JPH05320763A - Production of structural steel reduced in yield strength - Google Patents

Production of structural steel reduced in yield strength

Info

Publication number
JPH05320763A
JPH05320763A JP13229592A JP13229592A JPH05320763A JP H05320763 A JPH05320763 A JP H05320763A JP 13229592 A JP13229592 A JP 13229592A JP 13229592 A JP13229592 A JP 13229592A JP H05320763 A JPH05320763 A JP H05320763A
Authority
JP
Japan
Prior art keywords
yield strength
steel
structural steel
amount
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13229592A
Other languages
Japanese (ja)
Other versions
JP3011539B2 (en
Inventor
Yukio Tomita
幸男 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4132295A priority Critical patent/JP3011539B2/en
Publication of JPH05320763A publication Critical patent/JPH05320763A/en
Application granted granted Critical
Publication of JP3011539B2 publication Critical patent/JP3011539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a structural steel reduced in yield strength. CONSTITUTION:A steel slab or cast slab having a composition containing <=0.005% C, <=0.04% Si, <=0.20% Mn, 0.1-3.0% Al, <=0.004% N, and further one kind among 0.03-0.07% Ti, 0.01-0.1% Nb, and 0.01-0.2% V is heated up to 1050-1250 deg.C, hot-rolled at >=750 deg.C finishing temp., and normalized at 910-960 deg.C. By this method, the structural steel reduced in yield strength can be economically provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は降伏強さが低い構造用鋼
に関するものである。
FIELD OF THE INVENTION The present invention relates to a structural steel having a low yield strength.

【0002】[0002]

【従来の技術】近年造船、産業機械等の各分野にわたっ
て、競争力向上のため溶接施工の減少、曲げ加工性を代
表として鋼材特性の極限追求、溶接性の向上及び鋼材コ
ストの低減、安全性の向上等各種の要求が強まってい
る。このうち厚鋼板の曲げ加工性改善のためには、低降
伏強さの厚鋼板の開発が必要である。また建築、橋梁分
野では構造物の安全性向上のため、特に耐震性、免震
性、制震性向上のために降伏強さを低くすることが望ま
れている。
2. Description of the Related Art In recent years, in the fields of shipbuilding, industrial machinery, etc., the welding work has been reduced to improve competitiveness, the steel material properties have been pursued to the limit, as represented by bending workability, the weldability has been improved and the steel material cost has been reduced. Various demands such as improvement of the are increasing. In order to improve the bending workability of thick steel plates, it is necessary to develop thick steel plates with low yield strength. Further, in the fields of construction and bridges, it is desired to lower the yield strength in order to improve the safety of structures, especially in order to improve seismic resistance, seismic isolation and seismic control.

【0003】従来は降伏強さを低くするためには、添加
元素を極力低減する方法が考えられていたが、この方法
では、降伏強さの低下に限度があり、各種要求を満足で
きず、問題であった。これまで、構造用鋼に関する公知
文献としては、特開平3−31467号公報があるが、
さらに一層の降伏強さの低下が求められている。
Conventionally, in order to reduce the yield strength, a method of reducing the additive element as much as possible was considered, but this method has a limit to the reduction of the yield strength and cannot satisfy various requirements. It was a problem. Up to now, there is JP-A-3-31467 as a known document concerning structural steel,
Further lowering of yield strength is required.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は以上の
点を鑑みてなされたもので、降伏強さが低い構造用鋼を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention was made in view of the above points and is to provide a structural steel having a low yield strength.

【0005】[0005]

【課題を解決するための手段】本発明は重量%で、C:
0.005%以下、Si:0.04%、Mn:0.20
%以下、Al:0.1〜3.0%、N:0.004%以
下を含み、さらに、Ti:0.03〜0.07%、N
b:0.01〜0.1%、V:0.01〜0.2%のい
ずれか1種を含有し、残部実質的に鉄からなる鋼組成の
鋼片または、鋳片を1050〜1250℃に加熱し、仕
上げ温度を750℃以上となるよう熱間圧延を行った
後、910〜960℃で焼準することを特徴とする降伏
強さが低い構造用鋼の製造方法である。
The present invention, in% by weight, comprises C:
0.005% or less, Si: 0.04%, Mn: 0.20
% Or less, Al: 0.1 to 3.0%, N: 0.004% or less, further Ti: 0.03 to 0.07%, N
b: 0.01 to 0.1%, V: 0.01 to 0.2%, and a balance of a steel slab having a steel composition substantially consisting of iron or a slab of 1050 to 1250. It is a method for producing a structural steel having a low yield strength, which comprises heating to ℃, hot rolling to a finishing temperature of 750 ° C. or higher, and normalizing at 910 to 960 ° C.

