JPH05319987A - Production of silicon single crystal - Google Patents

Production of silicon single crystal

Info

Publication number
JPH05319987A
JPH05319987A JP13290092A JP13290092A JPH05319987A JP H05319987 A JPH05319987 A JP H05319987A JP 13290092 A JP13290092 A JP 13290092A JP 13290092 A JP13290092 A JP 13290092A JP H05319987 A JPH05319987 A JP H05319987A
Authority
JP
Japan
Prior art keywords
ingot
heat treatment
diameter
conical
neck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13290092A
Other languages
Japanese (ja)
Inventor
Hirotsugu Haga
博世 芳賀
Atsushi Ikari
敦 碇
Masahiro Tanaka
正博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13290092A priority Critical patent/JPH05319987A/en
Publication of JPH05319987A publication Critical patent/JPH05319987A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To improve the quality by forming an Si ingot having a necked tail composed of a neck part which is the middle of the tail converging from the terminal end of a straight drum part into a conical form, a conical part following the neck part and the rear end part and treating the resultant ingot at a specific temperature. CONSTITUTION:A neck part is formed into >=10mm diameter and a conical part is formed into a diameter of >= (neck part diameter + 8mm) so as to prevent an Si ingot from falling off during the heat treatment at a high temperature. The dislocation is caused by plastic deformation with the resistance supporting the ingot weight by the neck part 3 and the conical part 4 during the heat treatment. The diameter of the neck part is regulated to <=1/5 that of the straight drum part so as to prevent the dislocation from propagating to the interior of the straight drum part 1. Furthermore, the conical angle (alpha) of the conical tail 2 is regulated to an acuter angle than 90 deg.C so as to make the propagation region of the dislocation stay in the conical tail 2. The Si ingot of this shape is then held with a suspending jig of a heat-treating furnace, nearly vertically hung and heat-treated at 1150-1400 deg.C. After completing the heat treatment, the ingot is cooled to <=1150 deg.C in the furnace and then taken out of the furnace to afford the objective Si single crystal without containing crystal defects.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はチョクラルスキー法(以
下、CZ)による単結晶シリコンの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing single crystal silicon by the Czochralski method (hereinafter, CZ).

【0002】[0002]

【従来の技術】シリコン集積回路に代表される半導体デ
バイスの基板となるシリコンウェハは通常CZ法で引き
上げられた円筒状のシリコンインゴットを円盤状にスラ
イス・研磨して製造される。デバイス製造工程において
シリコンウェハは複雑な熱処理を受けるが、これによっ
てデバイス素子近傍に析出・転位・積層欠陥等の結晶欠
陥が発生するとデバイスの動作に不良がもたらされる。
このため、デバイスが加工されるウェハ表面には全く欠
陥が発生しないことが要求される。ウェハ表面にはこの
他重金属元素などの有害な不純物がないことも要求さ
れ、デバイス製造工程で除ききれなかった残留汚染元素
がウェハ表面にとどまらず、ウェハ内部や裏面に取り込
まれて固着される、いわゆるゲッタリング特性もウェハ
に要求される重要な性能である。ウェハの内部で重金属
元素のゲッタリングサイトとなるのは析出物・転位・積
層欠陥等の結晶欠陥である。この様に、結晶欠陥は有害
・有用両面の作用をもたらすものであるから、熱処理時
における結晶欠陥の発生特性が厳しく制御されたウェハ
が求められる。
2. Description of the Related Art A silicon wafer, which is a substrate of a semiconductor device represented by a silicon integrated circuit, is usually manufactured by slicing and polishing a cylindrical silicon ingot pulled by the CZ method into a disk shape. In a device manufacturing process, a silicon wafer is subjected to complicated heat treatment, and if crystal defects such as precipitation, dislocations, and stacking faults occur in the vicinity of the device element as a result, the operation of the device becomes defective.
Therefore, it is required that no defects occur on the surface of the wafer on which the device is processed. The wafer surface is also required to be free from harmful impurities such as heavy metal elements, and residual contaminant elements that could not be removed in the device manufacturing process are not limited to the wafer surface but are taken in and fixed inside the wafer or on the back surface. The so-called gettering characteristic is also an important performance required for the wafer. It is crystal defects such as precipitates, dislocations, and stacking faults that serve as gettering sites for heavy metal elements inside the wafer. As described above, since crystal defects have both harmful and useful effects, a wafer in which the generation characteristics of crystal defects during heat treatment are strictly controlled is required.

