JPH05320201A - Purification of natural water-soluble organic macromolecular compound - Google Patents

Purification of natural water-soluble organic macromolecular compound

Info

Publication number
JPH05320201A
JPH05320201A JP4155969A JP15596992A JPH05320201A JP H05320201 A JPH05320201 A JP H05320201A JP 4155969 A JP4155969 A JP 4155969A JP 15596992 A JP15596992 A JP 15596992A JP H05320201 A JPH05320201 A JP H05320201A
Authority
JP
Japan
Prior art keywords
water
solution
soluble organic
exchange resin
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4155969A
Other languages
Japanese (ja)
Other versions
JP3362280B2 (en
Inventor
Tokuo Ikeuchi
徳夫 池内
Hitoshi Takayama
仁 高山
Koji Shinohara
耕司 篠原
Akizou Ikemori
顕蔵 池森
Makoto Watanabe
真 渡辺
Yukihisa Yamada
之央 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KONIKA ZERACHIN KK
Original Assignee
KONIKA ZERACHIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KONIKA ZERACHIN KK filed Critical KONIKA ZERACHIN KK
Priority to JP15596992A priority Critical patent/JP3362280B2/en
Publication of JPH05320201A publication Critical patent/JPH05320201A/en
Application granted granted Critical
Publication of JP3362280B2 publication Critical patent/JP3362280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PURPOSE:To remove easily trace heavy metal ions from a natural organic macromolecular compound to a very low level. CONSTITUTION:The process comprises adding a water-soluble salt and/or a water-soluble base to a solution of a natural water-soluble organic macromolecular compound and treating the resulting solution with an anion exchange resin to obtain a solution freed from heavy metal ions and having a pH of 9.0 or above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は天然高分子中に不純物と
して含まれる重金属イオンを吸着除去する高分子化合物
の精製法に関する。本発明の精製法によれば重金属不純
分の極めて少ない高分子が得られ、一般化学工業、特に
高分子化学工業、写真化学工業、食品化学工業における
高分子化合物の精製に用いることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying a polymer compound by adsorbing and removing heavy metal ions contained as impurities in a natural polymer. According to the purification method of the present invention, a polymer having an extremely low content of heavy metal impurities can be obtained, and it can be used for the purification of polymer compounds in general chemical industry, especially in polymer chemical industry, photographic chemical industry, and food chemical industry.

【0002】[0002]

【従来の技術および課題】有機天然高分子化合物、特に
蛋白質に鉄、マンガン等の重金属が不純物として含まれ
ると、着色や変色、あるいは毒性を生ずるなど種々の品
質低下を招く。特に、写真感光材料の原料であるゼラチ
ンの場合には、鉄、銅、鉛のような重金属イオンが微量
(数ppm程度)含まれていても感光度、階調に悪影響が
生ずる。このため、ゼラチンの製造にあたっては使用原
料を厳選するとともに製造工程の徹底したクリーン化が
必要となる。
2. Description of the Related Art If a heavy metal such as iron or manganese is contained as an impurity in an organic natural polymer compound, particularly a protein, various quality deteriorations such as coloration, discoloration or toxicity are caused. Particularly, in the case of gelatin which is a raw material of a photographic light-sensitive material, even if a trace amount (about several ppm) of heavy metal ions such as iron, copper and lead is contained, the sensitivity and gradation are adversely affected. Therefore, in manufacturing gelatin, it is necessary to carefully select raw materials to be used and to thoroughly clean the manufacturing process.

【0003】従来、重金属イオンの除去法としては、一
般に陽イオン交換樹脂による精製法が知られている。し
かしながら、蛋白質のような両性高分子の溶液中に含ま
れる重金属イオンは高分子との結合力が強いため陽イオ
ン交換樹脂により除去することはできない。
Conventionally, as a method for removing heavy metal ions, a purification method using a cation exchange resin is generally known. However, heavy metal ions contained in a solution of an amphoteric polymer such as a protein cannot be removed by a cation exchange resin because the binding force with the polymer is strong.

