JPH0531955B2 - - Google Patents

Info

Publication number
JPH0531955B2
JPH0531955B2 JP61037854A JP3785486A JPH0531955B2 JP H0531955 B2 JPH0531955 B2 JP H0531955B2 JP 61037854 A JP61037854 A JP 61037854A JP 3785486 A JP3785486 A JP 3785486A JP H0531955 B2 JPH0531955 B2 JP H0531955B2
Authority
JP
Japan
Prior art keywords
reactor
piping
cooling system
line
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61037854A
Other languages
Japanese (ja)
Other versions
JPS62195594A (en
Inventor
Kenji Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61037854A priority Critical patent/JPS62195594A/en
Publication of JPS62195594A publication Critical patent/JPS62195594A/en
Publication of JPH0531955B2 publication Critical patent/JPH0531955B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Furnace Details (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子炉の冷却系統設備に係り、特に
原子炉停止時冷却系(残留熱除去系)、冷却材浄
化系等を具備する原子炉冷却系統設備に関するも
のである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to cooling system equipment for nuclear reactors, and in particular, to nuclear reactor cooling systems equipped with reactor shutdown cooling systems (residual heat removal systems), coolant purification systems, etc. This relates to reactor cooling system equipment.

〔従来の技術〕[Conventional technology]

原子力発電所内の原子炉冷却系統設備は、主冷
却系たる原子炉給水系、再循環系の他に、補助冷
却系として、冷却材喪失時にサプレツシヨンプー
ル水を原子炉に供給する低圧注水系と、原子炉格
納容器を冷却する格納容器冷却系と、原子炉停止
時に原子炉の残留熱を除去する原子炉停止時冷却
系と、原子炉運転時に炉水(1次冷却材)を浄化
して再供給する冷却材浄化系等から構成されてい
る。
In addition to the reactor water supply system and recirculation system that serve as the main cooling system, the reactor cooling system equipment in a nuclear power plant includes a low-pressure water injection system that supplies suppression pool water to the reactor when coolant is lost as an auxiliary cooling system. , a containment cooling system that cools the reactor containment vessel, a reactor shutdown cooling system that removes residual heat from the reactor when the reactor is shut down, and a reactor cooling system that purifies reactor water (primary coolant) during reactor operation. The system consists of a coolant purification system that resupplies the coolant.

第3図は、これらの各種冷却系を備えた従来の
冷却系統設備の一例を示すものであり、以下、同
図に基づき従来の冷却系統設備を説明する。
FIG. 3 shows an example of conventional cooling system equipment equipped with these various cooling systems, and the conventional cooling system equipment will be explained below based on the figure.

図中、1は原子炉圧力容器、2は原子炉格納容
器、3はサプレツシヨンプール水4を貯水するサ
プレツシヨンプール、8,9は再循環系ラインの
配管、15は原子炉運転時にタービン駆動のため
原子炉圧力容器1に給水を行う原子炉給水系ライ
ンL1の配管である。
In the figure, 1 is the reactor pressure vessel, 2 is the reactor containment vessel, 3 is the suppression pool that stores the suppression pool water 4, 8 and 9 are the piping of the recirculation system line, and 15 is during reactor operation. This is piping for a reactor water supply system line L1 that supplies water to the reactor pressure vessel 1 to drive the turbine.

低圧注水系は、サプレツシヨンプール3→配管
17(ポンプ5→熱交換器6)→原子炉圧力容器
1からなり、冷却材喪失事故時にこの経路を介し
てサプレツシヨンプール水4を原子炉圧力容器1
のシユラウド内に注入する。
The low-pressure water injection system consists of a suppression pool 3 → piping 17 (pump 5 → heat exchanger 6) → reactor pressure vessel 1, and in the event of a loss of coolant accident, suppression pool water 4 is pumped into the reactor through this route. pressure vessel 1
Inject into the shroud of the

格納容器冷却系は、サプレツシヨンプール3→
配管17(ポンプ5→熱交換器6)→配管16,
20からなり、サプレツシヨンプール水4をポン
プ5で吸引し、熱交換器6で冷却した後、配管1
6,20を介してスプレイすることにより原子格
納容器2の冷却を行う。
The containment vessel cooling system is the suppression pool 3→
Piping 17 (pump 5 → heat exchanger 6) → piping 16,
20, the suppression pool water 4 is sucked by the pump 5, and after being cooled by the heat exchanger 6, the pipe 1
The atomic containment vessel 2 is cooled by spraying it through the atomic bombs 6 and 20.

原子炉停止時冷却系(残留熱除去系)は、原子
炉圧力容器1→再循環系ポンプ7の出口側配管9
→炉水取出配管21→弁22→配管17(ポンプ
5→熱交換器6)→配管18→再循環系ポンプ7
の入口側配管8→原子炉圧力容器1からなり、原
子炉停止時冷却系の運転時に炉水を再循環系ポン
プ7の出口側配管9より取り出し、ポンプ5によ
り昇圧し、熱交換器6で冷却した後に再循環系入
口配管8に戻して閉ループ循環回路を形成して、
原子炉停止時の残留熱を除去する。
The reactor shutdown cooling system (residual heat removal system) runs from the reactor pressure vessel 1 to the outlet side piping 9 of the recirculation system pump 7.
→ Reactor water extraction piping 21 → Valve 22 → Piping 17 (pump 5 → Heat exchanger 6) → Piping 18 → Recirculation system pump 7
When the reactor shutdown cooling system is in operation, reactor water is taken out from the outlet pipe 9 of the recirculation system pump 7, pressurized by the pump 5, and then transferred to the reactor pressure vessel 6 by the heat exchanger 6. After cooling, it is returned to the recirculation system inlet piping 8 to form a closed loop circulation circuit,
Removes residual heat during reactor shutdown.

