さくす
る。
In step 7, it is judged whether this amount is the amount of movement within the range in which the light receiving lens 11 can be actually moved. If it exceeds the maximum amount of movement, in step 8, it is reset to the maximum amount of movement. In step 9, the light receiving lens 11 is moved in a predetermined direction by a predetermined amount to reduce the blur amount of the spot image.

【0032】ステップ10で、再び投光を開始し、ステ
ップ11で、被写体からの反射光を受光し、ステップ1
2で測距演算を行い、被写体7までの距離を求める。
In step 10, light emission is started again, in step 11, reflected light from the subject is received, and in step 1
The distance measurement calculation is performed in 2 to obtain the distance to the subject 7.

【0033】ステップ13で、この値を正規の被写体距
離として確定し、マイクロコンピュータ1内の所定のラ
ンダム・アクセス・メモリ領域1aに格納する。そし
て、ステップ14で、受光レンズ11を初期位置に戻し
て、一連の測距動作を終了する。
In step 13, this value is determined as the normal subject distance and stored in a predetermined random access memory area 1a in the microcomputer 1. Then, in step 14, the light receiving lens 11 is returned to the initial position, and a series of distance measuring operations is completed.

【0034】図7は、図1の測距装置において、受光光
学系9の制御により受光像のスポット光の大きさを変化
させる実施例の、被写体までの距離と測距データとの関
係を示す図である。スポット像のボケを考慮していない
従来の測距装置において被写体7の距離を変えていく
と、スポット像は図7のA−B間では受光センサ10内
に乗ることから、この範囲ではほぼ直線性が保たれる
が、被写体7がそれよりも近い時と遠い時には、スポッ
ト像の一部が受光センサ10から外れ、像の重心がズレ
てしまう(点線で表示)。
FIG. 7 shows the relationship between the distance to the object and the distance measurement data in the embodiment in which the size of the spot light of the received image is changed by the control of the light receiving optical system 9 in the distance measuring device of FIG. It is a figure. When the distance of the subject 7 is changed in the conventional distance measuring device that does not consider the blurring of the spot image, the spot image rides in the light receiving sensor 10 between AB in FIG. However, when the subject 7 is closer or farther than that, a part of the spot image deviates from the light receiving sensor 10, and the center of gravity of the image shifts (displayed by a dotted line).

【0035】しかるに、図1の測距装置によれば、近距
離側及び遠距離側ともスポット像がシャープに受光セン
サ10上に結像されることから、物理的に可能な領域で
あるA′−B′間まで直線性が保たれる(実線で表
示)。
However, according to the distance measuring device of FIG. 1, the spot image is sharply formed on the light receiving sensor 10 on both the short distance side and the long distance side, which is a physically possible area A '. Linearity is maintained between -B '(displayed with a solid line).

【0036】図8は、図1の測距装置において、受光光
学系9の制御により受光像のスポット光の大きさを変化
させる別の実施例の動作を説明するフローチャートであ
る。図7に示すように、スポット像のボケを考慮してい
ない従来の測距装置であっても、A−B間ではほぼ直線
性が保たれるので、撮影時のシャッターのレリーズ・タ
イムラグ短縮のために、図8のフローチャートにより説
明する動作では、測距した結果が図7のA点より近い場
合及びB点より遠い場合にのみ受光レンズ11を移動さ
せ、測距した結果がA点〜B点にある場合には受光レン
ズ11は移動させないようにする。
FIG. 8 is a flow chart for explaining the operation of another embodiment in which the size of the spot light of the received light image is changed by the control of the light receiving optical system 9 in the distance measuring device of FIG. As shown in FIG. 7, even with a conventional distance measuring device that does not consider the blurring of the spot image, the linearity between A and B is maintained, so that the shutter release time lag at the time of shooting can be shortened. Therefore, in the operation described with reference to the flowchart of FIG. 8, the light receiving lens 11 is moved only when the distance measurement result is closer to the point A in FIG. When it is at a point, the light receiving lens 11 is not moved.