【0004】また、重金属イオンの他の除去法としてキ
レート樹脂を用いる方法もあるが、キレート樹脂は強度
が低く、価格も他のイオン交換樹脂に比べると高い。
There is also a method of using a chelate resin as another method for removing heavy metal ions, but the chelate resin has low strength and its cost is higher than other ion exchange resins.

【0005】さらに、鉄、コバルト、銅、亜鉛などの金
属イオンが錯陰イオンを形成し、これが陰イオン交換樹
脂によく吸着される点に着目し、濃塩酸中に含まれる鉄
イオン(黄色着色の原因物質)を錯陰イオンに変えて除去
を行った報告もある。しかしながら、蛋白質、特にゼラ
チンの場合、強酸性領域では著しい分解を生じ、このよ
うな方法を用いることはできない。
Furthermore, attention is paid to the fact that metal ions such as iron, cobalt, copper and zinc form complex anions, which are often adsorbed by anion exchange resins, and iron ions contained in concentrated hydrochloric acid (yellow coloring) There is also a report in which the causative substance (of) was changed to a complex anion to remove it. However, in the case of proteins, especially gelatin, significant decomposition occurs in the strongly acidic region, and such a method cannot be used.

【0006】本発明の目的は、天然高分子、特に蛋白
質、多糖類中に不純物として含まれる重金属イオンを容
易に除去精製する方法を提供することにある。
An object of the present invention is to provide a method for easily removing and purifying heavy metal ions contained as impurities in natural polymers, particularly proteins and polysaccharides.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記課題に
ついて鋭意研究を行った結果、ゼラチンなどの蛋白質、
あるいは多糖類などの高分子水溶液に中性塩、または塩
基を添加した場合は、陰イオン交換樹脂により高い重金
属イオン除去率が得られるとの知見を得て発明を完成し
た。
Means for Solving the Problems As a result of intensive studies on the above problems, the present inventors have found that proteins such as gelatin,
Alternatively, the inventors have completed the invention with the finding that when a neutral salt or a base is added to an aqueous solution of a polymer such as a polysaccharide, a high removal rate of heavy metal ions can be obtained with an anion exchange resin.

【0008】本発明は水溶性の有機天然高分子溶液に水
溶性塩類および/または水溶性塩基を加えた後、陰イオ
ン交換樹脂にて処理してpH9.0以上の処理溶液を得
ることにより重金属イオンを除去することを特徴とする
水溶性の有機天然高分子化合物の精製法を提供するもの
である。
The present invention comprises adding a water-soluble salt and / or a water-soluble base to a water-soluble organic natural polymer solution and then treating the solution with an anion exchange resin to obtain a treatment solution having a pH of 9.0 or more. The present invention provides a method for purifying a water-soluble organic natural polymer compound, which is characterized by removing ions.

【0009】本発明の精製法が適用される有機天然高分
子化合物としては、ゼラチン、ニカワ、カゼインなどの
蛋白質;アルギン酸、デンプンなどの多糖類等の各種天
然高分子およびこれらの誘導体が挙げられる。本発明の
精製法によれば、鉄、銅、鉛、マンガン、コバルトなど
の種々の重金属イオンが除去される。
Examples of the organic natural polymer compound to which the purification method of the present invention is applied include proteins such as gelatin, glue and casein; various natural polymers such as alginic acid and polysaccharides such as starch, and derivatives thereof. According to the purification method of the present invention, various heavy metal ions such as iron, copper, lead, manganese, and cobalt are removed.