冷却材浄化系は、再循環系ポンプ7の入口側配
管8→配管19→ポンプ11→再生熱交換器12
の1次側→非再生熱交換器13→ろ過脱塩装置1
4→再生熱交換器12の2次側→配管24→給水
系配管15→原子炉圧力容器1からなり、原子炉
運転時に、この経路のろ過脱塩装置14により炉
水を浄化し、浄化系ポンプ11により給水系と冷
却材浄化系の合流部25の浄化炉水を送り給水系
配管15を介して原子炉圧力容器1に戻す。
The coolant purification system includes the inlet side piping 8 of the recirculation system pump 7 → piping 19 → pump 11 → regenerative heat exchanger 12
Primary side → non-regenerative heat exchanger 13 → filtration desalination equipment 1
4 → Secondary side of regenerative heat exchanger 12 → Piping 24 → Water supply system piping 15 → Reactor pressure vessel 1. During reactor operation, the reactor water is purified by the filtration and demineralization device 14 in this route, and the purification system The purified reactor water from the confluence section 25 of the water supply system and the coolant purification system is sent by the pump 11 and returned to the reactor pressure vessel 1 via the water supply system piping 15.

また、原子炉冷却系統設備には、サプレツシヨ
ンプール水4をポンプ5で吸引し、熱交換器6で
冷却した後に、テスト配管10を経てサプレツシ
ヨンプール3に戻すサプレツシヨンプール水冷却
系と、通常運転中において、原子炉圧力容器1及
び原子炉格納容器2にサプレツシヨンプール水4
を注入することなく、低圧注水系、格納容器冷却
系及びサプレツシヨンプール水冷却系の機能試験
が行い得るようにポンプ5→テスト用配管10′,
10→サプレツシヨンプール3からなるテスト系
が設けられている。
In addition, the reactor cooling system equipment includes a suppression pool water cooling system that sucks suppression pool water 4 with a pump 5, cools it with a heat exchanger 6, and returns it to the suppression pool 3 via test piping 10. During normal operation, suppression pool water 4 is added to the reactor pressure vessel 1 and the reactor containment vessel 2.
The pump 5→test piping 10',
A test system consisting of 10 → suppression pools 3 is provided.

以上のように、原子炉冷却系統設備には各種の
冷却系統を具備して、原子炉の円滑かつ安全な運
転を行い得るようにしてある。なお、原子炉冷却
系統に関する従来技術としては、その他に特開昭
55−6260号のように冷却材浄化系と残留熱除去系
のラインを共通化させて原子炉圧力容器と接続し
たものや、その他の従来技術としては、例えば特
開昭54−20293号、特開昭56−150395号公報に記
載されたものがある。
As described above, the reactor cooling system equipment is equipped with various cooling systems to enable smooth and safe operation of the nuclear reactor. In addition, as a conventional technology related to the reactor cooling system, there is also
No. 55-6260, in which the coolant purification system and residual heat removal system lines are shared and connected to the reactor pressure vessel, and other conventional technologies include, for example, JP-A No. 54-20293, There is one described in 1982-150395.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような各種冷却系を有する系統構成のうち
で、特に原子炉圧力容器1からの炉水を循環させ
る原子炉停止時冷却系や冷却材浄化系において
は、原子炉停止時冷却系配管18、冷却材浄化系
配管19及び原子炉圧力容器内表面より発生した
クラツドが、プラントの運転時間の経過に従い放
射能化するために、これらの配管18,19等、
或いはこの種配管に取付けた弁、サポート等の保
守点検、検査作業、ポンプ・弁等の分解作業時に
作業者が被爆する危険性を有し、その安全対策を
充分に配慮する必要があつた。
Among the system configurations having various types of cooling systems, especially in the reactor shutdown cooling system and coolant purification system that circulate reactor water from the reactor pressure vessel 1, the reactor shutdown cooling system piping 18, In order for crud generated from the coolant purification system piping 19 and the inner surface of the reactor pressure vessel to become radioactive as the plant operating time passes, these piping 18, 19, etc.
Alternatively, there is a risk that workers may be exposed to radiation during maintenance and inspection work on valves and supports installed in this type of piping, and during disassembly work on pumps, valves, etc., and it was necessary to take sufficient safety measures.

また、原子炉停止時冷却系配管18の口径が、
通常、約400A、冷却材浄化系配管19の口径が
約200A程度に大口径であり、且つ相当の長さ
(例えば、停止時冷却系配管18で約50m程度)
を有して、再循環系配管8,9が設置されている
保守点検頻度の多い床に全周にわたり引き回され
ており、これらの配管、配管サポート、保温材等
の物量及び弁員数を多く要していた。
In addition, the diameter of the cooling system piping 18 during reactor shutdown is
Normally, the diameter is about 400A, the diameter of the coolant purification system piping 19 is about 200A, and the length is considerable (for example, about 50m for the cooling system piping 18 when stopped)
The pipes 8 and 9 of the recirculation system are routed all around the floor where maintenance and inspections are frequently performed. It was necessary.

更に、原子炉停止時冷却系運転時には、原子炉
再循環系配管8と原子炉停止時冷却系配管18と
の流体が合流する(第3図の符号Pで示す部分)
が再循環系配管と原子炉停止時冷却系戻り配管の
内部流体温度がそれぞれ約180℃、約70℃の温度
状態にあるため、両系統の温度差は約110℃以上
となり、その結果、流体合流部Pは経時的な熱疲
労が生じて配管が損傷する可能性を有していた。
Furthermore, when the reactor shutdown cooling system is in operation, the fluids in the reactor recirculation system piping 8 and the reactor shutdown cooling system piping 18 merge (portion indicated by symbol P in FIG. 3).
Since the internal fluid temperatures of the recirculation system piping and the reactor shutdown cooling system return piping are approximately 180℃ and approximately 70℃, respectively, the temperature difference between the two systems is approximately 110℃ or more, and as a result, the fluid There was a possibility that the confluence part P would suffer thermal fatigue over time and the piping would be damaged.

また、特開昭55−6260号のように冷却材浄化系
と原子炉停止時冷却系を共通化させた場合でも、
これらの共通の炉水戻し専用配管を原子炉圧力容
器に直接接続するため、この戻し専用配管を原子
炉格納容器に貫通させて引き回さなければなら
ず、この専用配管の存在で、上記同様に保守点検
の安全性の問題や配管、配管サポート、保温材、
弁員数等の増加の問題があつた。
Furthermore, even if the coolant purification system and reactor shutdown cooling system are made common as in JP-A No. 55-6260,
In order to directly connect these common reactor water return piping to the reactor pressure vessel, this return piping must be routed through the reactor containment vessel. Maintenance and inspection safety issues and piping, piping supports, insulation materials,
There was a problem with the increase in the number of panelists.