【0003】ところで、CZ法は石英ルツボ中で溶解し
た高純度多結晶シリコン融液に種結晶を含浸し、ルツボ
および結晶を回転させつつ種結晶を引上げ、該種結晶と
同一方位の単結晶インゴットを得る方法である。結晶径
はシリコン融液の加熱温度と結晶引上げ速度の調整によ
り制御される。例えば、外径数mm程度の無転位種結晶
から外径100mm以上の所定のインゴット径まで結晶
を成長させるには、融液温度を下げつつ引上げ速度を徐
々に減速し、円錐状のいわゆる肩部を形成して結晶径を
拡大する。引上げ終了時には逆に、引上げ速度を加速
し、結晶径を徐々に絞り、錐状の尾部を形成して終了す
る。CZシリコン結晶中には引上げ時に取り込まれる過
飽和な固溶酸素の他微量の炭素などの不純物元素、原子
空孔、自己格子間原子などが含まれる。これらの不純物
や欠陥は結晶製造中の冷却過程で拡散・凝集し、クラス
ターを形成する。この様なクラスターはデバイス製造工
程の熱処理において発生する結晶欠陥の核となる。結晶
中のクラスターの種類と量は結晶製造条件、とりわけ結
晶製造時における凝固からの冷却熱履歴によって決ま
る。従って、デバイス製造工程から要求された結晶欠陥
発生特性を得るため、結晶引上げ条件は厳しく管理され
なければならなかった。
By the way, in the CZ method, a high-purity polycrystalline silicon melt melted in a quartz crucible is impregnated with a seed crystal, and the seed crystal is pulled up while rotating the crucible and the crystal, and a single crystal ingot having the same orientation as the seed crystal. Is a way to get. The crystal diameter is controlled by adjusting the heating temperature of the silicon melt and the crystal pulling rate. For example, in order to grow a crystal from a dislocation-free seed crystal having an outer diameter of about several mm to a predetermined ingot diameter of 100 mm or more, the pulling speed is gradually reduced while the melt temperature is lowered, and a so-called conical shoulder portion is formed. To increase the crystal diameter. At the end of pulling, conversely, the pulling speed is accelerated, the crystal diameter is gradually reduced, and a conical tail is formed to finish. The CZ silicon crystal contains supersaturated solid solution oxygen taken in at the time of pulling, a trace amount of impurity elements such as carbon, atomic vacancies, and self-interstitial atoms. These impurities and defects diffuse and agglomerate during the cooling process during crystal production to form clusters. Such clusters serve as nuclei for crystal defects generated during heat treatment in the device manufacturing process. The type and amount of clusters in a crystal depend on the crystal production conditions, especially the cooling heat history from solidification during crystal production. Therefore, the crystal pulling conditions have to be strictly controlled in order to obtain the crystal defect generation characteristics required from the device manufacturing process.

【0004】それでも、例えば同一インゴットの頭部と
底部で熱履歴を同一にするのは容易でない。ほぼ同じ熱
履歴とするには、結晶引上げ後も底部加熱を継続する、
短いインゴットを引き上げる、あるいはウェハの熱処理
によりインゴット位置の特性を一様にする、等の方法が
とられねばならない。しかし底部加熱あるいは短インゴ
ット引上げは生産性が低下すると云う欠点を有する。ま
た、ウェハ熱処理は欠陥密度の高い側に合わせることは
低温熱処理で可能であるが、欠陥密度の低い側に合わせ
るには1150℃以上の高温熱処理が必要で、この様な
高温熱処理に伴いがちな変形による転位の導入を完全に
防止することは難しい。従って、ウェハ熱処理による方
法にも限界がある。また、そもそも結晶引上げ時の熱履
歴を厳密に制御すること自体、引上げ炉の経時変化のた
め不可能に近く、熟練した操業技術と製品結晶の評価に
頼るところが大であった。インゴットを引上げた後、別
の炉でインゴットのまま熱処理できれば上記の問題点は
解消する。しかしインゴットを炉内の平坦な台上に設置
して熱処理すると、水平鉛直の設置方向によらずインゴ
ット全体に亘って転位が発生し、集積回路用ウェハ素材
として利用することはできない。インゴット熱処理によ
る無転位単結晶の製造技術をまず確立することが大きな
課題であった。
Even so, it is not easy to make the thermal history the same for the head and the bottom of the same ingot, for example. To obtain almost the same thermal history, continue heating the bottom even after pulling the crystal.
A method such as pulling up a short ingot or making the characteristics of the ingot uniform by heat treatment of the wafer must be taken. However, bottom heating or short ingot pulling has the drawback of reducing productivity. Further, although it is possible to match the wafer heat treatment to the side having a high defect density by low temperature heat treatment, a high temperature heat treatment of 1150 ° C. or higher is necessary to adjust to the side having a low defect density, and such a high temperature heat treatment tends to occur. It is difficult to completely prevent the introduction of dislocations due to deformation. Therefore, there is a limit to the method using the wafer heat treatment. In the first place, strictly controlling the heat history during crystal pulling is almost impossible due to the change with time of the pulling furnace, and it depends largely on skilled operation techniques and evaluation of product crystals. If the ingot can be heat-treated as it is in another furnace after pulling up the ingot, the above problems will be solved. However, when the ingot is placed on a flat table in the furnace and heat-treated, dislocations occur over the entire ingot regardless of the horizontal vertical installation direction, and it cannot be used as a wafer material for integrated circuits. The major challenge was to first establish a technology for producing dislocation-free single crystals by ingot heat treatment.

【0005】インゴットを熱処理すること自体はこれま
でにも提案されており、例えば特開平2−263792
号公報ではCZ法で製造した単結晶シリコンインゴット
を1200〜1300℃で高温処理し、次いで400〜
550℃の低温で熱処理することを提案しているが、イ
ンゴット熱処理に伴う上記の問題点も、従ってその解決
法も何等述べられていない。また、特開平3−2088
79号公報でもインゴット熱処理を提案しているが、熱
処理温度について述べているのみで、インゴット熱処理
に伴う上記の問題点も、従ってその解決法も何等述べら
れていないことは同様である。あるいは、特開平3−9
3700号公報ではシリコン単結晶を懸垂保持する機構
と該単結晶の周囲に配置された加熱手段を備えた熱処理
装置を提案しているが、実施例においてインゴットを引
上げたままCZ炉内で熱処理する例を述べたのみで、別
の熱処理炉でインゴットを懸垂熱処理する方法について
は提案されていない。結局、100mm以上の外径と重
量のあるインゴットを引上げ炉とは別の熱処理炉で高温
熱処理することは熱歪等により容易に発生する転位の発
生防止技術がなかったため実用化されていない。
The heat treatment of an ingot itself has been proposed so far, for example, JP-A-2-263792.
In the publication, a single crystal silicon ingot produced by the CZ method is subjected to high temperature treatment at 1200 to 1300 ° C., and then 400 to
Although it has been proposed to perform heat treatment at a low temperature of 550 ° C., neither the above problems associated with the ingot heat treatment nor the solution thereof are mentioned. Also, Japanese Patent Laid-Open No. 3-2088
Although Japanese Patent Publication No. 79 also proposes ingot heat treatment, it is similar to the fact that only the heat treatment temperature is described, and the above problems associated with the ingot heat treatment, and therefore no solution thereof, are described. Alternatively, JP-A-3-9
Japanese Patent No. 3700 proposes a heat treatment apparatus provided with a mechanism for suspending and holding a silicon single crystal and a heating means arranged around the single crystal, but in the embodiment, heat treatment is performed in a CZ furnace with an ingot pulled up. Only an example is given, and no method for suspending heat treatment of an ingot in another heat treatment furnace is proposed. In the end, high-temperature heat treatment of an ingot having an outer diameter of 100 mm or more and a weight in a heat treatment furnace different from the pulling furnace has not been put into practical use because there is no technology for preventing the generation of dislocations that easily occur due to thermal strain or the like.