【0010】本発明の精製法では、有機天然高分子の水
溶液に易溶性の塩、あるいは塩基を添加して陽イオン性
重金属イオンを陰イオン性錯体に変成し、ついで陰イオ
ン交換樹脂により該イオンを吸着除去する。イオン交換
樹脂にて処理するときのpH領域は高分子化合物の加水
分解を防止するため中性域が望ましい。一方、塩類を用
いる場合はアルカリ性領域であると使用量が少なくてす
むことから、これらを考慮してpH領域を選択する。通
常はpH5〜9の弱酸性から中性または弱いアルカリ性
の領域が好ましい。なお、塩類および塩基は1種または
2種以上を混合して使用してもよい。
In the purification method of the present invention, an easily soluble salt or base is added to an aqueous solution of an organic natural polymer to convert a cationic heavy metal ion into an anionic complex, and then the ion is exchanged with an anion exchange resin. Are removed by adsorption. The pH range when treated with an ion exchange resin is preferably a neutral range in order to prevent hydrolysis of the polymer compound. On the other hand, when salts are used, the amount used can be small in the alkaline range, so the pH range is selected in consideration of these. Usually, a weakly acidic to neutral or weakly alkaline region having a pH of 5 to 9 is preferable. The salts and bases may be used alone or in combination of two or more.

【0011】ここで塩としては適宜の水溶性の塩が用い
られるが、通常は塩酸、硫酸などのアルカリ金属塩、ア
ルカリ土金属塩、アンモニウム塩などを用いるのが好ま
しい。具体的には塩化ナトリウム、塩化カルシウム、硫
酸カリウムなどを用いるのが好ましい。塩の添加量は処
理する高分子の種類や既に存在している塩の濃度にもよ
るが、陰イオン交換樹脂カラムを通過した後の溶液のp
H値が9以上になるように調整する。例えば、陰イオン
交換樹脂処理前の試料溶液中に含まれる陰イオン濃度が
2000ppm以上となるように調整するのが好まし
い。
As the salt, an appropriate water-soluble salt is used, but it is usually preferable to use an alkali metal salt such as hydrochloric acid or sulfuric acid, an alkaline earth metal salt or an ammonium salt. Specifically, it is preferable to use sodium chloride, calcium chloride, potassium sulfate or the like. The amount of salt added depends on the type of polymer to be treated and the concentration of salt that already exists, but the p of the solution after passing through the anion exchange resin column is
Adjust so that the H value is 9 or more. For example, it is preferable to adjust the anion concentration contained in the sample solution before the anion exchange resin treatment to be 2000 ppm or more.

【0012】また、塩基としては、水溶液中で解離して
水酸イオンを生じる無機塩基であればよく、具体的には
水酸化ナトリウム、水酸化カリウム、水酸化カルシウム
などのアルカリ金属、アルカリ土金属の水酸化物、ある
いはアンモニアなどを用いるのが好ましい。アルカリの
添加量は、試料液の種類、塩濃度にもよるが、陰イオン
交換処理後のpHを9以上とするために、陰イオン交換
樹脂処理前の試料溶液のpHを8以上に調整することを
目安とするのがよい。
The base may be an inorganic base that dissociates in an aqueous solution to generate a hydroxide ion, and specifically, an alkali metal such as sodium hydroxide, potassium hydroxide or calcium hydroxide or an alkaline earth metal. It is preferable to use the above hydroxide, ammonia, or the like. The amount of alkali added depends on the type of the sample solution and the salt concentration, but the pH of the sample solution before the anion exchange resin treatment is adjusted to 8 or more in order to adjust the pH after the anion exchange treatment to 9 or more. It is good to use that as a guide.

【0013】このように塩および/または塩基にて処理
された高分子溶液は、つぎにイオン交換樹脂にて処理す
る。かかる陰イオン交換樹脂としては、三次元に重縮合
した高分子を基体とし、これに交換基として四級アンモ
ニウム基を有する強塩基性陰イオン交換樹脂、一級〜三
級アンモニウム基を有する弱塩基性陰イオン交換樹脂が
いずれも用いられる。これらを用いた処理条件に特に限
定はなく、通常のイオン交換処理方法をそのまま用いる
ことができ、試料液中の塩類量、pH、処理速度などに
応じてイオン交換樹脂量を調整する。
The polymer solution thus treated with salt and / or base is then treated with an ion exchange resin. Such anion exchange resin is a strongly basic anion exchange resin having a three-dimensionally polycondensed polymer as a base and having a quaternary ammonium group as an exchange group, a weakly basic anion exchange resin having a primary to tertiary ammonium group. Any anion exchange resin is used. The treatment conditions using these are not particularly limited, and a normal ion exchange treatment method can be used as it is, and the amount of ion exchange resin is adjusted according to the amount of salts in the sample solution, pH, the treatment rate, and the like.