本発明は以上の点に鑑みてなされ、その目的
は、原子炉停止時冷却系配管、冷却材浄化系配管
等の系統構成を合理的に構成することにより、こ
の種配管の作業点検の安全性を図ると共に、原子
炉停止時冷却系配管、冷却材浄化系配管、配管サ
ポート等の物量削減を図り、しかも従来のような
原子炉停止時冷却系配管と再循環系配管合流部に
おける熱疲労を解消することのできる原子炉冷却
系統設備を提供することにある。
The present invention has been made in view of the above points, and its purpose is to improve the safety of work inspections of these types of piping by rationally configuring the system configuration of cooling system piping during reactor shutdown, coolant purification system piping, etc. In addition, we aim to reduce the amount of piping used in the reactor shutdown cooling system, coolant purification system piping, piping support, etc., and also reduce thermal fatigue at the confluence of the conventional reactor shutdown cooling system piping and recirculation system piping. The object of the present invention is to provide a nuclear reactor cooling system facility that can solve the problem.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するために、次のよ
うに構成した。なお、構成要素に付した符号は、
便宜上、第1図の実施例のものを引用した。
In order to achieve the above object, the present invention is configured as follows. Note that the symbols attached to the constituent elements are as follows:
For convenience, the example shown in FIG. 1 has been cited.

すなわち、原子炉給水系、再循環系、原子炉停
止時冷却系(残留熱除去系)、冷却材浄化系等を
備えた原子炉冷却系統設備において、 前記原子炉停止時冷却系及び冷却材浄化系は、
前記再循環系のラインの一部9から炉水を取水す
る共通の配管21′を有し、この共通配管21′の
下流側が分岐されて、その一方の分岐配管17が
上流側から順に熱交換器6、ポンプ5を備えて原
子炉停止時冷却系ラインL2の配管を構成し、他
方の分岐配管26が上流側から順に熱交換器1
3、ポンプ11、浄化装置14等を備えて冷却材
浄化系ラインL3の配管を構成すると共に、前記
原子炉停止時冷却系ラインL2のポンプ5下流側
と前記冷却材浄化系ラインL3の浄化装置14下
流側とが共通の配管24′により一本化されて原
子炉給水系ラインL1の配管15に接続され、且
つ前記原子炉停止時冷却系ラインL2及び冷却材
浄化系ラインL3には、これらのラインL2,L
3を前記原子炉給水系ラインL1に対し択一的に
連通させるためのライン選択用の切換弁22,2
7が設けてある。
That is, in a reactor cooling system facility equipped with a reactor water supply system, a recirculation system, a reactor shutdown cooling system (residual heat removal system), a coolant purification system, etc., the reactor shutdown cooling system and coolant purification system are The system is
It has a common pipe 21' that takes in reactor water from part 9 of the line of the recirculation system, and the downstream side of this common pipe 21' is branched, and one of the branch pipes 17 performs heat exchange sequentially from the upstream side. 6 and pump 5 to constitute the piping of the reactor shutdown cooling system line L2, and the other branch piping 26 connects the heat exchanger 1 in order from the upstream side.
3. A pump 11, a purification device 14, etc. are provided to configure the piping of the coolant purification system line L3, and a purification device for the downstream side of the pump 5 of the cooling system line L2 during reactor shutdown and the coolant purification system line L3. 14 on the downstream side are unified by a common pipe 24' and connected to the pipe 15 of the reactor water supply system line L1, and these lines are connected to the reactor shutdown cooling system line L2 and the coolant purification system line L3. line L2,L
line selection switching valves 22, 2 for selectively connecting the reactor water supply system line L1 with the reactor water supply system line L1;
7 is provided.

〔作 用〕[Effect]

上記構成よりなれば、冷却材浄化系、原子炉停
止時冷却系のいずれの動作時においても、再循環
系の配管9及びこれに接続した共通の配管21′
を介して原子炉圧力容器1から炉水を取水する。
With the above configuration, the pipe 9 of the recirculation system and the common pipe 21' connected thereto are
Reactor water is taken from the reactor pressure vessel 1 through the reactor pressure vessel 1.

そして、原子炉運転時には、切換弁22が閉、
切換弁27が開制御されて冷却材浄化系のモード
が選択され、取水された冷却材(炉水)がこの炉
水取水配管21′から分岐する配管26(熱交換
器12、ポンプ11、浄化装置14等)を通りこ
の配管にて冷却及び浄化(ろ過脱塩)された後、
共通配管24′及び給水系ラインL1の配管15
を介して原子炉圧力容器1に戻される。
When the reactor is operating, the switching valve 22 is closed.
The switching valve 27 is controlled to open and the mode of the coolant purification system is selected, and the taken coolant (reactor water) is transferred to the pipe 26 (heat exchanger 12, pump 11, purification system) that branches from the reactor water intake pipe 21'. After being cooled and purified (filtration desalination) through this pipe,
Common piping 24' and piping 15 of water supply system line L1
is returned to the reactor pressure vessel 1 via the reactor pressure vessel 1.

また、原子炉停止時には、切換弁22が開、切
換弁27が閉制御されて原子炉停止時冷却系が選
択され、上記同様にして再循環系に接続された共
通配管21′を介して取水された炉水が、分岐配
管17(熱交換器6、ポンプ5)を通りこの配管
で冷却された後、共通配管24′及び給水系ライ
ンL1の配管15を介して原子炉に戻される。
When the reactor is shut down, the switching valve 22 is opened and the switching valve 27 is closed to select the reactor shutdown cooling system, and water is taken in through the common pipe 21' connected to the recirculation system in the same manner as described above. After the reactor water passes through the branch pipe 17 (heat exchanger 6, pump 5) and is cooled by this pipe, it is returned to the reactor via the common pipe 24' and the pipe 15 of the water supply system line L1.

したがつて、本発明によれば、第3図のような
冷却材浄化系専用の炉水取出配管19を不要と
し、しかも冷却材浄化系及び原子炉停止時冷却系
の炉水戻り配管を原子炉給水系の配管15と共用
させたので、従来のように原子炉停止時冷却系の
炉水専用戻し配管(第3図の符号18に相当)や
特開昭55−6260号のような冷却材浄化系・原子炉
停止時冷却系の炉水戻し専用配管を不要とする。
Therefore, according to the present invention, there is no need for the reactor water take-out piping 19 dedicated to the coolant purification system as shown in FIG. Since it is shared with piping 15 of the reactor water supply system, it can be used as a return piping exclusively for reactor water (corresponding to the reference numeral 18 in Figure 3) of the cooling system during reactor shutdown as in the past, or as described in JP-A-55-6260. Eliminates the need for dedicated reactor water return piping for the material purification system and reactor shutdown cooling system.

