JPH05321132A - Production of woven fabric for industrial material - Google Patents

Production of woven fabric for industrial material

Info

Publication number
JPH05321132A
JPH05321132A JP4117507A JP11750792A JPH05321132A JP H05321132 A JPH05321132 A JP H05321132A JP 4117507 A JP4117507 A JP 4117507A JP 11750792 A JP11750792 A JP 11750792A JP H05321132 A JPH05321132 A JP H05321132A
Authority
JP
Japan
Prior art keywords
woven fabric
heat treatment
yarn
strength
intrinsic viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4117507A
Other languages
Japanese (ja)
Inventor
Shusaku Kadota
秀作 門田
Hideo Nakagawa
秀郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP4117507A priority Critical patent/JPH05321132A/en
Publication of JPH05321132A publication Critical patent/JPH05321132A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain woven fabric for industrial material, having high tensile strength, tear strength, flexibility and airtightness. CONSTITUTION:Polyester multifilament yarn having >=0.8 intrinsic viscosity, 1-3 denier fineness of single yarn, >=8g/de strength and 11-25% dry heat shrinkage percentage at 150 deg.C is woven, subjected to relaxing heat treatment dividedly two or more times at s 120 deg.C so as to give >=8% total relaxing ratio and then heat-set under 2-5% tension ratio at >=150 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強力並びに柔軟性及び
気密性の要求される産業資材用織物の製造方法に関す
る。さらに詳しくは、微粒子用濾布、エアーマット、ウ
ォーターマット等に好適な産業資材用織物の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a woven fabric for industrial materials which is required to have high strength, flexibility and airtightness. More specifically, it relates to a method for producing a woven fabric for industrial materials, which is suitable as a filter cloth for fine particles, an air mat, a water mat and the like.

【0002】[0002]

【従来の技術】合成繊維及び該繊維よりなる織物があら
ゆる産業資材分野で使用されていることは周知の通りで
ある。特にポリエステル系繊維は比較的安価で強力もあ
り、かつ寸法安定性にも優れているため、帆布、テン
ト、ターポリン、養生シートなどのシート状膜構造体、
食品ベルト、ホース、Vベルト、コンベアベルト、タイ
ヤなどの補強材として広範な産業資材分野に使われてい
る。
2. Description of the Related Art It is well known that synthetic fibers and woven fabrics made of the fibers are used in all industrial material fields. In particular, polyester fibers are relatively inexpensive and strong, and also have excellent dimensional stability, so sheet-like membrane structures such as canvas, tents, tarpaulins, and curing sheets,
Used as a reinforcing material for food belts, hoses, V-belts, conveyor belts, tires, etc. in a wide range of industrial material fields.

【0003】[0003]

【発明が解決しようとする課題】しかしこのように、樹
脂・ゴムとの複合材として優れた性能を発揮するポリエ
ステル系繊維材料も、その分子骨格に起因する剛直性の
ために柔軟性に乏しく、高密度に製織した際の引張・引
裂強力が低いといった欠点を有している。このため、エ
アーマット、ウォーターマットなどの如き、流体を封入
した後に柔軟性と衝撃強さとを要求される産業資材織物
用途にはその使用が制約されてきた。
However, as described above, the polyester fiber material, which exhibits excellent performance as a composite material of resin and rubber, is also poor in flexibility due to its rigidity due to its molecular skeleton, It has the disadvantage of low tensile and tear strength when woven at a high density. For this reason, its use has been restricted to industrial materials such as air mats and water mats, which are required to have flexibility and impact strength after enclosing a fluid.

【0004】本発明は、かかる問題を背景になされたも
ので、その目的は、高強力で柔軟性と気密性に優れたポ
リエステル系産業資材用織物を安価に製造する方法を提
供することにある。
The present invention has been made in view of such problems, and an object thereof is to provide a method for inexpensively producing a polyester-based industrial material woven fabric having high strength, flexibility and airtightness. ..

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意検討した結果、乾熱収縮率が特定
範囲にあるものを製織後、2段階以上に分けて弛緩熱処
理する方法によれば、製織時の製織性を悪化させること
なく気密性及び柔軟性に優れた織物が容易に得られるこ
とを見出し、かかる知見を基にさらに検討を重ねた結果
本発明に到達した。
Means for Solving the Problems As a result of intensive studies for achieving the above-mentioned object, the present inventors have conducted a relaxation heat treatment in two or more stages after weaving those having a dry heat shrinkage ratio within a specific range. According to the method, it was found that a woven fabric excellent in airtightness and flexibility can be easily obtained without deteriorating the weaving property at the time of weaving, and the present invention was reached as a result of further studies based on such findings.

【0006】すなわち、本発明によれば、固有粘度が
0.8以上のポリエステルからなり、単糸繊度が1〜3
デニール、最大引張強度が8g/de以上、150℃乾
熱収縮率が11〜25%であるポリエステルマルチフィ
ラメント糸を用いてカバーファクター1500以上で製
織後、120℃以上の温度で全弛緩率が8%以上となる
ように2回以上多段で弛緩熱処理し、次いで150℃以
上の温度下緊張率2〜5%で緊張熱処理することを特徴
とする産業資材用織物の製造方法、が提供される。
That is, according to the present invention, the polyester has an intrinsic viscosity of 0.8 or more, and the single yarn fineness is 1 to 3.
Denier, maximum tensile strength of 8 g / de or more, 150 ° C dry heat shrinkage of 11 to 25% Using polyester multifilament yarn with a cover factor of 1500 or more, after weaving, the total relaxation rate is 8 at a temperature of 120 ° C or more. %, And the relaxation heat treatment is performed twice or more in multiple stages, and then the tension heat treatment is performed at a tension ratio of 2 to 5% at a temperature of 150 ° C. or more.

【0007】本発明でいうポリエステルは、主たる繰り
返し単位がエチレンテレフタレートからなるポリエステ
ルを主たる対象とするが、本発明の目的を阻害しない範
囲内(例えば10モル%以下)で共重合成分を含んでい
てもよい。
The polyester referred to in the present invention is intended mainly for a polyester whose main repeating unit is ethylene terephthalate, but contains a copolymerization component within a range that does not impair the object of the present invention (for example, 10 mol% or less). Good.

【0008】本発明におけるポリエステルの固有粘度
は、0.8以上であることが大切である。0.8未満の
場合には、最大引張強度が8g/de以上の繊維を得難
いだけでなく、最終的に得られる織物の引張強力、引裂
強力等の力学的特性の低下が著しく、産業資材用織物に
要求される水準を達成できなくなるので好ましくない。
また、織物の耐摩耗性と固有粘度との間には正の相関が
あるので、この点からも0.8以上であることが必要で
ある。
It is important that the intrinsic viscosity of the polyester in the present invention is 0.8 or more. When it is less than 0.8, not only is it difficult to obtain fibers having a maximum tensile strength of 8 g / de or more, but also the mechanical properties such as tensile strength and tear strength of the finally obtained woven fabric are remarkably deteriorated, which is for industrial materials. It is not preferable because the level required for the woven fabric cannot be achieved.
Further, since there is a positive correlation between the abrasion resistance of the woven fabric and the intrinsic viscosity, it is necessary to be 0.8 or more also from this point.

【0009】一方固有粘度の上限は特に設定する必要は
ないが、ポリエステルマルチフィラメント糸の製糸性の
観点より1.1以下、特に細繊度(単糸)繊維の製糸性
より1.0以下が望ましい。
On the other hand, it is not necessary to set the upper limit of the intrinsic viscosity, but 1.1 or less is preferable from the viewpoint of the spinnability of the polyester multifilament yarn, and 1.0 or less is particularly preferable from the spinnability of the fineness (single yarn) fiber. ..

【0010】次にポリエステルマルチフィラメント糸の
最大引張強度は8g/de以上、好ましくは9g/de
以上、特に好ましくは10g/de以上とする必要があ
る。引張強度が8g/de未満の場合には、熱処理、特
に弛緩熱処理時の強力低下が大きく、得られる織物の引
張強力、引裂強力ともに不充分なものとなるため好まし
くない。
Next, the maximum tensile strength of the polyester multifilament yarn is 8 g / de or more, preferably 9 g / de.
Above, it is necessary to be 10 g / de or more particularly preferably. When the tensile strength is less than 8 g / de, the strength is largely decreased during heat treatment, particularly relaxation heat treatment, and the tensile strength and tear strength of the resulting woven fabric are insufficient, which is not preferable.

【0011】また、150℃の乾熱収縮率は11%以上
25%以下であることが、製織後に弛緩熱処理して強力
並びに柔軟性及び気密性に優れた織物を得るために大切
である。11%未満の場合には、弛緩熱処理による伸度
アップ効果が不充分で、得られる織物の引裂強力、タフ
ネスといった力学的特性が不充分となるため好ましくな
い。一方、150℃乾熱収縮率が25%を越える場合に
は、最大引張強度が高々7g/de程度のものしか得ら
れないため、最終的に得られる織物の力学的特性が不充
分となる。
Further, it is important that the dry heat shrinkage ratio at 150 ° C. is 11% or more and 25% or less in order to obtain a fabric excellent in strength, flexibility and airtightness by performing a relaxation heat treatment after weaving. If it is less than 11%, the effect of increasing the elongation by the relaxation heat treatment is insufficient, and the mechanical properties such as tear strength and toughness of the resulting woven fabric are insufficient, which is not preferable. On the other hand, when the 150 ° C. dry heat shrinkage exceeds 25%, only the maximum tensile strength of about 7 g / de can be obtained, so that the mechanical properties of the finally obtained woven fabric are insufficient.

【0012】またマルチフィラメント糸を構成する単繊
維の繊度は、柔軟性、気密性、耐久性等の点から1〜3
デニールの範囲とすることが大切で、3デニールを越え
る場合には得られる織物の柔軟性及び気密性が低下する
とともに織物にした際の強力保持率が低下するので好ま
しくない。一方1デニール未満の場合には、耐摩耗性等
の耐久性が低下して産業資材用織物としては不充分なも
のしか得られないので好ましくない。
The fineness of the monofilament constituting the multifilament yarn is 1 to 3 in terms of flexibility, airtightness, durability and the like.
It is important to set the range of denier, and if it exceeds 3 denier, the flexibility and airtightness of the obtained woven fabric decrease and the tenacity retention of the woven fabric also decreases, which is not preferable. On the other hand, when it is less than 1 denier, durability such as abrasion resistance is lowered and only a woven fabric for industrial materials is insufficient, which is not preferable.

【0013】本発明においては、上述のポリエステルマ
ルチフィラメント糸をまず高密度に製織するので、該マ
ルチフィラメント糸には20〜50ケ/m程度の交絡を
付与しておくか、50〜100T/m程度の甘撚をかけ
ておくことが、製織性及び得られる織物の気密性を向上
させる面で好ましい。製織方法は特に限定されず、公知
の織機(レピア、ウォータージェットルーム等)を使用
して常法に従い製織される。この際、本発明において
は、気密性の要求される分野(エアーマット、ウォータ
ーマット等)に適用する場合が多いので、高密度織物に
製織しておくことが大切で、カバーファクターは150
0以上、特に1800以上とするのが望ましい。
In the present invention, since the above-mentioned polyester multifilament yarn is woven at a high density, the multifilament yarn is entangled with about 20 to 50 t / m or 50 to 100 T / m. It is preferable to apply a slight amount of sweet twist from the viewpoint of improving the weavability and the airtightness of the obtained woven fabric. The weaving method is not particularly limited, and the weaving can be performed by a known method using a known loom (rapia, water jet loom, etc.). At this time, in the present invention, since it is often applied to a field requiring airtightness (air mat, water mat, etc.), it is important to weave into a high-density woven fabric, and the cover factor is 150.
It is preferably 0 or more, and particularly preferably 1800 or more.

【0014】ここでいうカバーファクターとは、例えば
経糸密度をNy(本/インチ)、デニールをDyとし、
緯糸密度をNx(本/インチ)、デニールをDxとする
と、カバーファクター=Ny×√Dy+Nx×√Dxで
求められる値である。また織物が多軸の場合には、各方
向毎に算出されたN×√Dの和で表わされる。
The cover factor referred to here is, for example, the warp density is Ny (books / inch) and the denier is Dy.
When the weft density is Nx (threads / inch) and the denier is Dx, the cover factor is Ny × √Dy + Nx × √Dx. When the woven fabric has multiple axes, it is represented by the sum of N × √D calculated for each direction.

【0015】本発明においては、上述の如く製織された
織物を、120℃以上の温度で全弛緩率の割合が8%以
上となるように、弛緩熱処理を2段階以上に分割して実
施することに特徴を有するものである。
In the present invention, the woven fabric woven as described above is subjected to relaxation heat treatment in two or more stages so that the total relaxation rate becomes 8% or more at a temperature of 120 ° C. or more. It is characterized by

【0016】弛緩熱処理時に充分な収縮応力を発現させ
るためには、120℃以上の温度が必要であり、120
℃未満の場合には充分な収縮応力が発現せず、織物の弛
緩率を8%以上とすることができなくなるので好ましく
ない。一方処理温度があまりに高くなりすぎると、ポリ
エステルマルチフィラメント糸の強度劣化が大きくなる
ので、180℃以下とするのが望ましい。
A temperature of 120 ° C. or higher is required to develop a sufficient shrinkage stress during relaxation heat treatment.
When the temperature is lower than 0 ° C, sufficient shrinkage stress is not expressed and the relaxation rate of the woven fabric cannot be 8% or more, which is not preferable. On the other hand, if the treatment temperature is too high, the strength of the polyester multifilament yarn will be greatly deteriorated.