【0014】陰イオン交換樹脂により処理された高分子
溶液は、硫酸、塩基、硝酸などの酸により中和される。
ついで公知の方法により乾燥して高分子化合物を得る。
例えば、ゼラチンの場合、冷却して凝固した後、減圧乾
燥など公知の方法により乾燥する。このようにして得ら
れた高分子化合物は従来不充分であった重金属除去が可
能となり、重金属の含有量が極めて少ない。
The polymer solution treated with the anion exchange resin is neutralized with an acid such as sulfuric acid, base or nitric acid.
Then, it is dried by a known method to obtain a polymer compound.
For example, in the case of gelatin, it is cooled and solidified, and then dried by a known method such as drying under reduced pressure. The thus obtained polymer compound can remove heavy metals, which was conventionally insufficient, and the content of heavy metals is extremely low.

【0015】[0015]

【実施例】つぎに本発明を実施例にもとづきさらに具体
的に説明する。
EXAMPLES Next, the present invention will be described more specifically based on examples.

【0016】[実施例1]オセインをアルカリ処理して
得られたゼラチン粉末100gに純水900mLを加え
た。これを30分間静置後、50℃にて30分撹拌しゼ
ラチン溶液を得た。この溶液のpH値は6.0であっ
た。同様の溶液を4つ調製し、そのうち1つはそのまま
比較試料とし、残り3つにはNaOH溶液(濃度2%(重
量%、以下同様))を加えてゼラチン溶液のpHを各々
7.0、8.0および9.0に調整した。これらの4つの
試料の各々について陰イオン交換樹脂を用いて以下のよ
うに処理を行い重金属イオンを除去した。
Example 1 To 100 g of gelatin powder obtained by treating ossein with alkali, 900 mL of pure water was added. This was left standing for 30 minutes and then stirred at 50 ° C. for 30 minutes to obtain a gelatin solution. The pH value of this solution was 6.0. Four similar solutions were prepared, one of which was used as a comparison sample as it was, and the other three were added with a NaOH solution (concentration 2% (weight%, the same below)) to adjust the pH of the gelatin solution to 7.0, respectively. Adjusted to 8.0 and 9.0. Each of these four samples was treated with an anion exchange resin as follows to remove heavy metal ions.

【0017】5% NaOH溶液によりOH-型に再生し
た強陽イオン性陰イオン交換樹脂(ダイヤイオンPA−
316、三菱化成工業(株)製)を樹脂塔(直径3cm)
に100mL充填した。各樹脂塔に前記のゼラチン溶液
全量を通液速度100mL/時にて供給した。各樹脂塔
より得られたpH値の異なる試料を硫酸によりpH値6
に中和した後、5℃で凝固し減圧乾燥により含有水分8
%のゼラチンを得た。これらのゼラチンについてゼリー
強度、粘度、含有Fe、Cu分量を測定した。なお、ゼリ
ー強度、粘度はパギイ法により、含有Fe、Cu分量は
原子吸光法により測定した。これらの測定結果を陰イオ
ン交換樹脂への通液前後のpH値とともに表1に示す。
Strong cation anion exchange resin (DIAION PA-) regenerated into OH - type with 5% NaOH solution.
316, Mitsubishi Kasei Kogyo Co., Ltd.) resin tower (diameter 3 cm)
To 100 mL. The total amount of the gelatin solution was supplied to each resin tower at a liquid flow rate of 100 mL / hour. Samples with different pH values obtained from each resin tower were adjusted to pH value 6 with sulfuric acid.
After being neutralized into water, it is solidified at 5 ° C and dried under reduced pressure to contain water 8
% Gelatin was obtained. Jelly strength, viscosity, Fe content and Cu content of these gelatins were measured. The jelly strength and viscosity were measured by the Pagui method, and the Fe and Cu contents were measured by the atomic absorption method. The results of these measurements are shown in Table 1 together with the pH values before and after passing through the anion exchange resin.