【0006】[0006]

【発明が解決しようとする課題】上述の従来技術の問題
点に鑑み、本発明はウェハに加工される部位には転位を
全く発生させることなく、シリコン単結晶のインゴット
を引上げ炉外の熱処理炉による1150℃以上の高温熱
処理を可能にし、もって欠陥核をほとんど含まないシリ
コン単結晶を容易かつ経済的に得るための製造方法を提
供するものである。
In view of the above-mentioned problems of the prior art, the present invention pulls an ingot of a silicon single crystal out of a furnace without generating dislocations at a portion to be processed on a wafer, and a heat treatment furnace outside the furnace. The present invention provides a method for manufacturing a silicon single crystal which enables high temperature heat treatment at 1150 ° C. or higher according to the above, and easily and economically obtains a silicon single crystal containing almost no defect nucleus.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明者等は大外径インゴットを種々の方法で高
温熱処理した場合の転位の発生挙動を注意深く観察し、
インゴットの製造部位には転位を全く発生させずに11
50℃以上の高温で熱処理することを可能にする方法を
見出した。
In order to achieve the above object, the present inventors have carefully observed the dislocation generation behavior when a large outer diameter ingot is subjected to high temperature heat treatment by various methods,
No dislocations occurred at the ingot production site.
We have found a method that makes it possible to perform heat treatment at a high temperature of 50 ° C. or higher.

【0008】すなわち本発明は、チョクラルスキー法に
よりシリコン単結晶を製造するにあたり、シリコンイン
ゴット直胴部終端から錐状に収束するインゴット尾部中
間の、外径が10mm以上でかつ直胴部径の1/5以下
の首部と、該首部に続く首部径+8mm以上の径のコー
ン部と、該コーン部から錐状に続く終端部とからなる首
付き尾部を有するシリコンインゴットを形成し、熱処理
炉で該インゴットがほぼ鉛直に懸垂されるように該首部
を懸垂保持し、1150℃以上1400℃以下の温度で
熱処理することを特徴とするシリコン単結晶の製造方法
を要旨とする。
That is, according to the present invention, when a silicon single crystal is manufactured by the Czochralski method, an outer diameter of 10 mm or more and a diameter of the straight body portion are formed between the end of the straight body portion of the silicon ingot and the middle of the ingot tail portion which converges in a cone shape. A silicon ingot having a neck portion of 1/5 or less, a cone portion that follows the neck portion and a diameter of 8 mm or more in diameter, and a tail portion with a neck that continues in a cone shape from the cone portion is formed, and the silicon ingot is formed in a heat treatment furnace. A gist is a method for producing a silicon single crystal, characterized in that the neck is suspended and held so that the ingot is suspended substantially vertically, and heat treatment is performed at a temperature of 1150 ° C. or higher and 1400 ° C. or lower.

【0009】上記熱処理の終了において、炉内でシリコ
ンインゴットを1150℃以下の温度まで冷却してから
該インゴットを炉外に取り出すことが好ましい。また、
さらに本発明を効果的にするために、インゴット直胴部
終端から上記首部に至る錐状尾部の錐角を90°以下と
することが好ましい。
At the end of the heat treatment, it is preferable that the silicon ingot is cooled to a temperature of 1150 ° C. or lower in the furnace and then the ingot is taken out of the furnace. Also,
Further, in order to make the present invention effective, it is preferable that the cone angle of the conical tail extending from the end of the straight body of the ingot to the neck is 90 ° or less.

【0010】[0010]