その結果このような炉水戻し専用配管を原子炉
格納容器2を貫通させて設けることもなく、原子
炉停止時冷却系及び冷却材浄化系の戻し配管(共
通配管)24′を原子炉格納容器2外にて原子炉
給水系配管15と接続できる。
As a result, there is no need to provide a dedicated reactor water return pipe that penetrates the reactor containment vessel 2, and the return pipe (common pipe) 24' of the reactor shutdown cooling system and coolant purification system is connected to the reactor containment vessel. 2 can be connected to the reactor water supply system piping 15 outside.

また、停止時冷却系の戻り水を従来と異なり再
循環系ラインに合流させることなく原子炉圧力容
器に戻すことができる。
Further, return water from the cooling system during shutdown can be returned to the reactor pressure vessel without having to join the recirculation system line, unlike in the conventional system.

さらに、本発明によれば、原子炉停止時冷却系
では熱交換器6の下流側に残留熱除去系ポンプ5
を配置し、冷却材浄化系では熱交換器13の下流
側にポンプ11を配置したため、各ポンプには熱
交換器により低温化された冷却水が流れるため、
ポンプへの放射能付着率を低減させることができ
る(放射能付着率は炉水温度が高くなるほど高く
なるといつた温度依存性があり、この詳細は実施
例に述べてある)。
Furthermore, according to the present invention, in the reactor shutdown cooling system, the residual heat removal system pump 5 is provided downstream of the heat exchanger 6.
, and in the coolant purification system, the pump 11 was placed downstream of the heat exchanger 13, so cooling water lowered in temperature by the heat exchanger flows through each pump.
The rate of radioactivity adhesion to the pump can be reduced (the rate of radioactivity adhesion is temperature dependent, increasing as the reactor water temperature rises; details of this are described in Examples).

〔実施例〕〔Example〕

本発明の一実施例を第1図及び第2図に基づき
説明する。
An embodiment of the present invention will be described based on FIGS. 1 and 2.

第1図は本実施例の冷却系統設備の配管図を示
すもので、同図において、既述した第3図の従来
の冷却系統設備の符号と同一のものは同一部分を
示す。
FIG. 1 shows a piping diagram of the cooling system equipment of this embodiment. In the figure, the same reference numerals as those of the conventional cooling system equipment of FIG. 3 described above indicate the same parts.

すなわち、図中、1は原子炉圧力容器、2は原
子炉格納容器、3はサプレツシヨンプール、4は
サプレツシヨンプール水である。
That is, in the figure, 1 is a reactor pressure vessel, 2 is a reactor containment vessel, 3 is a suppression pool, and 4 is suppression pool water.

5は低圧注水系、原子炉格納容器冷却系、原子
炉停止時冷却系動作時に作動する残留熱除去系の
ポンプであり、ポンプ5は原子炉停止時冷却系の
炉水及びサプレツシヨンプール水を途中経路まで
搬送する配管17に配置され、また熱交換器6の
下流側に配置されている。
5 is a pump for the residual heat removal system that operates during the operation of the low-pressure water injection system, the reactor containment vessel cooling system, and the reactor shutdown cooling system, and the pump 5 is used to pump reactor water and suppression pool water in the reactor shutdown cooling system. The heat exchanger 6 is disposed in the pipe 17 that conveys the heat exchanger to an intermediate route, and is disposed on the downstream side of the heat exchanger 6.

そして、冷却材喪失事故時には、サプレツシヨ
ンプール3→熱交換器6→ポンプ5→配管17,
17′→原子炉圧力容器1の低圧注水系により原
子炉圧力容器1のシユラウド内にサプレツシヨン
プール水4が供給される。
In the event of a loss of coolant accident, the suppression pool 3 → heat exchanger 6 → pump 5 → piping 17,
17'→Suppression pool water 4 is supplied into the shroud of the reactor pressure vessel 1 by the low pressure water injection system of the reactor pressure vessel 1.

また、原子炉格納容器冷却系は、サプレツシヨ
ンプール3→熱交換器6→配管17の一部及び配
管16,20よりなり、この経路によつて冷却材
喪失事故が生じた時にサプレツシヨンプール水4
が原子炉格納容器2にスプレイされる。
In addition, the reactor containment cooling system consists of the suppression pool 3 → heat exchanger 6 → part of the piping 17 and piping 16, 20, and if a loss of coolant accident occurs through this route, the suppression pool water 4
is sprayed into the reactor containment vessel 2.

7は再循環系ポンプ、8は再循環系ポンプ7の
入口側配管、9は出口側配管である。
7 is a recirculation system pump, 8 is an inlet side piping of the recirculation system pump 7, and 9 is an outlet side piping.

再循環系ポンプ7の出口側配管9には、原子炉
停止時冷却系、冷却材浄化系の動作時に炉水を原
子炉格納容器2の外部に取り出す共通の炉水取出
配管21′が接続され、炉水取出配管21′の外側
隔離弁35の下流側が分岐して、その一方の分岐
配管26上に再生熱交換器12の1次側→非再生
熱交換器13→ろ過脱塩装置14→再生熱交換器
12の2次側が上流側から順次接続配置されて、
冷却材浄化系ラインL2の主な配管を構成してい
る。
A common reactor water take-out pipe 21' is connected to the outlet side pipe 9 of the recirculation system pump 7 to take out reactor water to the outside of the reactor containment vessel 2 when the reactor shutdown cooling system and coolant purification system are operated. , the downstream side of the outer isolation valve 35 of the reactor water extraction pipe 21' is branched, and on one of the branch pipes 26, the primary side of the regenerative heat exchanger 12 → non-regenerative heat exchanger 13 → filtration desalination equipment 14 → The secondary sides of the regenerative heat exchanger 12 are sequentially connected and arranged from the upstream side,
It constitutes the main piping of the coolant purification system line L2.