【0006】[0006]

【作用】鋼の降伏強さを低くするためには、鋼の強化元
素の添加量を低下することが考えられる。鋼の強化元素
としては、固溶体強化、析出強化に係わる元素がある。
固溶体元素としては、C,Si,Mn,Cu,Ni等、
析出強化元素としては、Cr,Mo,V等がある。以上
のことから、鋼の降伏強さを低くするためには、これら
の各種添加元素を低下することが考えられていた。
In order to reduce the yield strength of steel, it is considered that the amount of reinforcing elements added to steel is reduced. Steel strengthening elements include elements related to solid solution strengthening and precipitation strengthening.
Examples of solid solution elements include C, Si, Mn, Cu, and Ni.
Examples of the precipitation strengthening element include Cr, Mo and V. From the above, in order to reduce the yield strength of steel, it has been considered to reduce these various additive elements.

【0007】発明者らは、ここにおいて、さらに降伏強
さを低くする鋼を開発すべく種々検討した結果、結晶粒
の極限までの粗大化が必要であることを見出した。
As a result of various investigations to develop a steel for further lowering the yield strength, the inventors have found that it is necessary to coarsen the crystal grains to the limit.

【0008】結晶粒を極限まで粗粒化するためには、A
l添加により結晶粒の粒成長能力が大幅に上昇する。そ
の結果、熱間圧延後の焼準時の昇温過程で結晶粒の異常
粒成長が達成される。図1に0.002%C−0.03
%Si−0.09%Mn鋼でのAl添加量とフェライト
粒度No.の関係を示す。Alが0.10%以上のAl添
加により結晶粒の大幅な粗粒化がなされることがわか
る。
To make the crystal grains as coarse as possible, A
Addition of 1 significantly increases the grain growth ability of crystal grains. As a result, abnormal grain growth of crystal grains is achieved during the temperature rising process during normalization after hot rolling. 0.002% C-0.03 in FIG.
% Si-0.09% Mn Steel with Al Addition Amount and Ferrite Grain No. Shows the relationship. It can be seen that crystal grains are significantly coarsened by the addition of Al having an Al content of 0.10% or more.

【0009】この結晶粒の極限までの粗大化により、相
当量の降伏強さの低下が図れるが、今一層の低降伏強さ
をめざし、さらに検討を加えた。その結果、極限まで低
減した極微量のC,Nといえどもこれらが転位を固着
し、これが降伏強さを高くする。これらの極微量のC,
Nによる転位の固着を防止することによって、降伏強さ
を低くすることができる。C,Nによる転位の固着を防
止するためには、適正量のTi添加が有効であることを
見出した。Ti添加量が少なすぎると、C,Nによる転
位固着の防止が十分でなく、降伏強さが高い。また、T
i添加量が多すぎると、Tiの析出物が粗大となり、逆
に析出硬化で降伏強さが高くなる。図2に、0.003
%C−0.02%Si−0.10%Mn−0.3%Al
鋼での降伏強さと伸びに及ぼすTi添加量の影響を示
す。Ti添加量が0.03%未満では、C,Nによる転
位の固着が十分でなく、降伏強さが高い。Ti添加量が
0.07%超では、Tiの析出物が粗大となり、降伏強
さが高い。
[0009] Although the crystal grain is coarsened to the utmost limit, the yield strength can be considerably reduced, but further studies were made with the aim of further lowering the yield strength. As a result, even in the extremely small amounts of C and N, which have been reduced to the limit, they fix dislocations, which increases the yield strength. These minute amounts of C,
By preventing dislocations from sticking to N, the yield strength can be lowered. It has been found that addition of a proper amount of Ti is effective for preventing dislocations from being fixed by C and N. If the amount of Ti added is too small, the dislocation sticking due to C and N is not sufficiently prevented and the yield strength is high. Also, T
If the amount of i added is too large, Ti precipitates become coarse, and conversely precipitation hardening increases yield strength. In FIG. 2, 0.003
% C-0.02% Si-0.10% Mn-0.3% Al
The effect of Ti addition amount on the yield strength and elongation in steel is shown. When the amount of Ti added is less than 0.03%, dislocations are not firmly fixed by C and N, and the yield strength is high. When the Ti addition amount exceeds 0.07%, Ti precipitates become coarse and the yield strength is high.

【0010】転位の固着防止効果については、Ti以外
について種々検討した結果、Nb,Vにも同様の効果が
あることを見出した。図3,図4に示すようにそれぞれ
0.01%では、C,Nによる転位固着防止が十分でな
く、また、Nbが0.1%、Vが0.2%を超えると、
Nbあるいは、Vの析出物が粗大となり、逆に降伏強さ
が高くなる。
As for the effect of preventing dislocation sticking, as a result of various studies other than Ti, it was found that Nb and V also have similar effects. As shown in FIGS. 3 and 4, at 0.01% respectively, dislocation fixation by C and N is not sufficient, and when Nb exceeds 0.1% and V exceeds 0.2%,
Precipitates of Nb or V become coarse and conversely the yield strength becomes high.

【0011】以下に成分の限定理由を述べる。Cは固溶
体強化と転位の固着により降伏強さを高くする元素であ
り、極力押さえる必要があるため、0.005%を上限
とする。
The reasons for limiting the components will be described below. C is an element that increases the yield strength by solid solution strengthening and dislocation fixing, and it is necessary to suppress it as much as possible, so 0.005% is made the upper limit.

【0012】Siは固溶体強化で降伏強さを高くする元
素であり、極力押さえることが必要であるため、0.0
4%を上限とする。
Si is an element that enhances the yield strength by solid solution strengthening, and it is necessary to suppress it as much as possible.
The upper limit is 4%.

【0013】Mnは固溶体強化で降伏強さを高くする元
素であり、極力押さえる必要があるため、0.20%を
上限とする。
Mn is an element that strengthens the solid solution to increase the yield strength, and it is necessary to suppress it as much as possible, so the upper limit is 0.20%.

【0014】TiはC,Nによる転位の固着を防止する
重要な元素で、図1に示すように添加量を0.03〜
0.07%に限定する。
Ti is an important element for preventing the fixation of dislocations due to C and N. As shown in FIG.
Limited to 0.07%.

【0015】NbはC,Nによる転位の固着を防止する
重要な元素で、添加量を0.01〜0.1%に限定す
る。
Nb is an important element for preventing the fixation of dislocations due to C and N, and its addition amount is limited to 0.01 to 0.1%.

【0016】VはC,Nによる転位の固着を防止する重
要な元素で、添加量を0.01〜0.2%に限定する。
V is an important element for preventing the fixation of dislocations due to C and N, and its addition amount is limited to 0.01 to 0.2%.

【0017】Alは粗粒化を通じて、降伏強さを低くす
る元素であり、粗粒化のためには、0.1%以上添加す
る必要があるが、3.0%を超えて添加すると厚鋼板と
しての靭性が著しく低下するため、上限を3.0%とす
る。
Al is an element which lowers the yield strength through graining, and it is necessary to add 0.1% or more for graining. The toughness of the steel sheet is significantly reduced, so the upper limit is made 3.0%.

【0018】Nは固溶体強化と転位の固着により降伏強
さを高く、伸びを低くする元素であり、極力押さえる必
要があるため、0.004%を上限とする。
N is an element for increasing the yield strength and lowering the elongation by solid solution strengthening and dislocation fixing, and it is necessary to suppress it as much as possible, so 0.004% is made the upper limit.

【0019】この鋼を溶製するにあたっては、電気炉、
転炉のいずれを用いてもよい。鋼板とするにあたって
は、熱間圧延の加熱温度を1050℃未満、あるいは圧
延仕上げ温度を750℃未満とすると、結晶粒の微細化
により、降伏強さが高く、伸びが低くなる。また、12
50℃を超える加熱は燃料コストの上昇をきたすため、
加熱温度は1050〜1250℃、圧延仕上げ温度は7
50℃以上とする。熱間圧延後は、昇温過程での異常粒
成長の促進と熱間圧延により導入された残留歪による降
伏強さの上昇を防ぐため、焼準を行う。焼準について
は、下限はオーステナイト一相組織とするため、910
℃以上で、かつ、燃料コストの過度の上昇を防ぐため、
960℃以下とする。
In melting this steel, an electric furnace,
Any of the converters may be used. In the case of a steel sheet, if the heating temperature of hot rolling is less than 1050 ° C or the rolling finishing temperature is less than 750 ° C, the yield strength is high and the elongation is low due to the refinement of crystal grains. Also, 12
Heating above 50 ° C increases fuel costs, so
The heating temperature is 1050-1250 ° C, and the rolling finishing temperature is 7
The temperature is 50 ° C or higher. After hot rolling, normalization is performed in order to promote abnormal grain growth in the temperature rising process and prevent an increase in yield strength due to the residual strain introduced by hot rolling. Regarding normalization, the lower limit is 910 because it has an austenitic one-phase structure.
Above ℃, and to prevent excessive rise in fuel cost,
The temperature is 960 ° C or lower.

【0020】[0020]

【実施例】表1に示す化学成分のうち1〜5は本発明鋼
で、6〜15は比較鋼である。鋼の溶製は転炉により行
い、常法によりスラブとした後、表1に示す板厚に同表
に示す加熱、圧延、熱処理条件で製造した。表1にこれ
らの鋼の引張試験結果を示す。
EXAMPLES Among the chemical components shown in Table 1, 1 to 5 are steels of the present invention, and 6 to 15 are comparative steels. The steel was melted by a converter, made into slabs by a conventional method, and then manufactured under the heating, rolling and heat treatment conditions shown in Table 1 to the plate thickness shown in Table 1. Table 1 shows the tensile test results of these steels.

【0021】[0021]

【表1】 [Table 1]

【0022】本発明の鋼1〜5は、C,N等の各種元素
を低減すると同時に、結晶粒を極限まで粗粒化するた
め、適正量のAlを添加し、極微量のC,Nによる転位
の固着を防止するため、適正な範囲にTi,Nbあるい
はVを添加し、加熱、圧延、熱処理条件も適正であるこ
とにより、降伏強さが低い。
In the steels 1 to 5 of the present invention, in order to reduce various elements such as C and N, and at the same time coarsen the crystal grains to the limit, an appropriate amount of Al is added and an extremely small amount of C and N is added. In order to prevent dislocation sticking, Ti, Nb or V is added in an appropriate range, and heating, rolling and heat treatment conditions are also appropriate, so that the yield strength is low.

【0023】次に、鋼6はCが高く、鋼7はSiが高
く、鋼8はMnが高く、鋼9はTi,Nb及びVが無添
加で、鋼10はTiが高く、鋼11はAlが低く、鋼1
2はNが高く、鋼13は加熱温度が低く、鋼14は圧延
仕上げ温度が低く、鋼15は熱処理がないため、それぞ
れ降伏強さが高い。
Next, Steel 6 has a high C, Steel 7 has a high Si, Steel 8 has a high Mn, Steel 9 has no Ti, Nb and V added, Steel 10 has a high Ti, Steel 11 has a high Ti content. Low Al, steel 1
No. 2 has a high N, steel 13 has a low heating temperature, steel 14 has a low rolling finish temperature, and steel 15 has no heat treatment, and therefore has a high yield strength.

【0024】[0024]

【発明の効果】本発明によれば、各種元素を極限まで低
減し、さらに、結晶粒を極限まで粗粒化するため、適正
量のAlを添加し、極微量のC,Nによる転位の固着を
防止するために、適正量のTi,NbあるいはVを添加
し、適正な加熱、圧延、熱処理を行うことにより、降伏
強さが低く、伸びの高い構造用鋼を経済的に提供するも
のであり、産業上多大な効果を奏するものである。
EFFECTS OF THE INVENTION According to the present invention, in order to reduce various elements to the utmost and further to make the crystal grains coarse to the utmost, an appropriate amount of Al is added, and dislocations are fixed by a very small amount of C and N. In order to prevent this, by adding an appropriate amount of Ti, Nb or V and performing appropriate heating, rolling and heat treatment, it is possible to economically provide structural steel with low yield strength and high elongation. There is a great effect on the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】フェライト粒度No.に及ぼすAl添加量の影響
を示す図表である。
[Fig. 1] Ferrite grain size No. 3 is a chart showing the influence of the amount of Al added on the temperature.

【図2】降伏強さに及ぼすTi添加量の影響を示す図表
である。
FIG. 2 is a chart showing the influence of the Ti addition amount on the yield strength.

【図3】降伏強さに及ぼすNb添加量の影響を示す図表
である。
FIG. 3 is a chart showing the effect of the amount of Nb added on the yield strength.