【作用】CZ法で引上げられたSi単結晶中には約10
18atoms/cm3 程度の酸素が固溶しており、結晶
の温度が1100℃以下に冷却してSiに対する酸素の
固溶限が2×1017atoms/cm3 程度に低下する
と、この固溶酸素は集合して析出し始める。析出は特に
1000℃以下で進行するが、析出物の体積が同一Si
原子数のSi結晶の2倍以上あるため、析出物の周囲に
はかなり大きな弾性歪を伴っている。従ってCZ結晶を
1150℃以上で熱処理すると、1150℃での酸素の
固溶限は4×1017atoms/cm3 であるが、弾性
歪エネルギーを解放するため、1100℃以下で析出し
たほとんど全ての析出物は30分以内で再固溶する。1
150℃での固溶限まで酸素が再析出するための時間は
100時間以上を要し、実用的な数時間以内の熱処理中
の再析出はほとんどない。熱処理温度を酸素の固溶限温
度の1250℃以上にすれば析出物はさらに短時間で完
全に固溶する。また、熱処理温度の上限は原理的にはシ
リコンの融点であるが、1400℃以下で十分効果が得
られるため、逆にインゴットの一部でも溶融させると無
転位単結晶が得られないため、上限は1400℃とす
る。
Function: About 10 in the Si single crystal pulled by the CZ method.
When about 18 atoms / cm 3 of oxygen is in solid solution, when the crystal temperature is cooled to 1100 ° C. or less and the solid solution limit of oxygen to Si is reduced to about 2 × 10 17 atoms / cm 3 , the solid solution Oxygen collects and begins to precipitate. Precipitation proceeds especially below 1000 ° C, but the volume of the precipitate is the same as Si.
Since the number of atoms is more than twice that of the Si crystal, a considerable elastic strain is accompanied around the precipitate. Therefore, when the CZ crystal is heat-treated at 1150 ° C. or higher, the solid solubility limit of oxygen at 1150 ° C. is 4 × 10 17 atoms / cm 3 , but almost all of the crystals precipitated at 1100 ° C. or lower are released to release elastic strain energy. The precipitate re-dissolves within 30 minutes. 1
The time for reprecipitation of oxygen to the solid solution limit at 150 ° C. requires 100 hours or more, and there is almost no reprecipitation during heat treatment within a practical several hours. When the heat treatment temperature is set to 1250 ° C. or higher, which is the solid solution limit temperature of oxygen, the precipitates are completely solid-dissolved in a shorter time. The upper limit of the heat treatment temperature is, in principle, the melting point of silicon, but since a sufficient effect can be obtained at 1400 ° C. or lower, conversely, even if a part of the ingot is melted, a dislocation-free single crystal cannot be obtained. Is 1400 ° C.

【0011】CZ法で引上げられたSi単結晶中には酸
素の他に原子空孔や自己格子間原子等の点欠陥が1017
個/cm3 程度存在し、これらは結晶の冷却過程でクラ
スター化して酸素の析出核や転位・積層欠陥の発生核を
形成する。1150℃以上での熱処理は酸素析出物を再
固溶すると同時に、上記のクラスターを分解する。過飽
和点欠陥は熱処理中に結晶外へ拡散して消滅する。残留
する点欠陥濃度は熱処理温度における熱平衡濃度に等し
く、熱処理終了後、結晶を炉外に取り出す温度が115
0℃以下であれば、これは引上げ中に導入される点欠陥
濃度の1/100以下である。従って、熱処理後の冷却
中に点欠陥が再度集結して形成されるクラスター数は引
上げままの結晶と比較して極めて少ない。
In addition to oxygen, there are 10 17 point defects such as atomic vacancies and self-interstitial atoms in the Si single crystal pulled by the CZ method.
The number of particles / cm 3 is present, and these cluster together during the crystal cooling process to form oxygen precipitation nuclei and dislocation / stacking fault generation nuclei. The heat treatment at 1150 ° C. or higher re-dissolves the oxygen precipitates and at the same time decomposes the clusters. The supersaturated point defects diffuse out of the crystal during the heat treatment and disappear. The residual point defect concentration is equal to the thermal equilibrium concentration at the heat treatment temperature, and the temperature at which the crystal is taken out of the furnace is 115 after the heat treatment is completed.
Below 0 ° C, this is less than 1/100 of the point defect concentration introduced during pulling. Therefore, the number of clusters formed by re-aggregation of point defects during cooling after the heat treatment is extremely smaller than that of the as-pulled crystal.

【0012】上述のように、1150℃以上の熱処理に
よって酸素析出物が固溶すると共に析出中心あるいは転
位・積層欠陥の核となる点欠陥のクラスターが著しく減
少する。これはインゴットの頭部、底部などの部位によ
らないことはもちろん、結晶の引上げ条件にもよらな
い。結晶引上げの熱履歴は完全に消去される。CZ結晶
に求められる制御された酸素析出特性はインゴットから
ウェハを加工した後、例えば700℃以下の低温熱処理
によって付与することができる。
As described above, the heat treatment at 1150 ° C. or more causes the oxygen precipitates to form a solid solution, and the number of point defect clusters serving as nuclei for precipitation centers or dislocations / stacking defects is significantly reduced. This does not depend on the parts such as the head and bottom of the ingot, and it does not depend on the crystal pulling conditions. The thermal history of crystal pulling is completely erased. The controlled oxygen precipitation properties required for CZ crystals can be imparted by low-temperature heat treatment at, for example, 700 ° C. or lower after processing a wafer from an ingot.

【0013】上記熱処理において、インゴットは、図1
に示すように、錐状尾部2の首部3とそれに続くコーン
部4とで熱処理炉の懸垂治具に保持され、ほぼ鉛直に吊
り下げられている。熱処理中のインゴットの脱落を防止
するために首部径は10mm以上、コーン部径は首部径
+8mm以上であることが要求される。その理由は、首
部径が10mm未満の場合、1400℃の熱処理におい
て首部がインゴット重量を支えきれず破断することがあ
るからである。また首部に続くコーン部の径が首部径+
8mm未満の場合、同じ1400℃の熱処理においてイ
ンゴット重量を支えているコーン部が結晶の軟化によっ
て変形し、インゴットが治具から抜け落ちることがある
からである。
In the heat treatment, the ingot is
As shown in FIG. 3, the neck portion 3 of the conical tail portion 2 and the cone portion 4 that follows the pyramidal tail portion 2 are held by the suspension jig of the heat treatment furnace and are suspended almost vertically. In order to prevent the ingot from falling off during heat treatment, the neck diameter is required to be 10 mm or more and the cone diameter is required to be the neck diameter +8 mm or more. The reason is that if the neck diameter is less than 10 mm, the neck portion may not support the weight of the ingot and may be broken during the heat treatment at 1400 ° C. Also, the diameter of the cone that follows the neck is the neck diameter +
If it is less than 8 mm, the cone portion supporting the weight of the ingot may be deformed by the softening of the crystal in the same heat treatment at 1400 ° C., and the ingot may fall out of the jig.