【0018】 表 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 試 料 通液前 通液後 ゼリー強度 粘度 Fe分量 Cu分量 (pH) (pH) (g) (mp) (ppm) (ppm) ─────────────────────────────────── 比較試料 6.0 6.9 293 82 5.1 2.1 試料1 7.0 7.9 291 80 4.9 1.6 〃 2 8.0 9.1 292 81 3.8 1.0 〃 3 9.0 9.7 292 80 3.4 1.1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━Table 1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Test material Before and after liquid flow Jelly strength Viscosity Fe content Cu content (pH) (pH) (g) (mp) (ppm) (ppm) ──────────────────────────── ──────── Comparative sample 6.0 6.9 293 82 5.1 Sample 2.1 7.0 7.9 291 80 80 4.9 1.6 〃 2 8.0 9.1 292 81 3.8 1.0 〃 3 9.0 9.7 292 80 3.4 3.4 1.1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━

【0019】[実施例2]実施例1と同様にしてゼラチ
ンの10%溶液(pH6.0)を調製した。同様の試料
溶液を4つ用意し、1つはそのまま比較試料とした。他
の3つの試料に対し、それぞれ試料1には0.4g(400
0ppm:ゼラチンに対して、以下同様)、試料2には0.
8g(8000ppm)、試料3には1.2g(12000ppm)のN
aClを10%水溶液として添加した。これら4つの試料
について実施例1と同様の条件で陰イオン交換処理を行
った結果を表2に示す。
Example 2 A 10% gelatin solution (pH 6.0) was prepared in the same manner as in Example 1. Four similar sample solutions were prepared, and one was used as a comparison sample as it was. For each of the other three samples, sample 1 contains 0.4 g (400
(0 ppm: same as for gelatin)
8g (8000ppm), sample 3 1.2g (12000ppm) N
aCl was added as a 10% aqueous solution. Table 2 shows the results of the anion exchange treatment performed on these four samples under the same conditions as in Example 1.

【0020】 表 2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 試 料 通液前 通液後 ゼリー強度 粘度 Fe分量 Cu分量 (pH) (pH) (g) (mp) (ppm) (ppm) ──────────────────────────────────− 比較試料 6.0 7.0 293 82 5.0 2.3 試料1 6.0 9.4 293 81 1.7 1.3 〃 2 6.0 10.2 292 82 1.3 1.2 〃 3 6.0 10.8 293 81 1.5 1.1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 表1および表2に示すように、通液後のpHが9より大
きいものは高分子中のFe量およびCu量が非常に少な
い。
Table 2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Test material Before and after passing Jelly strength Viscosity Fe content Cu content (pH) (pH) (g) (mp) (ppm) (ppm) ──────────────────────────── ──────── Comparative samples 6.0 7.0 293 82 5.0 2.3 Sample 1 6.0 9.4 293 81 1.7 1.7 1.3 〃 2 6.0 10.2 292 82 1.3 1.2 〃 3 6.0 10.8 293 81 1.5 1.5 1.1 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━ As shown in Tables 1 and 2, the amount of Fe and Cu in the polymer is very small when the pH after passing the liquid is higher than 9.