【図4】降伏強さに及ぼすV添加量の影響を示す図表で
ある。
FIG. 4 is a chart showing the influence of the amount of V added on the yield strength.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.005%以下 Si:0.04%以下 Mn:0.20%以下 Al:0.10〜3.0% N :0.004%以下 を含み、さらに、 Ti:0.03〜0.07% Nb:0.01〜0.1% V :0.01〜0.2% のいずれか1種を含有し、残部実質的に鉄からなる鋼組
成の鋼片または、鋳片を1050〜1250℃に加熱
し、仕上げ温度を750℃以上となるよう熱間圧延を行
った後、910〜960℃で焼準することを特徴とする
降伏強さが低い構造用鋼の製造方法。
1. By weight%, C: 0.005% or less Si: 0.04% or less Mn: 0.20% or less Al: 0.10 to 3.0% N: 0.004% or less, Further, a steel composition containing Ti: 0.03 to 0.07%, Nb: 0.01 to 0.1%, V: 0.01 to 0.2%, and the balance substantially consisting of iron. The steel slab or the slab of No. 1 is heated to 1050 to 1250 ° C., hot rolling is performed so that the finishing temperature is 750 ° C. or higher, and then the yield strength is characterized by normalizing at 910 to 960 ° C. Low structural steel manufacturing method.
JP4132295A 1992-05-25 1992-05-25 Method for producing structural steel with low yield strength Expired - Lifetime JP3011539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4132295A JP3011539B2 (en) 1992-05-25 1992-05-25 Method for producing structural steel with low yield strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4132295A JP3011539B2 (en) 1992-05-25 1992-05-25 Method for producing structural steel with low yield strength

Publications (2)

Publication Number Publication Date
JPH05320763A true JPH05320763A (en) 1993-12-03
JP3011539B2 JP3011539B2 (en) 2000-02-21

Family

ID=15077955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4132295A Expired - Lifetime JP3011539B2 (en) 1992-05-25 1992-05-25 Method for producing structural steel with low yield strength

Country Status (1)

Country Link
JP (1) JP3011539B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775541A (en) * 2010-03-09 2010-07-14 武汉钢铁(集团)公司 Quake-proof construction steel with yield strength of 160MPa and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775541A (en) * 2010-03-09 2010-07-14 武汉钢铁(集团)公司 Quake-proof construction steel with yield strength of 160MPa and production method thereof

Also Published As

Publication number Publication date
JP3011539B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
EP0475096A1 (en) High strength steel sheet adapted for press forming and method of producing the same
US6358335B1 (en) Continuous casting slab suitable for the production of non-tempered high tensile steel material
JP3981615B2 (en) Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same
KR102268906B1 (en) Austenitic stainless steel with imporoved strength and method for manufacturing the same
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP3021184B2 (en) Method for producing high elongation structural steel with low yield strength
JPH0726149B2 (en) Method for manufacturing high-strength stainless steel section
JPH05320763A (en) Production of structural steel reduced in yield strength
JPS63145745A (en) Hot rolled high tensile steel plate and its production
JP3011538B2 (en) Manufacturing method for structural steel with low yield strength.
JP3011536B2 (en) Method of manufacturing high elongation structural steel sheet with low yield strength
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
JP3011537B2 (en) Manufacturing method of structural steel sheet with low yield strength
JPH07268561A (en) High strength stainless steel excellent in hot workability and free from welding softening
JPH09227986A (en) Steel for structural purpose having high toughness, low in yield strength and high in elongation and its production
JP2626849B2 (en) Manufacturing method of high strength hot rolled steel sheet with excellent fatigue properties
JPH05171271A (en) Pr0duction of non-heattreated high tensile strength steel plate with low yield ratio
JP3887860B2 (en) Manufacturing method of steel sheet with excellent SCC resistance
JPH07300618A (en) Production of hot rolled steel strip for construction use, excellent in refractoriness and toughness
JPH09227936A (en) Production of steel plate for low yield point structure
JPH07138638A (en) Production of high-strength hot rolled steel sheet having good workability and weldability
KR20220091182A (en) Hot rolled steel sheet having excellent earthquake-resistant property and method of manufacturing the same
JPS58120727A (en) Manufacture of high toughness nontempered high tensile steel sheet superior in weldability and causing less separation
JPH0641632A (en) Production of ni-reduced heat treated steel
JPH08188823A (en) Production of non-heat treated high tensile strength steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991102