【0014】首部とコーン部にはインゴット重量を支え
る抗力によって熱処理中に塑性変形し転位が発生する。
この転位の直胴部内への伝播を防止するには、首部径を
直胴部径の1/5以下にして転位の発生箇所を局所に限
定することが先ず要求される。首部径が直胴部径の1/
5超の場合、首部に発生した転位は錐状尾部を伝播して
直胴部内に達することがある。さらに、図3に示すよう
に、錐状尾部の錐角が90°より鋭角ならばこの転位の
伝播領域は錐状尾部内にとどまる。錐角は鋭いほど転位
の伝播領域の限定をより確実にする。熱処理中インゴッ
トの直胴部および下部(結晶引上げ時の頭部)は全く無
拘束状態なので直胴部、下部から転位が発生することは
ない。当然、1mにつき5mm程度の熱膨張も全く影響
しない。従って、本発明の熱処理によれば、ウェハが加
工されるインゴット直胴部に転位が導入されることな
く、インゴット引上げ工程で形成された酸素析出物や転
位・積層欠陥の発生核を再固溶ないし消滅させ、インゴ
ット直胴部全長を健全かつ均質な結晶とすることができ
る。
The neck portion and the cone portion are plastically deformed and dislocations are generated during the heat treatment due to the drag force supporting the weight of the ingot.
In order to prevent the dislocation from propagating into the straight body portion, it is first required to limit the diameter of the neck portion to ⅕ or less of the straight body portion so that the dislocations are locally generated. The neck diameter is 1 / the straight body diameter
If it exceeds 5, dislocations generated in the neck may propagate in the conical tail and reach the straight body. Furthermore, as shown in FIG. 3, if the cone angle of the conical tail is more acute than 90 °, the propagation region of this dislocation remains within the conical tail. The sharper the cone angle, the more reliably the dislocation propagation region is limited. During the heat treatment, the straight body and the lower part (the head when the crystal is pulled) of the ingot are completely unrestrained, so dislocations do not occur from the straight body and the lower part. Naturally, thermal expansion of about 5 mm per 1 m does not affect at all. Therefore, according to the heat treatment of the present invention, dislocations are not introduced into the straight body of the ingot where the wafer is processed, and the oxygen precipitates formed in the ingot pulling step and the nuclei of dislocation / stacking faults are re-dissolved. Or it can be made to disappear, and the whole length of the ingot straight body part can be made into a healthy and homogeneous crystal.

【0015】[0015]