【0017】また全弛緩率の割合が8%未満の場合に
は、織物を構成している繊維のタフネスが充分に向上し
ないため、引裂強力も低レベルで本発明の目的を達成す
ることができず、また該弛緩熱処理を一段階で実施する
と織物全体にわたって均一に収縮させることが困難とな
り、得られる織物の平坦性が低下するので好ましくな
い。一方、全弛緩率の上限は、用いるポリエステルマル
チフィラメント糸の物性によっても変ってくるが、あま
りに大きすぎると得られる織物の引裂強力はあまり向上
せず、引張強力の低下が顕著となるので、通常は16%
以下とするのが望ましい。
When the total relaxation rate is less than 8%, the toughness of the fibers constituting the woven fabric is not sufficiently improved, and therefore the tear strength can be low and the object of the present invention can be achieved. If the relaxation heat treatment is carried out in one step, it becomes difficult to uniformly shrink the entire woven fabric and the flatness of the obtained woven fabric is deteriorated, which is not preferable. On the other hand, the upper limit of the total relaxation rate varies depending on the physical properties of the polyester multifilament yarn used, but if it is too large, the tear strength of the obtained woven fabric does not improve so much, and the tensile strength decreases remarkably. Is 16%
The following is preferable.

【0018】なお弛緩熱処理は2回以上であれば特に分
割数を制限する必要はないが、実用面ではあまりに多く
すると生産効率が低下するので、通常は2〜3段階にと
どめておくことが望ましい。
It is not necessary to limit the number of divisions if the relaxation heat treatment is performed twice or more. However, in practical use, if the number is too large, the production efficiency decreases, so it is usually preferable to keep the number of stages to two or three. ..

【0019】本発明においては、上記弛緩熱処理に引き
続いて、150℃以上の温度で2〜5%の緊張下で熱処
理する。かくすることにより、上記弛緩熱処理によって
低下したポリエステル繊維の引張強力が改善されるとと
もに、織組織中のポリエステル繊維の構造が固定されて
引裂強力が改善される。緊張率が2%未満の場合には引
張強力及び引裂強力の向上割合が少く、5%を越える場
合には織組織の伸張による歪が大きくなって、引張強
力、引裂強力共に低下するので好ましくない。
In the present invention, the relaxation heat treatment is followed by a heat treatment at a temperature of 150 ° C. or higher under a tension of 2 to 5%. By doing so, the tensile strength of the polyester fiber reduced by the relaxation heat treatment is improved, and the structure of the polyester fiber in the woven structure is fixed to improve the tear strength. When the tension ratio is less than 2%, the improvement ratio of tensile strength and tear strength is small, and when it exceeds 5%, the strain due to the stretching of the woven structure becomes large and both tensile strength and tear strength decrease, which is not preferable. ..

【0020】以上に説明した本発明の方法に用いられる
ポリエステルマルチフィラメント糸は、たとえば以下の
如くして製造できる。
The polyester multifilament yarn used in the method of the present invention described above can be manufactured, for example, as follows.

【0021】すなわち、固有粘度が0.8以上、好まし
くは0.8〜1.2のポリエステルを290〜300℃
で溶融させ、吐出斑、吐出糸条のふらつきが発生しない
範囲内の孔径を有する吐出孔より押し出し、口金下60
〜200mmを加熱保持して遅延冷却した後に冷却風を吹
きつけて急冷させる。この口金直下の加熱保持は、ノズ
ル出口近傍の粘性を調整することが目的であり、セラミ
ックヒーターなどの如くキャップ面に向けて放射熱が伝
わる構造のものが最も好ましい。
That is, a polyester having an intrinsic viscosity of 0.8 or more, preferably 0.8 to 1.2 is used at 290 to 300 ° C.
And then extruded through a discharge hole having a hole diameter within a range that does not cause discharge unevenness and discharge yarn wobbling.
Approximately 200 mm is heated and held, and delayed cooling is performed, and then cooling air is blown to rapidly cool. The purpose of this heating and holding just below the mouthpiece is to adjust the viscosity in the vicinity of the nozzle outlet, and it is most preferable to use a structure such as a ceramic heater in which radiant heat is transferred toward the cap surface.

【0022】冷却固化した糸条は、所定の速度で引き取
りオイルを付与した後に、一旦巻き取るか又は引き続い
て延伸処理する。延伸は、2段以上に分けて行なう分割
延伸が、高強力化の観点より望ましい。また延伸温度
は、引張強度が8g/de以上となる範囲であれば特に
限定されないが、繊維構造固定のための熱セットは、1
50℃乾熱収縮率が11〜25%の範囲となるよう、定
長もしくは1〜2%の弛緩下で通常よりは低温で実施す
ることが望ましい。
The cooled and solidified yarn is taken up at a predetermined speed, and after being applied with oil, it is once wound or subsequently drawn. The stretching is preferably performed in two or more stages separately from the viewpoint of high strength. The stretching temperature is not particularly limited as long as the tensile strength is in the range of 8 g / de or more, but the heat setting for fixing the fiber structure is 1
It is desirable to carry out at a temperature lower than usual under a constant length or relaxation of 1 to 2% so that the dry heat shrinkage ratio at 50 ° C. is in the range of 11 to 25%.

【0023】なお最大引張強度が9.5g/de以上の
ポリエステルマルチフィラメント糸を得るためには、2
00〜400m/分の速度で別延伸する方法が、変形速
度が小さくより安定に製糸できるので好ましい。
To obtain a polyester multifilament yarn having a maximum tensile strength of 9.5 g / de or more, 2
The method of separately stretching at a speed of 00 to 400 m / min is preferable because the deformation speed is small and the yarn can be more stably formed.

【0024】[0024]

【発明の作用効果】従来、産業資材用織物を製造するた
めには、引張強力が高くかつ低収縮のポリエステル繊維
を用いることが、寸法安定性良好な織物を得るために必
要とされていた。
In order to produce a woven fabric for industrial materials, it has been conventionally required to use a polyester fiber having high tensile strength and low shrinkage in order to obtain a woven fabric having good dimensional stability.

【0025】これに対して本発明の方法によれば、特定
範囲の乾熱収縮率を有するポリエステル繊維を用いてい
るので、製織後に弛緩熱処理しても糸の引張強力をそれ
ほど低下させることなく伸度を増加させることができ、
織物のタフネス及び引裂強力が向上できるのである。ま
た、熱処理によって得られる織物の密度も向上するた
め、気密性も向上することができるのである。
On the other hand, according to the method of the present invention, since the polyester fiber having the dry heat shrinkage ratio in the specific range is used, even if the relaxation heat treatment is performed after the weaving, the tensile strength of the yarn is not lowered so much and the elongation is reduced. Can increase the degree
The toughness and tear strength of the woven fabric can be improved. Further, since the density of the woven fabric obtained by the heat treatment is also improved, the airtightness can be improved.

【0026】したがって、本発明の方法によって得られ
る織物は、従来の産業資材用織物に比べて、柔軟性、高
引張強力、高引裂強力を有し、かつ気密性にも優れてい
るため、微粒子用の濾布、さらには必要に応じて樹脂加
工することによりエアーマット、ウォーターマット、ス
リーピングバッグ、枕、救命ベルト、救命ボードなどの
広範な用途に展開することが可能である。
Therefore, the woven fabric obtained by the method of the present invention has flexibility, high tensile strength, high tear strength, and excellent airtightness as compared with the conventional woven fabrics for industrial materials, and therefore, it is fine particles. It can be applied to a wide range of applications such as air mats, water mats, sleeping bags, pillows, life-saving belts, life-saving boards, etc. by processing the filter cloth for resin and, if necessary, resin processing.

【0027】[0027]

【実施例】以下に実施例をかかげて本発明を詳しく説明
する。なお、実施例中の固有粘度、原糸物性、織物物性
については下記の方法に従って測定した。
EXAMPLES The present invention will be described in detail below with reference to examples. The intrinsic viscosity, physical properties of raw yarn, and physical properties of textiles in the examples were measured according to the following methods.

【0028】固有粘度 35℃オルソクロロフェノール溶媒にて測定した。Intrinsic viscosity: Measured at 35 ° C. in an orthochlorophenol solvent.

【0029】マルチフィラメント糸の強伸度 引張荷重測定器(島津製、オートグラフ)を用い、JI
S L―1074―64にしたがって測定した。
Strength and elongation of multifilament yarn Using a tensile load measuring device (manufactured by Shimadzu, Autograph), JI
It was measured according to SL-1074-64.

【0030】延伸糸の交絡度 糸のデニール数の1/30の荷重を付けて吊るし、50
cm間隔でマークをつけその間の交絡部の数を糸のデニー
ル数の1/10の荷重のフックドロップ法で測定し、2
倍してケ/mとして表わした。
Degree of Entanglement of Stretched Yarn Hanging with a load of 1/30 of the denier number of the yarn, 50
Mark at cm intervals and measure the number of entangled parts between them by the hook-drop method with a load of 1/10 of the denier of the yarn.
It was multiplied and expressed as ke / m.