【0037】まず、ステップ21で、受光レンズ11が
初期位置にあるかを判断し、もし、初期位置にない場合
には、ステップ22で、それを初期位置に戻すようモー
タ12を回転させ、ステップ23で投光を開始し、ステ
ップ24で被写体7からの反射光を受光し、ステップ2
5で測距演算を行う。そして、演算結果が所定距離Bよ
り遠い場合(ステップ26)か、あるいは、所定距離A
より近い場合(ステップ27)には、ステップ28で、
その距離データと受光レンズ11の初期位置との差をと
って、受光レンズ11をどちらの方向にどれだけ移動さ
せればよいかを演算する。ステップ29で、その移動量
が移動可能範囲を超えているかどうかを判断し、移動可
能範囲を超えている場合には、ステップ30で、最大移
動量に再設定し、ステップ31で受光レンズ11を移動
させる。
First, in step 21, it is judged whether or not the light receiving lens 11 is in the initial position, and if it is not in the initial position, in step 22, the motor 12 is rotated to return it to the initial position, The light emission is started in step 23, the reflected light from the subject 7 is received in step 24, and step 2
Distance calculation is performed at 5. If the calculation result is farther than the predetermined distance B (step 26), or if the predetermined distance A
If it is closer (step 27), in step 28,
The difference between the distance data and the initial position of the light receiving lens 11 is calculated to calculate in which direction and how much the light receiving lens 11 should be moved. In step 29, it is judged whether or not the movement amount exceeds the movable range. If it exceeds the movable range, the maximum movement amount is reset in step 30, and the light receiving lens 11 is set in step 31. To move.

【0038】次に、再び、ステップ32で投光し、ステ
ップ33で反射光を受光し、ステップ34で測距演算し
て被写体距離を求め、ステップ35で、これを真の測距
データとしてマイクロコンピュータ1のランダム・アク
セス・メモリ領域1aに記憶させる。そして、ステップ
36で受光レンズ11を初期位置に戻して、測距動作を
終了する。
Next, the light is projected again in step 32, the reflected light is received in step 33, the distance to the object is calculated by the distance calculation in step 34, and in step 35, this is used as the true distance measurement data to generate microscopic data. The data is stored in the random access memory area 1a of the computer 1. Then, in step 36, the light receiving lens 11 is returned to the initial position, and the distance measuring operation ends.

【0039】ステップ25で最初に測距した結果が所定
距離Bより近く、かつ、所定距離Aより遠い場合(ステ
ップ27)には、スポット像は受光センサ10の端面か
ら外れずに直線性が保たれ、従って測距精度に問題はな
いので再測距は行わず、ステップ35で、最初の測距デ
ータをそのまま真の測距データとしてマイクロコンピュ
ータ1のランダム・アクセス・メモリ領域1aに記憶す
る。
If the result of the first distance measurement in step 25 is closer than the predetermined distance B and farther than the predetermined distance A (step 27), the spot image does not deviate from the end face of the light receiving sensor 10 and linearity is maintained. Since there is no problem with the accuracy of distance measurement, re-distance measurement is not performed, and in step 35, the first distance measurement data is stored as it is in the random access memory area 1a of the microcomputer 1 as true distance measurement data.