【実施例】次に本発明について実施例を挙げて説明す
る。第1の実施例では、CZ法によって直胴部長さ約1
m、直胴部径158mmの結晶引上げ、終端部形成に際
し、直胴部から首部に至る錐状尾部の錐角がほぼ45
°、首部径15mm、首部に続くコーン径25mmとな
るように首付き尾部を形成した。直胴部の引上げ速度は
0.8mm/min、酸素量は9.6×1017atom
s/cm3 である。この条件で引上げた5本のインゴッ
トの内、1本はウェハ加工後、800℃×4hr+10
00℃×16hrの析出熱処理を行い、熱処理前後にお
ける固溶酸素量を赤外吸収法により測定してその差から
酸素析出量を算出した。また別に1100℃×1hrの
水蒸気酸化処理を行い、Wright液で選択腐食後光
学顕微鏡により結晶欠陥を観察した。他の4本はそれぞ
れAr雰囲気中、1100℃、1150℃、1200
℃、1250℃で2時間インゴット熱処理した。この熱
処理において、図1に模式的に示したように、インゴッ
トは、首部をU字形の治具で支え、インゴット頭部を下
に懸垂した。熱処理した各インゴットについて、上記引
上げままインゴットと同一工程でウェハを加工し、熱処
理後、酸素析出量の測定あるいは結晶欠陥観察を行っ
た。その結果は図2に示したように、引上げままの結晶
は上記の析出熱処理を受けると、ウェハを採取した元の
インゴット位置により異なった酸素析出挙動を示した。
具体的には、インゴット頭部から採取したウェハの酸素
析出量は全酸素量の約80%なのに対して、インゴット
底部の酸素析出量は約30%に過ぎない。1100℃で
熱処理したインゴットに関しては、析出熱処理後の酸素
析出量はインゴット頭部ウェハで50%、底部は25%
となり、やはりインゴット位置により酸素析出挙動が異
なる。これに対し、熱処理温度が1150℃以上のイン
ゴットに関しては、析出熱処理後の酸素析出量はインゴ
ット位置によらず一定で、全酸素量の30%以下であっ
た。1150℃以上の温度で熱処理されたインゴットの
ウェハに対して、さらに、650℃×24hrの熱処理
を加えた後、上記の析出熱処理を行って酸素析出状態を
調査した。その結果は、1150℃材は60%、120
0℃材は55%、1250℃材は48%で、この析出量
はウェハを採取したインゴット位置によらなかった。ま
た、上記の5種類のインゴットから採取したウェハは1
100℃水蒸気酸化熱処理による結晶欠陥発生状態も異
なっていた。引上げままインゴットから採取したウェハ
では採取位置に関係なくウェハ中心から半径約50〜5
7mmのリング上の領域に多数の積層欠陥が分布してい
た。1100℃熱処理インゴットでは積層欠陥は発生し
ていなかったが、ウェハ中心から半径約50〜57mm
の同じ範囲に多数の微小ピットを観察した。これに対
し、1150℃以上の熱処理を受けたインゴットに関し
ては水蒸気酸化によっても何の欠陥も観察することはで
きなかった。以上の結果、1150℃以上のインゴット
熱処理により引上げ中に発生した結晶欠陥核が消去する
こと、酸素析出特性がインゴット位置によらなくなるこ
とが確かめられた。
EXAMPLES Next, the present invention will be described with reference to examples. In the first embodiment, the straight body length is about 1 by the CZ method.
m, the diameter of the straight body part is 158 mm, and when the crystal is pulled up and the terminal part is formed, the cone angle of the pyramidal tail portion from the straight body part to the neck part is approximately 45.
The necked tail was formed so that the neck diameter was 15 mm and the cone diameter following the neck was 25 mm. The pulling speed of the straight body part is 0.8 mm / min, and the oxygen amount is 9.6 × 10 17 atom.
s / cm 3 . Of the five ingots pulled up under these conditions, one is 800 ° C x 4hr + 10 after wafer processing.
The precipitation heat treatment was performed at 00 ° C. for 16 hours, the amount of dissolved oxygen before and after the heat treatment was measured by an infrared absorption method, and the oxygen precipitation amount was calculated from the difference. Separately, steam oxidation treatment was performed at 1100 ° C. for 1 hour, and after selective corrosion with Wright's solution, crystal defects were observed by an optical microscope. The other four are each 1100 ° C., 1150 ° C., 1200 in Ar atmosphere.
The ingot was heat-treated at 1250C for 2 hours. In this heat treatment, as schematically shown in FIG. 1, the neck of the ingot was supported by a U-shaped jig, and the head of the ingot was suspended downward. With respect to each heat-treated ingot, the wafer was processed in the same step as the ingot as it was pulled, and after the heat treatment, the amount of oxygen precipitation was measured or the crystal defect was observed. As a result, as shown in FIG. 2, when the as-pulled crystal was subjected to the above-mentioned precipitation heat treatment, it showed different oxygen precipitation behavior depending on the original ingot position where the wafer was sampled.
Specifically, the oxygen precipitation amount of the wafer taken from the ingot head is about 80% of the total oxygen amount, whereas the oxygen precipitation amount at the bottom of the ingot is only about 30%. Regarding the ingot heat-treated at 1100 ° C, the amount of oxygen deposited after the deposition heat treatment is 50% for the ingot head wafer and 25% for the bottom.
Therefore, the behavior of oxygen precipitation differs depending on the ingot position. On the other hand, regarding the ingot having the heat treatment temperature of 1150 ° C. or higher, the oxygen precipitation amount after the precipitation heat treatment was constant regardless of the ingot position, and was 30% or less of the total oxygen amount. The ingot wafer that was heat-treated at a temperature of 1150 ° C. or higher was further subjected to a heat treatment of 650 ° C. × 24 hr, and then the above precipitation heat treatment was performed to investigate the oxygen precipitation state. As a result, 60% for 1150 ° C material, 120%
The 0 ° C material was 55% and the 1250 ° C material was 48%, and the amount of this precipitation did not depend on the position of the ingot where the wafer was sampled. The number of wafers taken from the above five types of ingots is 1
The crystal defect generation state due to the 100 ° C. steam oxidation heat treatment was also different. For a wafer sampled from an ingot as it is pulled up, the radius is about 50 to 5 from the center of the wafer regardless of the sampled position.
Many stacking faults were distributed in the area on the ring of 7 mm. No stacking fault occurred in the 1100 ° C heat-treated ingot, but the radius from the wafer center was about 50 to 57 mm.
A large number of minute pits were observed in the same area. On the other hand, no defects could be observed in the ingot subjected to the heat treatment at 1150 ° C. or higher even by steam oxidation. As a result, it was confirmed that the crystal defect nuclei generated during the pulling were eliminated by the ingot heat treatment at 1150 ° C. or higher and that the oxygen precipitation characteristic did not depend on the ingot position.

【0016】第2の実施例は、直胴部長さ0.8m、直
胴部径210mmのインゴットを、首部径20mm、首
部に続くコーン径30mmは固定し、直胴部から首部ま
での錐角を種々変えて(70°、80°、90°、10
0°、110°)引上げ、第1の実施例と同様なインゴ
ット熱処理(温度1350℃)をして転位分布に対する
錐角の影響を見たものである。熱処理後、尾部から直胴
部にかけインゴットの軸心を含むインゴットの縦断面を
切断し、厚さ3mmのウェハを切り出した。切断面の加
工層を弗酸・硝酸混合液による腐食で取り除いた後、こ
の縦断面ウェハをX線トポグラフ観察し、転位分布を調
査した。この結果は図3に示したように、錐角が90°
以下の場合、首部に発生した転位の伝播範囲は錐状尾部
内に留まっているのに対して、錐角が90°を超えると
転位は直胴部にも伝播していることが分かる。
In the second embodiment, an ingot having a straight body portion length of 0.8 m and a straight body portion diameter of 210 mm is fixed with a neck portion diameter of 20 mm and a cone diameter of 30 mm following the neck portion, and a pyramidal angle from the straight body portion to the neck portion is fixed. Variously (70 °, 80 °, 90 °, 10
0 °, 110 °) and the same ingot heat treatment (temperature 1350 ° C.) as in the first embodiment was performed to see the effect of the cone angle on the dislocation distribution. After the heat treatment, a vertical section of the ingot including the axis of the ingot was cut from the tail portion to the straight body portion, and a wafer having a thickness of 3 mm was cut out. After removing the processed layer on the cut surface by corrosion with a mixed solution of hydrofluoric acid and nitric acid, this longitudinal cross-section wafer was observed by X-ray topography to investigate the dislocation distribution. As a result, as shown in FIG. 3, the cone angle is 90 °.
In the following cases, it can be seen that the propagation range of the dislocations generated in the neck portion remains within the conical tail portion, while the dislocations propagate to the straight body portion when the cone angle exceeds 90 °.