この冷却材浄化系は、第3図の従来の冷却材浄
化系と比較した場合、従来の如く再循環系ポンプ
7の入口側配管8→冷却材浄化系配管19の経路
を経ずに、再循環系ポンプ7の出口側配管9、後
述する原子炉停止時冷却系と共通の炉水取出配管
21′を利用して炉水の取出を行つている点と、
浄化系ポンプ11を非再生熱交換器13の下流側
に配置した点が異なる。
When compared with the conventional coolant purification system shown in FIG. The reactor water is taken out using the outlet side pipe 9 of the circulation system pump 7 and the reactor water take-out pipe 21' which is common to the reactor shutdown cooling system described later.
The difference is that the purification system pump 11 is arranged downstream of the non-regenerative heat exchanger 13.

もう一方の分岐配管は配管17により構成され
る。この配管17は、その一方の分岐配管17が
上流側から順に熱交換器6、ポンプ5を備えて原
子炉停止時冷却系ラインL2の主な配管を構成す
る。また、原子炉停止時冷却系ラインL2のポン
プ5下流側と前記冷却材浄化系ラインL3の浄化
装置14下流側とが共通の配管24′により一本
化されて原子炉給水系ラインL1の配管15の合
流部25に原子炉格納容器2外にて接続してあ
る。
The other branch pipe is constituted by pipe 17. One of the branch pipes 17 includes a heat exchanger 6 and a pump 5 in this order from the upstream side, and constitutes the main pipe of the reactor shutdown cooling system line L2. In addition, the downstream side of the pump 5 of the reactor shutdown cooling system line L2 and the downstream side of the purifier 14 of the coolant purification system line L3 are integrated by a common piping 24', and the piping of the reactor water supply system line L1 is integrated. It is connected to the confluence section 25 of No. 15 outside the reactor containment vessel 2.

すなわち、本実施例においては、配管17が原
子炉停止時冷却系ラインL2のほかに低圧注水系
を途中まで兼ねているので、配管17と注水系配
管17′の間に設けた原子炉格納容器外側隔離弁
30の上流側を分岐して遠隔操作弁28を有する
連絡配管29を接続し、この連絡配管29の他端
を共通配管(給水系連絡配管)24′に冷却材浄
化系配管26と共に接続している。
That is, in this embodiment, since the pipe 17 also serves as the low-pressure water injection system halfway in addition to the reactor shutdown cooling system line L2, the reactor containment vessel provided between the pipe 17 and the water injection system pipe 17' The upstream side of the outer isolation valve 30 is branched to connect a communication pipe 29 having a remote control valve 28, and the other end of this communication pipe 29 is connected to the common pipe (water supply system communication pipe) 24' together with the coolant purification system pipe 26. Connected.

このような配管構成を採用することで、原子炉
停止時冷却系は、第3図の従来例のように、その
炉水戻り側の配管が配管18、再循環系ポンプ7
の入口側配管8の経路を経ることなく、配管17
→連絡配管29,24′→給水系配管15の経路
により原子炉圧力容器1に炉水を戻し、原子炉停
止時の残留熱を除去するようにしてある。
By adopting such a piping configuration, the reactor shutdown cooling system is constructed such that the piping on the reactor water return side is connected to the piping 18 and the recirculation system pump 7, as in the conventional example shown in FIG.
Piping 17 without going through the route of inlet side piping 8.
Reactor water is returned to the reactor pressure vessel 1 through the route of →connection piping 29, 24'→water supply system piping 15 to remove residual heat when the reactor is shut down.

以上に述べた各種冷却系は、夫々の系に配置さ
れた遠隔操作弁35,22,27,30等の弁
開、弁閉制御及び残留熱除去系ポンプ5、冷却材
浄化系ポンプ11のオン・オフ制御によつて行な
われるものであり、以下、本実施例の要点となる
冷却材浄化系、停止時冷却系の動作について説明
する。
The various cooling systems described above control the opening and closing of the remote control valves 35, 22, 27, 30, etc. arranged in each system, and the turning on of the residual heat removal system pump 5 and the coolant purification system pump 11. - This is performed by off control, and the operations of the coolant purification system and the stoppage cooling system, which are the main points of this embodiment, will be explained below.

原子炉の通常運転時においては、冷却材浄化の
ために、再循環系ポンプ出口配管8より分岐した
炉水取出配管21′を介して炉水が取出され、こ
の炉水が原子炉格納容器内側隔離弁34、外側遠
隔弁35、配管26、再生熱交換器(1次側)1
2、非再生熱交換器13を経た後、冷却材浄化系
ポンプ11にて昇圧され、ろ過脱塩器14で浄化
された後に配管24,24′を経て給水系配管1
5を介して原子炉圧力容器1へ戻される。このよ
うな動作を繰返すことにより原子炉内の水質を規
定の状態に確保する。なお、このような冷却材浄
化系動作時、すなわち冷却材浄化系ポンプ11の
駆動中は、原子炉停止時冷却系の遠隔操作弁2
2,23,29が閉状態を保つようインターロツ
クされており、1次冷却材(炉水)が停止時冷却
系配管17に流れ込んだり、又原子炉停止時冷却
系配管の保管水等が冷却材浄化系配管26,24
側に洩れたり、流れ込んだりすることはなく、冷
却材浄化系の機能の独立性、健全性が保障され
る。
During normal operation of the reactor, for coolant purification, reactor water is taken out from the recirculation system pump outlet pipe 8 through the reactor water take-out pipe 21', and this reactor water is transferred to the inside of the reactor containment vessel. Isolation valve 34, outer remote valve 35, piping 26, regenerative heat exchanger (primary side) 1
2. After passing through the non-regenerative heat exchanger 13, the pressure is increased by the coolant purification system pump 11, and after being purified by the filtration demineralizer 14, the water supply system piping 1 is passed through the pipes 24 and 24'.
5 to the reactor pressure vessel 1. By repeating these operations, the water quality inside the reactor is maintained at a specified level. Note that during such operation of the coolant purification system, that is, while the coolant purification system pump 11 is operating, the remote control valve 2 of the cooling system during reactor shutdown is activated.
2, 23, and 29 are interlocked to maintain the closed state, so that the primary coolant (reactor water) does not flow into the cooling system piping 17 when the reactor is shut down, and the stored water in the cooling system piping is cooled when the reactor is shut down. Material purification system piping 26, 24
There is no leakage or flow into the side, and the independence and integrity of the coolant purification system's functions are guaranteed.

また、原子炉運転停止段階においては、完全停
止に至るまでに約20時間の停止時冷却運転が実施
される。
In addition, during the reactor shutdown stage, approximately 20 hours of shutdown cooling operation will be carried out before complete shutdown is achieved.

この原子炉停止時冷却系は、停止時冷却系ポン
プ5を作動させ、遠隔操作弁22,23,28を
弁開制御することにより、再循環系出口側配管9
より取出した炉水が原子炉内側隔離弁34、外側
隔離弁35、遠隔操作弁22を経て熱交換器6で
冷却され、停止時冷却系ポンプ5で昇圧された
後、配管17,29、遠隔操作弁28、配管2
4′、給水系配管15を介して原子炉圧力容器1
に戻されるものである。そして、この冷却系動作
を繰返すことにより、原子炉圧力容器1内の冷却
水温度が所定の温度(約50℃)以下に冷却され
る。なお、この停止時冷却系動作時には停止時冷
却系ポンプ5の起動前に遠隔操作により、冷却材
浄化系の遠隔操作弁27が予め弁閉制御され、低
圧注水系弁26が弁閉制御されているもので、し
たがつて停止時冷却系の機能の独立性、健全性が
保障されている。
This reactor shutdown cooling system operates the shutdown cooling system pump 5 and controls the opening of the remote control valves 22, 23, and 28 to control the recirculation system outlet side piping 9.
The reactor water taken out from the reactor passes through the reactor inner isolation valve 34, the outer isolation valve 35, and the remote control valve 22, is cooled by the heat exchanger 6, is pressurized by the shutdown cooling system pump 5, and is then transferred to the pipes 17, 29, and the remote control valve 22. Operation valve 28, piping 2
4', reactor pressure vessel 1 via water supply system piping 15
It will be returned to. By repeating this cooling system operation, the temperature of the cooling water in the reactor pressure vessel 1 is cooled to a predetermined temperature (approximately 50° C.) or lower. In addition, when the cooling system at the time of stoppage is operated, the remote control valve 27 of the coolant purification system is controlled to be closed in advance by remote control before the cooling system pump 5 is started at the time of stoppage, and the low pressure water injection system valve 26 is controlled to be closed. Therefore, the functional independence and soundness of the cooling system during shutdown are guaranteed.

第1図に示す破線は、前述した冷却材浄化系、
原子炉停止時冷却系の動作制御系を示すもので、
再循環系からの分岐配管21′に設けた弁35は、
上記両系統の動作時のいずれにも共用できるよう
に通常開の状態に制御される。停止時冷却系遠隔
操作弁22,23,28は、冷却材浄化系ポンプ
11の起動状態又は遠隔操作弁27の開状態時に
閉となるようにインタロツクされる。なお、本実
施例は原子炉停止時冷却系をA系、B系の2系統
にし、B系の図示を省略してその遠隔操弁23の
みを図示してある。
The broken line shown in FIG. 1 indicates the coolant purification system mentioned above,
This shows the operation control system of the cooling system during reactor shutdown.
The valve 35 provided in the branch pipe 21' from the recirculation system is
It is controlled to be in a normally open state so that it can be used in common when both systems are in operation. The cooling system remote control valves 22, 23, and 28 are interlocked to close when the coolant purification system pump 11 is activated or the remote control valve 27 is open. In this embodiment, the reactor shutdown cooling system is divided into two systems, the A system and the B system, and the B system is not shown and only its remote control valve 23 is shown.

以上のように、本実施例によれば、原子炉運転
時における冷却材浄化系動作を原子炉停止時冷却
系と共用の炉水取出配管21′と、配管26によ
つて行ない得るので、従来のような冷却材浄化系
専用配管19(第3図参照)を省略することがで
きる。更に、原子炉停止時の停止時冷却系動作を
配管17、分岐配管29、給水系連絡配管24′
を介して給水系配管15に戻すことにより行ない
得るので、従来のような停止時冷却系専用配管1
8(第3図参照)を省略することができる。従つ
て原子炉格納容器2内に配置される冷却材浄化系
専用配管19と停止時冷却系専用配管18或いは
冷却材浄化系・原子炉停止時冷却系の炉水戻し専
用配管といつたものを不要とし、特にこの種配管
は高価なステンレス製管を大径化し、配管長を長
くして使用されていたので、これらの配管の削減
により配管物量、配管サポート、配管保温物量、
弁員数等を低減化し、合理的系統構成を有する経
済的なプラントを実現させることができる。
As described above, according to this embodiment, the operation of the coolant purification system during reactor operation can be carried out using the reactor water extraction pipe 21' and the pipe 26, which are shared with the cooling system during reactor shutdown. The dedicated pipe 19 for the coolant purification system (see FIG. 3) can be omitted. Furthermore, the operation of the cooling system at the time of shutdown of the nuclear reactor is controlled by the piping 17, the branch piping 29, and the water supply system connecting piping 24'.
This can be done by returning the water to the water supply system piping 15 via the
8 (see FIG. 3) can be omitted. Therefore, the piping 19 dedicated to the coolant purification system and the piping 18 dedicated to the cooling system during shutdown, or the piping dedicated to the reactor water return of the coolant purification system and the cooling system during reactor shutdown, which are arranged inside the reactor containment vessel 2, are used. In particular, this kind of piping was used by increasing the diameter of expensive stainless steel pipes and increasing the length of the pipes, so by reducing the number of pipes, the amount of piping, piping support, piping insulation,
It is possible to reduce the number of valve staff and realize an economical plant with a rational system configuration.

更に、上記理由により配管18,19が削減さ
れるため格納容器2を貫通する配管用ペネトレー
シヨン(呼称口径約550mm〜600mm)を低減するこ
とができ、放射能漏洩防止維持を必要とする原子
炉格納容器の信頼性の向上を図り得る。
Furthermore, because the number of pipes 18 and 19 is reduced due to the above reasons, the penetration of pipes (nominal diameter of approximately 550 mm to 600 mm) that penetrates the containment vessel 2 can be reduced, and it is possible to reduce the number of atoms that need to be maintained to prevent radioactivity leakage. The reliability of the reactor containment vessel can be improved.

また、原子炉格納容器内の狭あいなスペース内
に設置される停止時冷却系配管(呼称口径350mm
程度)を低減することができることから、毎年、
原子炉格納容器内で実施される停止時冷却系配
管、配管サポート等の煩わしい検査作業の負担を
軽減化することができ、しかもこの種配管の検査
作業時、保守点検作業時の被曝の危険性を低減さ
せることができる。
In addition, the shutdown cooling system piping (nominal diameter 350 mm) installed in the narrow space inside the reactor containment vessel
degree), so every year,
It can reduce the burden of cumbersome inspection work such as shutdown cooling system piping and piping support that is carried out inside the reactor containment vessel, and also eliminates the risk of exposure to radiation during inspection work and maintenance inspection work of this type of piping. can be reduced.

更に本実施例によれば、原子炉停止時冷却系の
動作時に熱交換器6で冷却された冷却水を配管1
7から分岐する分岐配管29、給水系配管15を
介して原子炉圧力容器1に戻すことができるの
で、従来のように停止時冷却系の戻り炉水を原子
炉再循環系配管8の合流部(第4図の符号P)に
戻す必要がなくなり、両系統の内部流体温度差に
起因する熱疲労を防止し、これらの配管の健全性
を高めることができる。
Furthermore, according to this embodiment, the cooling water cooled by the heat exchanger 6 is transferred to the pipe 1 during the operation of the reactor shutdown cooling system.
Since the reactor pressure vessel 1 can be returned to the reactor pressure vessel 1 via the branch piping 29 branching from the reactor recirculation system piping 8 and the water supply system piping 15, the return reactor water from the shutdown cooling system can be returned to the confluence of the reactor recirculation system piping 8, as in the past. (Symbol P in FIG. 4) is no longer necessary, thermal fatigue caused by the difference in internal fluid temperature between the two systems can be prevented, and the soundness of these pipes can be improved.

更に本実施例では、従来と異なり配管17の熱
交換器6の下流側に残留熱除去系ポンプ5を配置
し、また、冷却材浄化系の再生熱交換器12の下
流側に冷却材浄化系ポンプ11を配置しているた
め、ポンプ5,11に対する放射能付着率を低減
させることができる。すなわち、第2図に示すよ
うなコバルト60(60Co)の配管への付着量と酸化
被膜量の温度との関係(第2図のグラフは「日本
原子力学会年会要旨集(昭和59年、第22回)」よ
り出典)からも明らかなように、60Coの付着量は
250℃付近で最大となつており、温度の低下と共
に急激に減少するものであり、また、60Coの付着
量と酸化被膜量と温度依存性は、同様の傾向を示
しており、以上の温度特性からすれば、炉水温度
が低温化された再生熱交換器の下流側にポンプ
5,11を設けることにより放射能付着率をより
低減させることができる。特に、原子炉通常運転
時の炉水温度は約280℃程度であり、これに対し
て熱交換器下流側の内部流体温度は、約50℃であ
ることから、ポンプを熱交換器上流側に設置する
のに較べ線量率を約1/10にすることができる。な
お、ポンプ5,11を熱交換器の下流側の低温部
に移した場合、炉水は熱交換器で冷却されるので
NPSHが充分に確保されポンプ運転に支障をき
たすこともない。
Further, in this embodiment, unlike the conventional case, a residual heat removal system pump 5 is disposed downstream of the heat exchanger 6 of the piping 17, and a coolant purification system is disposed downstream of the regenerative heat exchanger 12 of the coolant purification system. Since the pump 11 is arranged, the rate of radioactivity adhesion to the pumps 5 and 11 can be reduced. In other words, the relationship between the amount of cobalt 60 ( 60 Co) deposited on piping and the amount of oxide film as shown in Figure 2 (the graph in Figure 2 is based on the ``Atomic Energy Society of Japan Annual Meeting Abstracts'' published in 1982). As is clear from the 22nd issue), the amount of 60 Co deposited is
It reaches its maximum at around 250°C, and rapidly decreases as the temperature decreases.The amount of 60 Co deposited, the amount of oxide film, and temperature dependence show similar trends, and at temperatures above Considering the characteristics, the radioactivity deposition rate can be further reduced by providing the pumps 5 and 11 downstream of the regenerative heat exchanger where the reactor water temperature is lowered. In particular, the reactor water temperature during normal reactor operation is approximately 280°C, whereas the internal fluid temperature on the downstream side of the heat exchanger is approximately 50°C, so the pump is placed on the upstream side of the heat exchanger. It is possible to reduce the dose rate to about 1/10 compared to the installation. Note that if pumps 5 and 11 are moved to the low temperature section downstream of the heat exchanger, the reactor water will be cooled by the heat exchanger.
Sufficient NPSH is ensured and there is no problem with pump operation.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、原子炉停止時冷
却系配管、冷却材浄化系配管等の系統構成を合理
的に構成することにより、この種配管の作業点検
の安全性を図ると共に、原子炉停止時冷却系配
管、冷却材浄化系配管、配管サポート等の物量削
減化を図り、しかも原子炉停止時冷却系配管と再
循環系配管合流部における熱疲労を解消すること
ができる。
As described above, according to the present invention, by rationally configuring the system configuration of the reactor shutdown cooling system piping, the coolant purification system piping, etc., it is possible to ensure the safety of work inspections of these types of piping, and to It is possible to reduce the amount of cooling system piping during reactor shutdown, coolant purification system piping, piping support, etc., and also eliminate thermal fatigue at the junction of cooling system piping and recirculation system piping during reactor shutdown.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す配管図、第2
図は、60Coの付着と温度依存特性を示す特性図、
第3図は原子炉冷却系統設備の従来例を示す配管
図である。 1…原子炉圧力容器、2…原子炉格納容器、3
…サプレツシヨンプール、4…サプレツシヨンプ
ール水、5…ポンプ、6…熱交換器、8,9…再
循環系ライン、12…再生熱交換器、14…ろ過
手段(ろ過脱塩装置)、15…給水系ライン(給
水配管)、17…配管、17′…低圧注水ライン、
21′…炉水取出配管、24′…給水系連絡配管、
26…冷却材浄化系配管、22,27,28,3
0…切換弁、29…分岐配管。
Figure 1 is a piping diagram showing one embodiment of the present invention, Figure 2 is a piping diagram showing an embodiment of the present invention.
The figure shows a characteristic diagram showing the adhesion and temperature-dependent characteristics of 60 Co.
FIG. 3 is a piping diagram showing a conventional example of nuclear reactor cooling system equipment. 1...Reactor pressure vessel, 2...Reactor containment vessel, 3
... Suppression pool, 4 ... Suppression pool water, 5 ... Pump, 6 ... Heat exchanger, 8, 9 ... Recirculation system line, 12 ... Regeneration heat exchanger, 14 ... Filtration means (filtration desalination device) , 15...Water supply system line (water supply piping), 17...Piping, 17'...Low pressure water injection line,
21'...Reactor water extraction piping, 24'...Water supply system connection piping,
26... Coolant purification system piping, 22, 27, 28, 3
0...Switching valve, 29...Branch piping.