【0040】以上、図6及び図8のフローチャートによ
り、受光レンズ11のボケ量を減少させる測距動作につ
いて説明したが、これらの場合の受光レンズ11を投光
レンズ16に、受光センサ10を発光素子6にそれぞれ
置き換えることで、図4または図5に示すように、投光
光学系8あるいは発光素子6における同様の制御によ
り、被写体7に投光するスポット像の大きさを小さくし
て、これによっても同様の効果が得られる。更に、これ
らを併用し、被写体の距離に応じて、投光するスポット
像を小さくすると共に、受光センサ10上のボケ量を減
少させる相乗効果により、測距装置の近距離側及び遠距
離側の測距精度をより一層改善することができる。
The distance measuring operation for reducing the blur amount of the light receiving lens 11 has been described above with reference to the flow charts of FIGS. 6 and 8. In these cases, the light receiving lens 11 is used as the light projecting lens 16 and the light receiving sensor 10 is used for light emission. By substituting the elements 6, respectively, as shown in FIG. 4 or FIG. 5, the size of the spot image projected on the subject 7 can be reduced by the same control in the projection optical system 8 or the light emitting element 6. The same effect can be obtained with. Furthermore, by using these together, the spot image to be projected is made smaller according to the distance of the subject, and the synergistic effect of reducing the amount of blurring on the light receiving sensor 10 results in a short distance side and a long distance side of the distance measuring device. The ranging accuracy can be further improved.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
対象物までの距離に応じて、投光スポット像と受光スポ
ット像の少なくとも一方の大きさを変化させて、遠距離
側および近距離側でのスポット像の大きさを小さくし、
スポット像のボケ量を減少させるようにしたから、近距
離側の測距能力・測距精度を向上させることができると
共に、近距離側の測距可能範囲を拡大することができ
る。また、従来のように切り換えられる複数の受光レン
ズを設けずに済むから、構造を簡単にすることができ
る。
As described above, according to the present invention,
Depending on the distance to the object, change the size of at least one of the projected light spot image and the received light spot image, to reduce the size of the spot image on the far distance side and the short distance side,
Since the amount of blurring of the spot image is reduced, it is possible to improve the distance measuring ability and distance measuring accuracy on the short distance side, and to expand the distance measuring range on the short distance side. Moreover, since it is not necessary to provide a plurality of light-receiving lenses that can be switched as in the conventional case, the structure can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である測距装置を示すブロッ
ク図である。
FIG. 1 is a block diagram showing a distance measuring apparatus according to an embodiment of the present invention.

【図2】本発明による測距装置における受光スポット像
調節手段の例を示す図である。
FIG. 2 is a diagram showing an example of a light-receiving spot image adjusting means in the distance measuring device according to the present invention.

【図3】同じく測距装置における受光スポット像調節手
段の他の例を示す図である。
FIG. 3 is a diagram showing another example of the light-receiving spot image adjusting means in the distance measuring device.

【図4】同じく測距装置における投光スポット像調節手
段の他の例を示す図である。
FIG. 4 is a diagram showing another example of the projected spot image adjusting means in the distance measuring device.

【図5】同じく測距装置における投光スポット像調節手
段の他の例を示す図である。
FIG. 5 is a diagram showing another example of the projected spot image adjusting means in the distance measuring device.

【図6】同じく測距装置において、受光光学系の制御に
より受光スポット像の大きさを変化させる実施例の測距
動作を示するフローチャートである。
FIG. 6 is a flow chart showing a distance measuring operation of an embodiment for changing the size of a light receiving spot image by controlling a light receiving optical system in the distance measuring apparatus.

【図7】同じく測距装置において、受光光学系の制御に
より受光スポット像の大きさを変化させる実施例の、被
写体までの距離と測距データとの関係を示す図である。
FIG. 7 is a diagram showing a relationship between a distance to a subject and distance measurement data in an embodiment in which the size of a light receiving spot image is changed by controlling a light receiving optical system in the distance measuring apparatus.

【図8】同じく測距装置において、受光光学系の制御に
より受光スポット像の大きさを変化させる他の実施例の
測距動作を説明するフローチャートである。
FIG. 8 is a flow chart for explaining a distance measuring operation of another embodiment in which the size of the received light spot image is changed by controlling the light receiving optical system in the distance measuring device.

【図9】従来のアクティブ測距装置の一例を示す図であ
る。
FIG. 9 is a diagram showing an example of a conventional active distance measuring device.

【図10】従来の測距装置の受光センサ上のスポット像
を示す図である。
FIG. 10 is a diagram showing a spot image on a light receiving sensor of a conventional distance measuring device.

【図11】従来の測距装置の被写体までの距離と測距デ
ータとの関係を示す図である。
FIG. 11 is a diagram showing a relationship between a distance to a subject and distance measurement data of a conventional distance measuring device.

【符号の説明】[Explanation of symbols]

1 マイクロコンピュータ 2 投光回路 3 測距演算回路 4 投光光学系駆動手段 5 受光光学系駆動手段 6 発光素子 7 被写体 8 投光光学系 9 受光光学系 10 受光センサ 11 受光レンズ 12 モータ 13 ギア 14 支持部 15 固定絞り 16 可動絞り 17 投光レンズ DESCRIPTION OF SYMBOLS 1 Microcomputer 2 Light projecting circuit 3 Distance measuring arithmetic circuit 4 Projecting optical system driving means 5 Receiving optical system driving means 6 Light emitting element 7 Subject 8 Projecting optical system 9 Light receiving optical system 10 Light receiving sensor 11 Light receiving lens 12 Motor 13 Gear 14 Support 15 Fixed aperture 16 Movable aperture 17 Projection lens

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 発光素子を含み、該発光素子からの信号
光を対象物に向けて投光する投光手段と、受光素子を含
み、前記投光手段から投光され、対象物によって反射さ
れた信号光を受光素子に結像させる受光手段と、前記受
光素子からの受光信号により対象物までの距離を演算す
る演算手段とを備えた測距装置において、対象物までの
距離に応じて、前記投光手段による投光スポット像と前
記受光手段による受光スポット像の少なくとも一方の大
きさを変化させるスポット像調節手段を設けたことを特
徴とする測距装置。
1. A light projecting means including a light emitting element, for projecting signal light from the light emitting element toward an object, and a light receiving element, projected from the light projecting means, and reflected by the object. In a distance measuring device comprising a light receiving means for forming an image of the signal light on a light receiving element, and a calculating means for calculating the distance to the object by the light receiving signal from the light receiving element, depending on the distance to the object, A distance measuring device comprising spot image adjusting means for changing the size of at least one of a light projected spot image by the light projecting means and a light receiving spot image by the light receiving means.
JP9971991A 1991-04-05 1991-04-05 Distance measuring device Expired - Fee Related JP3035370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9971991A JP3035370B2 (en) 1991-04-05 1991-04-05 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9971991A JP3035370B2 (en) 1991-04-05 1991-04-05 Distance measuring device

Publications (2)

Publication Number Publication Date
JPH05322558A true JPH05322558A (en) 1993-12-07
JP3035370B2 JP3035370B2 (en) 2000-04-24

Family

ID=14254885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9971991A Expired - Fee Related JP3035370B2 (en) 1991-04-05 1991-04-05 Distance measuring device

Country Status (1)

Country Link
JP (1) JP3035370B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091445A (en) * 2008-10-09 2010-04-22 Topcon Corp Laser survey system and distance measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091445A (en) * 2008-10-09 2010-04-22 Topcon Corp Laser survey system and distance measuring method

Also Published As

Publication number Publication date
JP3035370B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
US5530514A (en) Direct focus feedback autofocus system
JP2753495B2 (en) Camera zoom lens automatic zooming device
JP2001141982A (en) Automatic focusing device for electronic camera
US5121153A (en) Automatic focusing device
JP3518891B2 (en) Camera distance measuring device, camera moving object detection method, and camera
JP3035370B2 (en) Distance measuring device
JP2001141983A (en) Automatic focusing device for electronic camera
JP2000321482A (en) Automatic focusing device
JPH04161912A (en) Automatic focusing device for electronic camera
JPH0713699B2 (en) Projection system for automatic focus detection
JP3140491B2 (en) Automatic focusing device
JPH0273320A (en) Autofocusing device
JP2004069953A (en) Camera
JP3655875B2 (en) Camera ranging device
JP3074504B2 (en) Distance measuring device and camera using the same
JP2993139B2 (en) Interchangeable lens and camera to wear it
JP3156959B2 (en) camera
JP2001141986A (en) Electronic camera and automatic focusing device for electronic camera
JPH02135310A (en) Automatic focusing camera with remote control function
JPH04194914A (en) Camera
JP2000028900A (en) Interchangeable lens and camera system
JP2001141985A (en) Electronic camera
JP2682990B2 (en) Imaging equipment
JP2568605B2 (en) Flash control system
JPH01199113A (en) Distance measuring apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080218

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100218

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100218

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110218

LAPS Cancellation because of no payment of annual fees