【0017】第3の実施例は、直胴部長さ1.2m、直
胴部径131mm、尾部錐角45°、首部径10mmの
3本のインゴットを1400℃で懸垂熱処理後、炉内で
それぞれ1200℃、1150℃、1100℃まで冷却
後、炉外に取り出し、大気中で放冷して、熱処理後の冷
却の影響を調べたものである。この結果は、取り出し温
度1150℃、1100℃の材料では、析出熱処理後の
酸素析出量はインゴット位置によらず全酸素量の20%
以下で、水蒸気酸化処理で発生する欠陥は全くなかっ
た。これに対し、取り出し温度1200℃の場合は、析
出処理後の酸素析出量は全酸素量の27%で、水蒸気酸
化後には2〜3個/cm2 程度の積層欠陥が観察され
た。酸素析出特性はともかく、後者の積層欠陥発生は少
量とは云え好ましくなく、取り出し温度は1150℃以
下にするのが適当であることが確かめられた。
In the third embodiment, three ingots each having a straight body length of 1.2 m, a straight body diameter of 131 mm, a tail pyramid angle of 45 °, and a neck diameter of 10 mm are subjected to suspension heat treatment at 1400 ° C. and then each in a furnace. After cooling to 1200 ° C., 1150 ° C. and 1100 ° C., it was taken out of the furnace, allowed to cool in the atmosphere, and the effect of cooling after heat treatment was investigated. This result shows that for materials with a take-out temperature of 1150 ° C. and 1100 ° C., the amount of precipitated oxygen after the precipitation heat treatment was 20% of the total amount of oxygen regardless of the ingot position.
Below, there were no defects generated by the steam oxidation treatment. On the other hand, when the extraction temperature was 1200 ° C., the amount of oxygen precipitated after the precipitation treatment was 27% of the total amount of oxygen, and about 2 to 3 stacking faults / cm 2 were observed after steam oxidation. Regardless of the oxygen precipitation characteristic, the occurrence of stacking faults in the latter case is not preferable because it is small, and it was confirmed that it is suitable to take out at a temperature of 1150 ° C or lower.

【0018】[0018]

【発明の効果】以上説明したように、本発明によればイ
ンゴットの直胴部全長に亘って欠陥がなく、均一な酸素
析出特性を有する結晶を確実且つ容易に得ることができ
る。また実施例1で示したように、たとえ引上げままの
インゴットが欠陥核を含んでいたとしても、本発明によ
ってその欠陥核は消去されるから、本発明の効果はイン
ゴット引上げ条件の影響を受けない。従って、インゴッ
トの引上げに要求される条件は、所定外径の無転位単結
晶であること、ドーパント濃度および酸素濃度が所定範
囲にあること、炭素その他の不純物が所定量以下である
こと、等でインゴットの冷却条件に関しては全く制約を
受けない。これは引上げ炉の負荷を軽減するとともに、
生産性、歩留、品質の著しい向上をもたらす。
As described above, according to the present invention, it is possible to reliably and easily obtain a crystal having a uniform oxygen precipitation characteristic without defects over the entire length of the straight body of the ingot. Further, as shown in Example 1, even if the as-pulled ingot contains defective nuclei, the defective nuclei are erased by the present invention, so the effect of the present invention is not affected by the ingot pulling conditions. .. Therefore, the conditions required for pulling up the ingot are that it is a dislocation-free single crystal with a predetermined outer diameter, that the dopant concentration and oxygen concentration are within a predetermined range, that carbon and other impurities are below a predetermined amount, etc. There are no restrictions on the cooling conditions of the ingot. This reduces the load on the pulling furnace,
Brings significant improvements in productivity, yield and quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は首付き尾部の模式図、(b)は首部を
利用したインゴットの鉛直懸垂方法を示す模式図であ
る。
FIG. 1A is a schematic view of a tail portion with a neck, and FIG. 1B is a schematic view showing a method of vertically suspending an ingot using the neck portion.

【図2】引上げままインゴット、および1100℃、1
150℃、1200℃、1250℃で2時間熱処理され
たインゴットの、頭部、中間部、底部から切り出された
ウェハを析出熱処理した場合の酸素析出量を示す図であ
る。
FIG. 2 Ingot as pulled, and 1100 ° C., 1
It is a figure which shows the oxygen precipitation amount at the time of carrying out precipitation heat treatment of the wafer cut out from the head part, middle part, and bottom part of the ingot heat-processed at 150 degreeC, 1200 degreeC, and 1250 degreeC for 2 hours.

【図3】インゴット熱処理によってインゴット首部に発
生・伝播した転位先端とインゴット直胴部端との距離と
錐状尾部の錐角との関係を、直胴部端から首部側を正、
直胴部側を負の方向で示す図である。
FIG. 3 shows the relationship between the distance between the dislocation tip generated and propagated in the ingot neck due to ingot heat treatment and the end of the ingot straight body and the cone angle of the conical tail, from the end of the straight body to the neck side.
It is a figure which shows the straight body part side in a negative direction.

【符号の説明】[Explanation of symbols]

1 シリコンインゴット直胴部 2 錐状尾部 3 首部 4 コーン部 5 終端部 α 錐状尾部の錐角 1 Silicon ingot straight body part 2 Conical tail part 3 Neck part 4 Cone part 5 Terminal part α Conical angle of conical tail part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法によるシリコン単結
晶の製造にあたり、シリコンインゴット直胴部終端から
錐状に収束するインゴット尾部中間の、外径が10mm
以上でかつ直胴部径の1/5以下である首部と、該首部
に続く首部径+8mm以上の径のコーン部と、該コーン
部から錐状に続く終端部とからなる首付き尾部を有する
シリコンインゴットを形成し、熱処理炉で該インゴット
がほぼ鉛直に懸垂されるように該首部を懸垂保持し、1
150℃以上1400℃以下の温度で熱処理することを
特徴とするシリコン単結晶の製造方法。
1. When manufacturing a silicon single crystal by the Czochralski method, the outer diameter is 10 mm between the end of the straight body of the silicon ingot and the middle of the tail of the ingot that converges in a cone shape.
A necked tail portion having a neck portion having a diameter of ⅕ or less of the diameter of the straight body portion and a cone portion having a diameter of neck portion +8 mm or more following the neck portion, and a terminating portion which continues from the cone portion in a cone shape. A silicon ingot is formed, and the neck is suspended and held in a heat treatment furnace so that the ingot is suspended substantially vertically.
A method for producing a silicon single crystal, which comprises performing heat treatment at a temperature of 150 ° C. or higher and 1400 ° C. or lower.
【請求項2】 1150℃以上1400℃以下の温度で
熱処理の後、該熱処理炉内で1150℃以下の温度まで
冷却することを特徴とする請求項1記載のシリコン単結
晶の製造方法。
2. The method for producing a silicon single crystal according to claim 1, wherein after the heat treatment at a temperature of 1150 ° C. or more and 1400 ° C. or less, cooling is performed to a temperature of 1150 ° C. or less in the heat treatment furnace.
【請求項3】 シリコンインゴット直胴部から首部に至
る錐状尾部の錐角が90°以下であることを特徴とする
請求項1および請求項2に記載のシリコン単結晶の製造
方法。
3. The method for producing a silicon single crystal according to claim 1, wherein the pyramidal tail portion from the straight body portion of the silicon ingot to the neck portion has a cone angle of 90 ° or less.
JP13290092A 1992-05-25 1992-05-25 Production of silicon single crystal Withdrawn JPH05319987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13290092A JPH05319987A (en) 1992-05-25 1992-05-25 Production of silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13290092A JPH05319987A (en) 1992-05-25 1992-05-25 Production of silicon single crystal

Publications (1)

Publication Number Publication Date
JPH05319987A true JPH05319987A (en) 1993-12-03

Family

ID=15092176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13290092A Withdrawn JPH05319987A (en) 1992-05-25 1992-05-25 Production of silicon single crystal

Country Status (1)

Country Link
JP (1) JPH05319987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033301A1 (en) * 1995-04-21 1996-10-24 Shin-Etsu Handotai Co., Ltd. Method and equipment for growing single crystals
EP0947611A2 (en) * 1998-03-17 1999-10-06 Shin-Etsu Handotai Company Limited A method for producing a silicon single crystal and the silicon single crystal produced thereby

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033301A1 (en) * 1995-04-21 1996-10-24 Shin-Etsu Handotai Co., Ltd. Method and equipment for growing single crystals
US6113686A (en) * 1995-04-21 2000-09-05 Shin-Etsu Handotai Co., Ltd. Single crystal growing method and apparatus
EP0947611A2 (en) * 1998-03-17 1999-10-06 Shin-Etsu Handotai Company Limited A method for producing a silicon single crystal and the silicon single crystal produced thereby
EP0947611A3 (en) * 1998-03-17 2002-03-20 Shin-Etsu Handotai Company Limited A method for producing a silicon single crystal and the silicon single crystal produced thereby

Similar Documents

Publication Publication Date Title
US6517632B2 (en) Method of fabricating a single crystal ingot and method of fabricating a silicon wafer
JPWO2007013189A1 (en) Silicon wafer and manufacturing method thereof
WO2002002852A1 (en) Silicon single crystal wafer and method for manufacturing the same
WO2006112054A1 (en) Silicon single crystal manufacturing method and silicon wafer
JP2002187794A (en) Silicon wafer and production process for silicon single crystal used for producing the same
JP4806975B2 (en) Method for growing silicon single crystal
JP4821179B2 (en) Method for growing silicon single crystal
EP1895026B1 (en) Method of growing silicon single crystal
CN114318500A (en) Crystal pulling furnace and method for pulling single crystal silicon rod and single crystal silicon rod
KR100717237B1 (en) Process for preparing single crystal silicon having uniform thermal history
EP1199387B1 (en) Method for growing single crystal of semiconductor
JP2002145697A (en) Single crystal silicon wafer, ingot and manufacturing method thereof
US6019836A (en) Method for pulling a single crystal
JP2003510235A (en) Czochralski method for growing single-crystal silicon by controlling the cooling rate
JP3016126B2 (en) Single crystal pulling method
KR100368331B1 (en) Thermal treatment of semiconductor wafer and semiconductor wafer fabricated by the thermal treatment
US20060191468A1 (en) Process for producing single crystal
JP2002145698A (en) Single crystal silicon wafer, ingot and manufacturing method thereof
JPH05319987A (en) Production of silicon single crystal
JPH1192283A (en) Silicon wafer and its production
JP4224906B2 (en) Pulling method of silicon single crystal
JP2003510800A (en) Method for producing Czochralski silicon free of cohesive self-interstitials
US7442251B2 (en) Method for producing silicon single crystals and silicon single crystal produced thereby
JP3903655B2 (en) IG processing method of silicon wafer
JPH05319988A (en) Production of silicon single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803