【0031】乾熱収縮率 JIS L1013に準じ、試料を150℃で30分間
無張力下で熱処理して測定した。
Dry heat shrinkage ratio According to JIS L1013, the sample was heat-treated at 150 ° C. for 30 minutes under no tension and measured.

【0032】織物の剛柔度 JIS L―1096(45°カンチレバー法)に準拠
し、試料幅2cmで測定した。
Stiffness of woven fabric: Measured with a sample width of 2 cm according to JIS L-1096 (45 ° cantilever method).

【0033】織物の通気量 JIS L―1096のフラジール法で測定した。Aeration rate of woven fabric It was measured by the Frazier method of JIS L-1096.

【0034】織物の引張強力 JIS L―1096のストリップ法で測定した。Tensile Strength of Woven Fabric Measured by the strip method of JIS L-1096.

【0035】織物の引裂強力 JIS L―1079A1法(シングルタング法)によ
り測定した。
Tear strength of woven fabric Measured according to JIS L-1079A1 method (single tongue method).

【0036】織物の平坦性 基布を水平板上に置き肉眼で判定した。Fabric Flatness The base fabric was placed on a horizontal plate and visually evaluated.

【0037】[0037]

【実施例1】固有粘度0.64のポリエチレンテレフタ
レートチップを230℃、1mmHgの真空下で0.98の
固有粘度になるまで固相重合し、次いで300℃の温度
で溶融後、216g/分の吐出量で孔径0.30mm、2
50ホールの口金より吐出し、口金直下200mm、34
0℃に加熱保持された帯域を通した後に、25℃風速
0.3m/sec の冷却風を330mmの吹出長さに亘って
吹きつけて冷却し、900m/分の速度で引き取り油剤
を付与して巻き取った。
Example 1 A polyethylene terephthalate chip having an intrinsic viscosity of 0.64 was solid-state polymerized at 230 ° C. under a vacuum of 1 mmHg until an intrinsic viscosity of 0.98, and then melted at a temperature of 300 ° C. and then 216 g / min. Discharge rate is 0.30mm, 2
Discharge from the 50-hole base, 200 mm directly under the base, 34
After passing through the zone heated and maintained at 0 ° C, a cooling air having a wind velocity of 0.3m / sec at 25 ° C was blown over the blowing length of 330mm to cool, and an oil agent was applied at a speed of 900m / min. I wound it up.

【0038】得られた未延伸糸を85℃の予熱ローラで
加熱して3.0倍に第1段延伸し、引き続いて260℃
の乾熱浴中で1.73倍に延伸後、220℃の乾熱浴中
で1%弛緩させ、300m/分の速度で3kg/cm2 の圧
縮空気圧のインターレースノズルを通して捲取った。
The undrawn yarn thus obtained was heated by a preheating roller at 85 ° C. to draw it in the first stage 3.0 times, and subsequently 260 ° C.
After being stretched 1.73 times in the dry heat bath of No. 1 and then relaxed by 1% in the dry heat bath of 220 ° C., it was wound at a speed of 300 m / min through an interlace nozzle having a compressed air pressure of 3 kg / cm 2 .

【0039】得られたマルチフィラメント糸の物性を表
1に示す。
Table 1 shows the physical properties of the obtained multifilament yarn.

【0040】次いで、得られたマルチフィラメント糸
を、ウォータージェットルームで表1記載の織密度で製
織し、しかる後表1記載の条件で弛緩熱処理及び緊張熱
処理を施した。結果を表1に示す。
Then, the obtained multifilament yarn was woven in a water jet loom at a woven density shown in Table 1, and thereafter subjected to a relaxation heat treatment and a tension heat treatment under the conditions shown in Table 1. The results are shown in Table 1.

【0041】[0041]

【実施例2】固相重合後の固有粘度を0.93とし、吐
出量、延伸倍率、熱セット温度を変更して表1記載のマ
ルチフィラメント糸を調整した以外は実施例1と同様に
実施した。
Example 2 The same procedure as in Example 1 was carried out except that the intrinsic viscosity after solid-state polymerization was 0.93, and the multifilament yarn shown in Table 1 was adjusted by changing the discharge rate, the draw ratio, and the heat setting temperature. did.

【0042】[0042]

【実施例3】固相重合後の固有粘度を1.03とし、吐
出量、延伸倍率を変更し、弛緩熱処理(第3段)の乾熱
浴を室温とし、表1記載のマルチフィラメント糸を調整
した以外は実施例1と同様に実施した。
Example 3 The intrinsic viscosity after solid state polymerization was 1.03, the discharge rate and the draw ratio were changed, the relaxation heat treatment (third step) was set to room temperature, and the multifilament yarns shown in Table 1 were used. It carried out like Example 1 except having adjusted.