Claims (1)

【特許請求の範囲】 1 原子炉給水系、再循環系、原子炉停止時冷却
系(残留熱除去系)、冷却材浄化系等を備えた原
子炉冷却系統設備において、 前記原子炉停止時冷却系及び冷却材浄化系は、
前記再循環系のラインの一部9から炉水を取水す
る共通の配管21′を有し、この共通配管21′の
下流側が分岐されて、その一方の分岐配管17が
上流側から順に熱交換器6、ポンプ5を備えて原
子炉停止時冷却系ラインL2の配管を構成し、他
方の分岐配管26が上流側から順に熱交換器1
3、ポンプ11、浄化装置14等を備えて冷却材
浄化系ラインL3の配管を構成すると共に、前記
原子炉停止時冷却系ラインL2のポンプ5下流側
と前記冷却材浄化系ラインL3の浄化装置14下
流側とが共通の配管24′により一本化されて原
子炉給水系ラインL1の配管15に接続され、且
つ前記原子炉停止時冷却系ラインL2及び冷却材
浄化系ラインL3には、これらのラインL2,L
3を前記原子炉給水系ラインL1に対し択一的に
連通させるためのライン選択用の切換弁22,2
7が設けてあることを特徴とする原子炉冷却系統
設備。
[Scope of Claims] 1. In a reactor cooling system equipment comprising a reactor water supply system, a recirculation system, a reactor shutdown cooling system (residual heat removal system), a coolant purification system, etc., the reactor cooling system comprises: system and coolant purification system.
It has a common pipe 21' that takes in reactor water from part 9 of the line of the recirculation system, and the downstream side of this common pipe 21' is branched, and one of the branch pipes 17 performs heat exchange sequentially from the upstream side. 6 and pump 5 to constitute the piping of the reactor shutdown cooling system line L2, and the other branch piping 26 connects the heat exchanger 1 in order from the upstream side.
3. A pump 11, a purification device 14, etc. are provided to configure the piping of the coolant purification system line L3, and a purification device for the downstream side of the pump 5 of the cooling system line L2 during reactor shutdown and the coolant purification system line L3. 14 on the downstream side are unified by a common pipe 24' and connected to the pipe 15 of the reactor water supply system line L1, and these lines are connected to the reactor shutdown cooling system line L2 and the coolant purification system line L3. line L2,L
line selection switching valves 22, 2 for selectively connecting the reactor water supply system line L1 with the reactor water supply system line L1;
Nuclear reactor cooling system equipment characterized by being provided with 7.
JP61037854A 1986-02-22 1986-02-22 Nuclear reactor cooling system facility Granted JPS62195594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61037854A JPS62195594A (en) 1986-02-22 1986-02-22 Nuclear reactor cooling system facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61037854A JPS62195594A (en) 1986-02-22 1986-02-22 Nuclear reactor cooling system facility

Publications (2)

Publication Number Publication Date
JPS62195594A JPS62195594A (en) 1987-08-28
JPH0531955B2 true JPH0531955B2 (en) 1993-05-13

Family

ID=12509127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61037854A Granted JPS62195594A (en) 1986-02-22 1986-02-22 Nuclear reactor cooling system facility

Country Status (1)

Country Link
JP (1) JPS62195594A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6247917B2 (en) * 2013-12-06 2017-12-13 日立Geニュークリア・エナジー株式会社 Portable alternative heat exchanger equipment
CN104200852B (en) * 2014-09-16 2017-01-25 中国科学院合肥物质科学研究院 Condensed liquid heavy metal choke valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556260A (en) * 1978-06-30 1980-01-17 Tokyo Shibaura Electric Co Coolant cleanup and residual heat removal device of nuclear reactor
JPS5585297A (en) * 1978-12-22 1980-06-27 Tokyo Shibaura Electric Co Afterrheat removable device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556260A (en) * 1978-06-30 1980-01-17 Tokyo Shibaura Electric Co Coolant cleanup and residual heat removal device of nuclear reactor
JPS5585297A (en) * 1978-12-22 1980-06-27 Tokyo Shibaura Electric Co Afterrheat removable device

Also Published As

Publication number Publication date
JPS62195594A (en) 1987-08-28

Similar Documents

Publication Publication Date Title
US9847148B2 (en) Self-contained emergency spent nuclear fuel pool cooling system
US20210287815A1 (en) Valve assembly with isolation valve vessel
JPH0659087A (en) Nuclear reactor
JPH04276596A (en) Method and apparatus for chemical decontamination of primary system of atomic reactor
JPH0531955B2 (en)
KR900007745B1 (en) Cooling system for the primary circuit of a pressurized water nuclear reactor
JPH05264774A (en) Emergency reactor cooling equipment
JPS5941155B2 (en) Reactor shutdown cooling system
JPS6134496A (en) Cooling system facility for nuclear reactor
JPS62197795A (en) Removing device for residual heat in nuclear reactor
JPS61181994A (en) Fuel pool feedwater system
KR100448876B1 (en) Emergency feed water system in nuclear power plant
JPS6375695A (en) Nuclear-reactor residual-heat removal system facility
JPH08278386A (en) Reactor cooling system operation method and reactor cooling system equipment
Shirahama et al. 2.3 Reactor coolant system and connected
JP2001091684A (en) Fuel pool cooling equipment
JPH0511236B2 (en)
JPH0479438B2 (en)
JPH0197899A (en) Nuclear reactor water circulating device
JPH0755977A (en) Water injection system for reactor container
JPH0325200Y2 (en)
JP2573284B2 (en) Operation method of reactor well pool cooling system
JPS5828638A (en) Heating and temperature elevating method for piping of nuclear reactor pressure vessel when pressure resisting test is carried out
Mitenkov et al. VPBER-600 conceptual features and safety analysis results
JPH11125692A (en) Seawater pipe checking device of nuclear power plant