【0021】[実施例3]実施例1と同様にしてゼラチ
ンの10%溶液(pH6.0)を調製した。同様の試料
溶液を4つ用意し、1つはそのまま比較試料とした。他
の3つの試料にはNaOH溶液を加えて、ゼラチン溶液
のpHを7.0に調整した。これらのゼラチン溶液に対
し、それぞれ試料1には0.1g(1000ppm:ゼラチンに
対して、以下同様)、試料2には0.2g(2000ppm)、
試料3には0.4g(4000ppm)のCaCl2・2H2Oを1
0%水溶液として添加した。これら4つの試料について
実施例1と同様の条件で陰イオン交換処理を行った結果
を表3に示す。
Example 3 A 10% gelatin solution (pH 6.0) was prepared in the same manner as in Example 1. Four similar sample solutions were prepared, and one was used as a comparison sample as it was. NaOH solution was added to the other three samples to adjust the pH of the gelatin solution to 7.0. With respect to these gelatin solutions, 0.1 g (1000 ppm: gelatin, the same applies below) for sample 1 and 0.2 g (2000 ppm) for sample 2, respectively.
Sample 3 contains 0.4 g (4000 ppm) of CaCl 2 .2H 2 O.
It was added as a 0% aqueous solution. Table 3 shows the results of the anion exchange treatment performed on these four samples under the same conditions as in Example 1.

【0022】 表 3 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 試 料 通液前 通液後 ゼリー強度 粘度 Fe分量 Cu分量 (pH) (pH) (g) (mp) (ppm) (ppm) ──────────────────────────────────− 比較試料 6.0 7.1 292 82 5.0 2.5 試料1 7.0 8.8 291 81 4.0 2.0 〃 2 7.0 9.6 291 81 2.0 1.3 〃 3 7.0 10.3 290 80 1.9 1.2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━Table 3 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Test material Before and after passing Jelly strength Viscosity Fe content Cu content (pH) (pH) (g) (mp) (ppm) (ppm) ──────────────────────────── ──────── Comparative sample 6.0 7.1 292 82 5.0 5.0 2.5 Sample 1 7.0 8.8 81 291 81 4.0 2.0 2.0 〃 2 7.0 9.6 291 81 2.0 1.3 〃 3 7.0 10.3 290 80 1.9 1.2 1.2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━━━━

【0023】[実施例4]アルギン酸ナトリウム(和光
純薬工業(株)製)50gに純水を加え1%水溶液を調整
した。同様の溶液を2つ調製し、一方を比較試料とし
た。他方の水溶液にNaCl 0.4g(アルギン酸ナトリ
ウムに対して8000ppm)を10%水溶液にて添加し、撹
拌した。ついで陰イオン交換樹脂100mLを充填した
カラム(直径3cm)に通液速度1L/時間にて供給し
た。結果を表4に示す。
[Example 4] Pure water was added to 50 g of sodium alginate (manufactured by Wako Pure Chemical Industries, Ltd.) to prepare a 1% aqueous solution. Two similar solutions were prepared, and one of them was used as a comparative sample. 0.4 g of NaCl (8000 ppm based on sodium alginate) was added to the other aqueous solution as a 10% aqueous solution, and the mixture was stirred. Then, the solution was supplied to a column (diameter 3 cm) packed with 100 mL of anion exchange resin at a liquid flow rate of 1 L / hour. The results are shown in Table 4.

【0024】 表 4 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 通液前 通液後 Fe分量 (pH) (pH) (ppm) ────────────────────────────── 比較試料 − − 276 試 料 6.80 11.21 150 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━Table 4 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Before passing After passing The amount of Fe (pH) (pH) ( ppm) ────────────────────────────── Comparative sample − − 276 Sample 6.80 11.21 150 ━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━

【0025】[0025]

【発明の効果】本発明の精製法によれば、有機天然高分
子中に含まれる微量の重金属イオンを非常に低いレベル
まで容易に除去することができる。
According to the purification method of the present invention, a trace amount of heavy metal ions contained in an organic natural polymer can be easily removed to a very low level.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 真 兵庫県宝塚市高司5丁目6−1 (72)発明者 山田 之央 兵庫県西宮市高松町16−22 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Watanabe 5-6-1 Takashi, Takarazuka City, Hyogo Prefecture (72) Inventor Norio Yamada 16-22 Takamatsucho, Nishinomiya City, Hyogo