【0043】[0043]

【実施例4】固相重合後の固有粘度を0.87とし、口
金孔数500ホールに変更し、吐出量、延伸倍率、熱セ
ット温度(第3段乾熱浴温度)を調整して表1記載のマ
ルチフィラメント糸を調整した以外は実施例1と同様に
実施した。
[Example 4] The intrinsic viscosity after solid-state polymerization was set to 0.87, the number of spinneret holes was changed to 500, and the discharge rate, the draw ratio, and the heat setting temperature (third stage dry heat bath temperature) were adjusted. Example 1 was repeated except that the multifilament yarn described in 1 was prepared.

【0044】[0044]

【比較例1】固相重合後の固有粘度を0.84とし、吐
出量、延伸倍率、熱セット温度を調整して表1記載のマ
ルチフィラメント糸を調整した以外は実施例1と同様に
実施した。
[Comparative Example 1] The same procedure as in Example 1 was carried out except that the intrinsic viscosity after solid state polymerization was 0.84, and the multifilament yarn shown in Table 1 was adjusted by adjusting the discharge rate, the draw ratio, and the heat setting temperature. did.

【0045】[0045]

【比較例2】固相重合後の固有粘度を0.95、口金孔
数を120ホールに変更し、吐出量、延伸倍率、熱セッ
ト温度を調整して表1記載のマルチフィラメント糸を調
整した以外は実施例1と同様に実施した。
[Comparative Example 2] The intrinsic viscosity after solid phase polymerization was changed to 0.95, the number of spinneret holes was changed to 120 holes, and the discharge rate, draw ratio and heat setting temperature were adjusted to adjust the multifilament yarns shown in Table 1. Except for this, the same procedure as in Example 1 was performed.

【0046】[0046]

【比較例3】延伸倍率を調整して表1記載のマルチフィ
ラメント糸を調整した以外は実施例2と同様に実施し
た。
Comparative Example 3 The procedure of Example 2 was repeated except that the multifilament yarn shown in Table 1 was adjusted by adjusting the draw ratio.

【0047】[0047]

【比較例4】乾熱浴中での延伸温度を200℃、第3段
乾熱浴を室温とし、吐出量、延伸倍率を調整して表1記
載のマルチフィラメント糸を調整した以外は実施例3と
同様に実施した。
Comparative Example 4 Example except that the multifilament yarn shown in Table 1 was adjusted by adjusting the drawing temperature in the dry heat bath to 200 ° C., the third-stage dry heat bath to room temperature, and adjusting the discharge rate and the draw ratio. The same procedure as 3 was carried out.

【0048】[0048]

【比較例5〜11】実施例1の原糸を用い、表1の条件
でそれぞれ織物処理を実施した。
Comparative Examples 5 to 11 Using the raw yarn of Example 1, fabric treatment was performed under the conditions of Table 1.

【0049】[0049]

【比較例12】固相重合後の固有粘度を0.90とし、
吐出量、延伸倍率、熱セット温度を調整して表1記載の
マルチフィラメント糸とする以外は実施例1と同様に実
施した。
[Comparative Example 12] Intrinsic viscosity after solid phase polymerization was set to 0.90,
Example 1 was carried out in the same manner as in Example 1 except that the multifilament yarn shown in Table 1 was prepared by adjusting the discharge rate, the draw ratio and the heat setting temperature.

【0050】[0050]

【比較例13】固相重合後の固有粘度を0.91とし、
吐出量、延伸倍率、熱セット温度を調整して表1記載の
マルチフィラメント糸を得、織物の弛緩熱処理を施さな
い以外は実施例1と同様に行なった。
[Comparative Example 13] The intrinsic viscosity after solid-state polymerization was set to 0.91,
The multifilament yarn shown in Table 1 was obtained by adjusting the discharge rate, the draw ratio, and the heat setting temperature, and the same procedure as in Example 1 was performed except that the relaxation heat treatment of the woven fabric was not performed.

【0051】[0051]

【比較例14】実施例4の原糸を用い、表1記載の処理
条件で織物を処理する以外は実施例4と同様に行なっ
た。
Comparative Example 14 The procedure of Example 4 was repeated except that the raw yarn of Example 4 was used and the woven fabric was treated under the treatment conditions shown in Table 1.

【0052】[0052]

【比較例15〜16】実施例3の原糸を用い、表1記載
の処理条件で織物を処理する以外は実施例3と同様に行
なった。
Comparative Examples 15 to 16 The same procedure as in Example 3 was carried out except that the raw yarn of Example 3 was used and the woven fabric was treated under the treatment conditions shown in Table 1.

【0053】以上に得られた結果を表1にまとめて示
す。
The results obtained above are summarized in Table 1.

【0054】[0054]

【表1】 [Table 1]

【0055】[0055]

【表2】 [Table 2]

【0056】[0056]

【表3】 [Table 3]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 固有粘度が0.8以上のポリエステルか
らなり、単糸繊度が1〜3デニール、最大引張強度が8
g/de以上、150℃乾熱収縮率が11〜25%であ
るポリエステルマルチフィラメント糸を用いてカバーフ
ァクター1500以上で製織後、120℃以上の温度で
全弛緩率が8%以上となるように2回以上多段で弛緩熱
処理し、次いで150℃以上の温度下緊張率2〜5%で
緊張熱処理することを特徴とする産業資材用織物の製造
方法。
1. A polyester having an intrinsic viscosity of 0.8 or more, a single yarn fineness of 1 to 3 denier, and a maximum tensile strength of 8.
After weaving with a cover factor of 1500 or more using polyester multifilament yarn having g / de or more and 150 ° C dry heat shrinkage of 11 to 25%, the total relaxation rate becomes 8% or more at a temperature of 120 ° C or more. A method for producing a woven fabric for industrial materials, comprising relaxing heat treatment in multiple stages two or more times, and then performing tension heat treatment at a tension rate of 2 to 5% at a temperature of 150 ° C or higher.
JP4117507A 1992-05-11 1992-05-11 Production of woven fabric for industrial material Pending JPH05321132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4117507A JPH05321132A (en) 1992-05-11 1992-05-11 Production of woven fabric for industrial material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4117507A JPH05321132A (en) 1992-05-11 1992-05-11 Production of woven fabric for industrial material

Publications (1)

Publication Number Publication Date
JPH05321132A true JPH05321132A (en) 1993-12-07

Family

ID=14713473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4117507A Pending JPH05321132A (en) 1992-05-11 1992-05-11 Production of woven fabric for industrial material

Country Status (1)

Country Link
JP (1) JPH05321132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238703A (en) * 2006-03-07 2007-09-20 Teijin Fibers Ltd Polyester composition excellent in fiber-forming property, and fiber consisting of the same
JP2007533791A (en) * 2004-01-22 2007-11-22 ロディア インダストリアル ヤーンズ アーゲー Yarn compositions, yarns with improved properties and use of these yarns

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533791A (en) * 2004-01-22 2007-11-22 ロディア インダストリアル ヤーンズ アーゲー Yarn compositions, yarns with improved properties and use of these yarns
JP2007238703A (en) * 2006-03-07 2007-09-20 Teijin Fibers Ltd Polyester composition excellent in fiber-forming property, and fiber consisting of the same

Similar Documents

Publication Publication Date Title
US7498280B2 (en) Polyester filament woven fabric for air bags
CN100507111C (en) Low shrinkage polyamide fiber and uncoated fabric for airbags made of the same
WO2005010256A1 (en) Woven fabric and method of manufacturing the same
KR100493342B1 (en) Technical Fabrics for Airbags
JPH0790746A (en) Base fabric for air bag
CA2091157C (en) Fabric material useful for wind-filling sporting goods
JPH05321132A (en) Production of woven fabric for industrial material
JP3284805B2 (en) Textile for industrial materials
KR100462924B1 (en) Low shrinkage polyamide fibers for uncoated airbag and process for preparing the same
JP3591619B2 (en) Fabric for industrial materials
KR100476472B1 (en) Method for producing bishrink horn fiber.
JP3462914B2 (en) Thread for airbag
JP3591620B2 (en) Resin processed fabric for industrial materials
JP2004316015A (en) Lightweight woven fabric
JP2005105445A (en) Ground fabric for air bag and method for producing the ground fabric
JP3863051B2 (en) Polyester spotted yarn
JPH08158153A (en) Polyester filament yarn for air bag base fabric
KR100540045B1 (en) Polyhexamethylene adipamide fibers for uncoated airbag fabrics and process for preparing the same
JP2688708B2 (en) Polyester monofilament and method for producing the same
JPH08246289A (en) High-tenacity woven fabric
KR100451261B1 (en) Polyamide uncoated airbag fabrics and process for preparing the same
KR100451262B1 (en) Uncoated airbag fabrics using low shrinkage polyamide fibers
JP3622305B2 (en) Polyester fabric canvas
JPH04300320A (en) High-strength polyester monofilament and its production
KR0178051B1 (en) Method for producing fabric and polyamide macaroni-fiber spunlike yarn