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水溶性の有機天然高分子溶液に水溶性塩
類および/または水溶性塩基を加えた後、陰イオン交換
樹脂にて処理してpH9.0以上の処理溶液を得ること
により重金属イオンを除去することを特徴とする水溶性
の有機天然高分子化合物の精製法。
1. A heavy metal ion obtained by adding a water-soluble salt and / or a water-soluble base to a water-soluble organic natural polymer solution and then treating with an anion exchange resin to obtain a treatment solution having a pH of 9.0 or more. A method for purifying a water-soluble organic natural polymer compound, which comprises removing water.
【請求項2】 水溶性の有機天然高分子が蛋白質、多糖
類またはこれらの誘導体である前記請求項1に記載の精
製法。
2. The purification method according to claim 1, wherein the water-soluble organic natural polymer is a protein, a polysaccharide or a derivative thereof.
【請求項3】 水溶性の有機天然高分子がゼラチン、ニ
カワ、カゼイン、アルギン酸、デンプンまたはこれらの
誘導体である前記請求項2に記載の精製法。
3. The purification method according to claim 2, wherein the water-soluble organic natural polymer is gelatin, glue, casein, alginic acid, starch or a derivative thereof.
JP15596992A 1992-05-22 1992-05-22 Purification method of water-soluble organic natural polymer compound Expired - Fee Related JP3362280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15596992A JP3362280B2 (en) 1992-05-22 1992-05-22 Purification method of water-soluble organic natural polymer compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15596992A JP3362280B2 (en) 1992-05-22 1992-05-22 Purification method of water-soluble organic natural polymer compound

Publications (2)

Publication Number Publication Date
JPH05320201A true JPH05320201A (en) 1993-12-03
JP3362280B2 JP3362280B2 (en) 2003-01-07

Family

ID=15617498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15596992A Expired - Fee Related JP3362280B2 (en) 1992-05-22 1992-05-22 Purification method of water-soluble organic natural polymer compound

Country Status (1)

Country Link
JP (1) JP3362280B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241213A (en) * 2011-05-17 2012-12-10 Hokkaido Univ Method for producing copper fine particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241213A (en) * 2011-05-17 2012-12-10 Hokkaido Univ Method for producing copper fine particle

Also Published As

Publication number Publication date
JP3362280B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
Greluk et al. Efficient removal of Acid Orange 7 dye from water using the strongly basic anion exchange resin Amberlite IRA-958
US10308725B2 (en) Chelate compounds and their synthetic methods
US20190185588A1 (en) Phosphonium-crosslinked chitosan and methods for using and producing the same
US3869383A (en) Process for treating waste photographic processing solutions
Ohzeki et al. Enrichment of trace amounts of copper as chelate compounds using a finely divided ion-exchange resin
JP4948727B2 (en) Method for producing a highly stable hydroxylamine solution
JP4576560B2 (en) Phosphorous adsorbent
Shao et al. Preparation and adsorption properties for metal ions of chitin modified by l‐cysteine
JP3362280B2 (en) Purification method of water-soluble organic natural polymer compound
JPH02233503A (en) Purification of hydrochloric acid
JPS6256163B2 (en)
US3321521A (en) Regeneration of chelating solutions
US20030196962A1 (en) Process for selective removal of toxic ions from water
US2599558A (en) Method of regenerating anion exchange materials and composition therefor
US4261819A (en) Recovery of heavy metals from solution by contacting with cross-linked casein
US2445669A (en) Chemical process for production of potable water from nonpotable saline water
JPS6259998B2 (en)
TW387886B (en) Process for producing ascorbic acid derivative
JPH0218906B2 (en)
JPH049598B2 (en)
RU2213063C1 (en) Method for preparing bactericidal preparation
US3043867A (en) Method for the purification of aminocarboxylic acids
JPH0315516B2 (en)
SU707592A1 (en) Granulated sorbent for arsenic extraction
JP3245485B2 (en) Pretreatment of water for food production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees