JPH05319391A - Airship structure for gas transport - Google Patents

Airship structure for gas transport

Info

Publication number
JPH05319391A
JPH05319391A JP14800092A JP14800092A JPH05319391A JP H05319391 A JPH05319391 A JP H05319391A JP 14800092 A JP14800092 A JP 14800092A JP 14800092 A JP14800092 A JP 14800092A JP H05319391 A JPH05319391 A JP H05319391A
Authority
JP
Japan
Prior art keywords
gas
airship
chamber
transported
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14800092A
Other languages
Japanese (ja)
Inventor
Junichi Miyashita
純一 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP14800092A priority Critical patent/JPH05319391A/en
Publication of JPH05319391A publication Critical patent/JPH05319391A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To impart the specified chamber structure inside the outer skin of an airship, keep the capability of retaining the form thereof, and enable carbon dioxide gas to be transported in well-balanced state, when a large amount of the gas generated from each power station is transported to a processing facility of the next stage. CONSTITUTION:The inside of the chamber 10 of an airship 1 is divided into an upper lifting transport gas chamber 14 and a non-lifting transport gas chamber 15 underneath with a flexible airtight membrane body 13, and a gondola 8 is suspended with suspension membrane bodies 11, 11 and 11, with the ends thereof fixed to the inner top of the chamber 10 via suspension ropes 12, 12 and 12, thereby keeping the good balance of the airship 1, maintaining the capability of retaining the form thereof and enabling a large amount of carbon dioxide gas to be stably transported. According to this construction, lift and gravity act on all the sections of the airship 1 in such a way as offsetting each other, with the gondola 8 suspended. As a result, the balance of the airship 1 is improved, and the capability of retaining the form thereof is always kept. Furthermore, the airship 1 can stably navigate with desired gases and air charged in a plurality of chambers in state independent of each other, thereby ensuring the proper transport of gases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】開示技術は、発電所等から発生す
る炭酸ガス等を所定の処理施設にガス体のまま大量輸送
する飛行船の構造技術分野に属する。
BACKGROUND OF THE INVENTION The disclosed technology belongs to the structural technical field of an airship that mass-transports carbon dioxide gas generated from a power plant or the like to a predetermined treatment facility in a gaseous state.

【0002】[0002]

【従来の技術】周知の如く、所謂産業にとりエネルギー
は必要不可欠であり、ほとんどの場合、該エネルギーの
供給形態は発電所からの電力に依存する態様がほとんど
である。
2. Description of the Related Art As is well known, energy is indispensable for so-called industries, and in most cases, the form of supplying the energy depends on electric power from a power plant.

【0003】而して、発電所に於ては水力発電所,原子
力発電所,火力発電所等があるが、水力発電所にあって
は地理的制約があり、又、原子力発電所にあっては安全
性の点で住民の抵抗感等がある制約があり、したがっ
て、設置の自由性や完成度の高い技術による運転,管理
等がし易い等のさまざまなメリットから石油,石炭等の
化石燃料による火力発電所が主流を占めており、就中、
使用燃料の輸送やコストの点から、又、取り扱いのし易
さ等の点から石油等が大量に使用されている。
Although there are hydroelectric power plants, nuclear power plants, thermal power plants, etc. in the power plants, there are geographical restrictions in the hydropower plants, and in the nuclear power plants. Is restricted by the residents' resistance in terms of safety. Therefore, fossil fuels such as petroleum and coal have various advantages such as freedom of installation and easy operation and management with highly complete technology. The mainstream is the thermal power plant by
A large amount of petroleum and the like is used in terms of transportation and cost of the fuel used and ease of handling.

【0004】ところで、近時各種の産業においてはその
生産性の追及は勿論であるが、公害問題,環境調和問題
が無視され得ない状況になり地域的のみならず、地球規
模での対象がクローズアップされてきている。
By the way, in recent years, not only in the pursuit of productivity in various industries, but pollution problems and environmental harmony problems cannot be ignored, and the target is closed not only locally but also on a global scale. It has been uploaded.

【0005】而して、火力発電所等に於ては、例えば、
100万kWの火力発電所について炭酸ガスの排出量を
試算すると、時間当り200トン,1日当りにして20
00トン等の大量の排出量であり、公害問題は勿論のこ
と、地球規模での環境調和の点からも到底無視出来ず、
当然のことながら、無公害化,環境破壊防止化が図られ
る処理を行わねばならず、不可避的に炭酸ガスの大量の
排出があり、公害問題等により、近時該炭酸ガスの抽出
分離技術も鋭意研究開発され、分離抽出された炭酸ガス
の処理施設については場所的制約や事業としての独立
性、更には環境に対する公害対策等の点から通常発電所
とはかなりの距離離隔された部位に設けられている場合
がほとんどで、したがって、発電所で分離抽出された炭
酸ガスを当該処理施設まで輸送する必要がある。
In a thermal power plant, for example,
A trial calculation of carbon dioxide emissions from a 1 million kW thermal power plant yields 200 tons per hour and 20 per day.
It is a large amount of emissions such as 00 tons, which cannot be ignored from the viewpoint of environmental pollution on a global scale as well as pollution problems.
As a matter of course, it is necessary to carry out a treatment to prevent pollution and prevent environmental damage, and inevitably a large amount of carbon dioxide gas is emitted. Due to pollution problems, etc., the extraction / separation technology of the carbon dioxide gas will be used in recent years. The carbon dioxide treatment facility, which was researched and developed and separated and extracted, is installed at a site that is separated from the normal power plant by a considerable distance from the viewpoints of location restrictions, independence as a business, and environmental pollution control. In most cases, it is necessary to transport the carbon dioxide gas separated and extracted at the power plant to the treatment facility.

【0006】而して、一般にガスの輸送については、通
常経済上,技術上の点から液化して船舶,タンクローリ
ー等により輸送を行うことが考えられるが、通常はタン
クローリー等による陸上輸送、そして、大概の場合には
この間に船舶による海上輸送が介在される態様が一般的
ではある。
[0006] Therefore, generally, regarding gas transportation, it may be considered to be liquefied and transported by ships, tank trucks, etc. from the economical and technical point of view, but usually by land transportation by tank trucks, etc. In most cases, a mode in which marine transportation by a ship is intervened during this is general.

【0007】ところで、前述の如く、1日当り2000
トンもの大量排出の炭酸ガスにつきタンクローリー等に
より処理施設まで輸送するには試算的に、例えば、7ト
ンのタンクローリーを用い、1火力発電所当り処理施設
との間に1日300台もの往復稼動が必要であり、交通
の混雑,機関手等の作業員の確保,経済性等の問題が避
けられない。
By the way, as mentioned above, 2000 per day
To transport a large amount of tonnes of carbon dioxide to a treatment facility by tank truck, etc., for example, a 7-ton tank truck is used, and as many as 300 reciprocating operations per day with a treatment facility per thermal power plant. It is necessary, and problems such as traffic congestion, securing workers such as engineer workers, and economic efficiency cannot be avoided.

【0008】そして、最大のネックであるコスト的な面
から考慮すると、炭酸ガスの液化には発電コストの10
〜20%ものコスト増大をきたし液化して消費するエネ
ルギーもエネルギー事情に厳しい我が国にあっては、無
視出来ない損失であり、省エネルギーに逆らう欠点を有
する。
Considering the cost, which is the biggest bottleneck, the liquefaction of carbon dioxide gas requires 10 power generation costs.
In Japan, which consumes -20% of the cost and consumes liquefied energy, it is a non-negligible loss in Japan, and it has a drawback against energy saving.

【0009】したがって、各発電所から処理施設までの
ガス輸送について考慮すると、その輸送形態について大
量輸送の場合、ルートによっては直線輸送のメリットを
生かして船等より飛行船の方が有利であることがあり、
この点の発想については、例えば、特開昭63−121
598号公報に開示されている発明の如く、飛行船のチ
ャンバ内に水素や天然ガス等空気より軽いガスに対する
ガス室を設けて該ガス室に所定のガスを1種類充填して
飛行し、処理施設に於て当該ガスを引き出し回収し、所
定に技術が地理的制約等なく、輸送回数も増加出来、施
設的,経済的にもメリットがある等の点が開示されてい
はいる。
Therefore, considering the gas transportation from each power plant to the treatment facility, in the case of mass transportation in terms of its transportation mode, depending on the route, the airship is more advantageous than the ship etc. by taking advantage of the straight transportation. Yes,
For the idea of this point, see, for example, JP-A-63-121.
As disclosed in Japanese Patent No. 598, a gas chamber for a gas lighter than air such as hydrogen or natural gas is provided in a chamber of an airship, and one kind of a predetermined gas is filled in the gas chamber for flight, and the facility is treated. There is a disclosure that the gas is extracted and collected, the technology is not limited geographically, the number of transportations can be increased, and there is a merit in terms of facility and economy.

【0010】かかる飛行船は単種ガスながらガスの大量
輸送について道路等を必要とせず、交通における自由度
が高く、又、船舶等の重構造の輸送体を取らず、比較的
航行が自由で制御操作もし易い等の優れた点を有してい
る。
Such an airship does not require a road or the like for mass transportation of gas although it is a single type of gas, has a high degree of freedom in transportation, and does not take a heavy-structure transporter such as a ship, and is relatively free to navigate. It has excellent features such as easy operation.

【0011】[0011]

【発明が解決しようとする課題】さりながら、かかる従
来開示されてきた飛行船によるガス輸送の態様にあって
は当該飛行船が浮揚ガスと輸送ガスとが同一ガスであ
り、復路に於て別途浮揚ガスが必要になるという不具合
があり、又、空気より軽い水素や天然ガスについてのみ
輸送可能であるという炭酸ガス輸送が出来ない不都合さ
があった。
Meanwhile, in the gas transportation mode of the airship disclosed in the related art, the airship of the airship is the same gas as the levitation gas and the transportation gas, and the levitation gas is separately provided on the return path. However, there is a problem that carbon dioxide gas cannot be transported because only hydrogen or natural gas, which is lighter than air, can be transported.

【0012】したがって、発電所から大量発生する炭酸
ガスの処理施設までの輸送の実使用には供し得ないマイ
ナス点を有していた。
Therefore, there is a minus point that cannot be put to practical use for transportation from a power plant to a treatment facility for a large amount of carbon dioxide gas generated.

【0013】[0013]

【発明の目的】この出願の発明の目的は上述火力発電所
から大量発生する炭酸ガスの次段処理施設等への飛行船
による大量輸送の問題点を解決すべき技術的課題とし、
当該飛行船による輸送のメリットをフルに生かしなが
ら、ヘリウム等の浮揚ガスと炭酸ガス等の被輸送ガスと
バランス用空気等の保持収納がし易く、又、保形性も良
く、輸送往路は勿論のこと、復路に於ても航行がスムー
スに行え、しかも、炭酸ガスの種類形態を問わず、確実
な輸送が行えるようにしてエネルギー産業における処理
技術利用分野に益する優れたガス輸送用飛行船構造を提
供せんとするものである。
OBJECT OF THE INVENTION The object of the invention of this application is to solve the problem of mass transportation by airship to the next-stage treatment facility of carbon dioxide gas generated in large quantities from the thermal power plant.
While taking full advantage of the transportation by the airship, it is easy to hold and store the floating gas such as helium, the transported gas such as carbon dioxide, and the balancing air, and the shape retention is good, as well as the forward transportation route. In this way, an excellent airship structure for gas transportation that can be smoothly navigated even on the return path and can be reliably transported regardless of the type of carbon dioxide gas and which will benefit the field of processing technology application in the energy industry It is intended to be provided.

【0014】[0014]

【課題を解決するための手段・作用】上述目的に沿い先
述特許請求の範囲を要旨とするこの出願の発明の構成
は、前述課題を解決するために、火力発電所等から大量
発生する炭酸ガスを所定距離離隔設置された処理施設に
間欠的に所定量大量輸送するに、ヘリウム等のガスによ
り浮揚して航行する飛行船により輸送するに際し、該飛
行船の外皮内に横方向に張設した膜体により上部の浮揚
用ガス室と下部の非浮揚用ガス室に郭成し、該浮揚用ガ
ス室にヘリウム等の浮揚ガスを充填して飛行船を浮揚
し、外皮内部上面に上端を固定した垂下膜体の下端に吊
索を介しゴンドラを吊設し、浮揚力と重量が各断面で打
ち消し合い飛行船の保形性を常に維持して良好なバラン
スを維持することが出来るようにし、非浮揚用ガス室に
ついては横方向配設の変位膜体により上側の空気室と下
側の被輸送ガス室に分割し内部の圧力バランスを保つよ
うにし、更に下側の被輸送ガス室については該膜体によ
り複数分割にし前後の圧力バランスを保つようにした技
術的手段を講じたものである。
In order to solve the above-mentioned problems, a large amount of carbon dioxide gas is generated from a thermal power plant in order to solve the above-mentioned problems. When intermittently transporting a large amount of a predetermined amount to a treatment facility installed a predetermined distance apart, when transporting by an airship that floats by a gas such as helium and travels, a film body stretched laterally in the outer skin of the airship. The upper part of the levitation gas chamber and the lower part of the non-floatation gas chamber are enclosed by the levitation gas chamber, and the levitation gas chamber is filled with levitation gas such as helium to levitate the airship. A gondola is hung on the lower end of the body via a hanging rope so that the levitation force and weight cancel each other out in each cross section so that the shape retention of the airship is always maintained and a good balance can be maintained. Regarding the chamber, The inner membrane is divided into an upper air chamber and a lower transported gas chamber to maintain the internal pressure balance.For the lower transported gas chamber, the membrane is divided into a plurality of chambers to balance the pressure before and after. It is a technical measure taken to keep it.

【0015】[0015]

【実施例】次に、この出願の発明の実施例を図1、乃
至、図5に基づいて説明すれば以下の通りである。
Embodiments of the invention of this application will be described below with reference to FIGS. 1 to 5.

【0016】図示実施例は、火力発電所に於て化石燃料
燃焼によって大量発生する炭酸ガスの所定距離離隔した
処理施設への輸送に供する飛行船の態様であり、図1乃
至図4に示す実施例において1はこの出願の発明の要旨
の中心を成すテアドロップタイプの飛行船であり、その
柔軟性の外皮2の先端部分には係留用金具3が突設さ
れ、又、後部には方向舵4を有する垂直尾翼5が立設さ
れ、又、それに直角に側方に各昇降舵6を有する水平尾
翼7,7が側設され、又、略中央下部には搭乗員用、及
び、エンジン室,バラスト用のタンクを有するゴンドラ
8(液化ガス室を装備する場合もある)が設けられ、そ
のエンジン室から両側にダクテッドファン型の推進装置
9,9が設けられている。
The illustrated embodiment is an embodiment of an airship used for transporting a large amount of carbon dioxide gas generated by fossil fuel combustion in a thermal power plant to a treatment facility that is separated by a predetermined distance. The embodiment shown in FIGS. 1 is a teardrop-type airship that forms the center of the invention of this application, and a flexible outer skin 2 is provided with a mooring metal fitting 3 at a tip portion thereof, and a rudder 4 is provided at a rear portion thereof. A vertical stabilizer 5 is erected, and horizontal stabilizers 7, 7 having elevators 6 are laterally installed at a right angle to the vertical stabilizer 5, and a passenger, engine room, and ballast are provided in the lower central portion. A gondola 8 (which may be equipped with a liquefied gas chamber) having a tank is provided, and ducted fan type propulsion devices 9 are provided on both sides of the engine chamber.

【0017】かかるハードの外観的構造は在来態様の飛
行船と実質的に変りはなく、この出願の発明においては
図2の外皮2内のチャンバ10にその構造の特徴を有す
るものであって、外皮2の最頂部には長手方向に沿って
合成樹脂製の柔軟性の膜体の略三角形状の垂下膜体1
1,11…が所定数複数その上縁部分を外皮2に所定に
固着されて垂設されており、その下端からは吊索12,
12…が連結されてゴンドラ8を吊設されて保形性が維
持されるようにされている。
The external structure of such hardware is substantially the same as that of the conventional airship, and in the invention of this application, the chamber 10 in the outer cover 2 of FIG. A substantially triangular sagging film body 1 made of a synthetic resin is provided along the longitudinal direction at the top of the outer skin 2.
A predetermined number of plural upper edge portions are fixedly attached to the outer skin 2 in a predetermined manner, and suspended from the lower end thereof.
12 ... are connected to suspend the gondola 8 so that the shape retention is maintained.

【0018】そして、チャンバ10内にあっては柔軟性
の所定の合成樹脂製等の横方向の膜体13により上部の
ヘリウム等の浮揚ガスの貯留室14、及び、下部の非浮
揚用ガス室15を相互に気密状態に郭成している。
In the chamber 10, a lateral membrane 13 made of a flexible synthetic resin or the like is used to store a floating gas storage chamber 14 such as helium in the upper portion and a non-floating gas chamber in the lower portion. 15 are mutually sealed airtightly.

【0019】そして、該非浮揚用ガス室15内には縦方
向に所定間隔を介し2枚の合成樹脂製等の膜体16,1
6が張設されて前部,中部,後部の区間(イ),
(ロ),(ハ)の3室を郭成し、更に、該非浮揚用ガス
室15内には該膜体16,16、及び、外皮2に端縁を
シール状態に密着させた可撓性の、即ち、褶曲自在な膜
体17が水平状態に張設されて非浮揚用ガス室15内を
船体の保形性とピッチ・トリム機能に与る上部の空気室
18と下部の被輸送ガス室19,19' ,19''の3室
に郭成し、各々炭酸ガスを所定量(所定圧)づつ飛行船
1の前後方向バランスが保てるように充填するようにさ
れている。
Then, in the non-floating gas chamber 15, two film bodies 16 made of synthetic resin or the like are longitudinally arranged at a predetermined interval.
6 is stretched and the front, middle and rear sections (a),
(B) and (c) are defined as three chambers, and further, in the non-floating gas chamber 15, the film bodies 16 and 16 and the outer skin 2 are adhered to each other in a sealed state with flexibility. That is, the foldable film body 17 is stretched in a horizontal state and the inside of the non-floating gas chamber 15 is provided with the shape maintaining property and the pitch trim function of the upper air chamber 18 and the lower transported gas. The chamber 19 is divided into three chambers 19 19 ′ and 19 ″, and each is filled with a predetermined amount (predetermined pressure) of carbon dioxide gas so that the airship 1 can maintain a longitudinal balance.

【0020】而して、非浮揚用ガス室15の構造の更に
詳細を示すと、その断面の特徴は膜体13の下方では各
吊索12に沿って該吊索12と同一平面内に横方向分離
用の膜体20,20…(点線で示す)が設けられ、図2
の前,中,後分離用の膜体16迄至っており、該該膜体
20,20…により非浮揚用ガス室15は図3に於ては
横方向5室に分割されており、又、各室は可撓膜17に
より上部の空気室18と下部の被輸送ガス室19,19
' ,19''に上下に分割される。
The structure of the non-floating gas chamber 15 will be described in more detail. The cross-sectional characteristics of the non-floating gas chamber 15 are as follows: below the film body 13, along each suspension line 12 and in the same plane as the suspension line 12. The direction separating film bodies 20, 20, ...
3, the non-floating gas chamber 15 is divided into five chambers in the lateral direction in FIG. 3 by the membrane units 20, 20 ... Each chamber is made up of a flexible membrane 17 and has an upper air chamber 18 and lower transported gas chambers 19, 19.
It is divided vertically into ', 19''.

【0021】又、前部,後部の各室では図4に示す様
に、可撓性の膜体17は一組で良いので、簡単な構造に
なり、同じく空気室18と被輸送ガス室19,19' ,
19''を上下に分離している。
Further, in each of the front and rear chambers, as shown in FIG. 4, since the flexible film bodies 17 may be one set, the structure is simple, and the air chamber 18 and the transported gas chamber 19 are also the same. , 19 ',
19 '' is separated into upper and lower parts.

【0022】尚、図示はしないが空気室18に於ては適
宜の空気吸排ダクトが設けられて外部大気よりの空気の
出入を必要に応じて制御するようにされている。
Although not shown, an appropriate air intake / exhaust duct is provided in the air chamber 18 so as to control the inflow / outflow of air from the outside atmosphere as necessary.

【0023】上述構成において、飛行船1がその係留用
金具3により図示しない火力発電所の所定部位、浮揚用
ガス室14内に設計容量分の浮揚ガスとしてのヘリウム
を所定圧図示しない充填装置により充填し、併せて、空
気室18内にバランス用の空気を所定容量圧入し、又、
下側の各被輸送ガス室19,19' ,19''に抽出され
た炭酸ガスを飛行船1前後のバランスが採れ、且つ、保
形性が維持出来るように充填する。
In the above-mentioned structure, the airship 1 is charged by the mooring metal fitting 3 into a predetermined portion of a thermal power plant (not shown) and in the levitation gas chamber 14 with helium as a levitation gas of a designed volume at a predetermined pressure by a filling device (not shown). At the same time, a predetermined amount of balancing air is pressed into the air chamber 18, and
The extracted carbon dioxide gas is filled in each of the lower transported gas chambers 19, 19 ′, 19 ″ so that the front and rear of the airship 1 can be balanced and shape retention can be maintained.

【0024】尚、この間浮揚用ガス室14内のヘリウム
により飛行船1は次第に浮揚するが、ゴンドラ8にあっ
ては外皮2の頂部内面、即ち、チャンバ10の内部頂面
に固定されたカテナリーカーテン11,11…、及び、
その下端から下方に設けられた吊索12,12,12に
より吊設されていることにより、その重量は外皮2全体
にかかることから設計通りの断面形状の保形性は維持さ
れる。
During this time, the airship 1 is gradually levitated by the helium in the levitating gas chamber 14, but in the gondola 8, the catenary curtain 11 fixed to the inner surface of the top of the outer skin 2, that is, the inner top surface of the chamber 10. , 11, ... and
Since it is suspended by the suspension lines 12, 12, 12 provided below the lower end thereof, the weight thereof is applied to the entire outer cover 2, so that the shape retention of the cross-sectional shape as designed is maintained.

【0025】そして、飛行船1はダクテッドファン9,
9により低空の高度で所定の処理施設まで航行し、係留
用金具3により係留されて被輸送ガス室19,19' ,
19''内の炭酸ガスを抜き取られて所定の処理に供さ
れ、帰路は被輸送ガス室19,19' ,19''に空気を
充填してゴンドラ内のバラストタンクには適宜の水等を
満して適宜のバランス状態で航行し、次の輸送に供せら
れる。
The airship 1 has ducted fans 9,
The ship navigates to a predetermined treatment facility at a low altitude by 9 and is moored by the mooring metal fittings 3 to be transported gas chambers 19, 19 ',
The carbon dioxide gas in the 19 "is extracted and subjected to a predetermined treatment. On the return route, the transported gas chambers 19, 19 ', 19" are filled with air, and the ballast tank in the gondola is filled with appropriate water or the like. When fully loaded, the boat will sail in an appropriate balance and be ready for the next transportation.

【0026】尚、非浮揚用ガス室15の他の実施例を図
5で示すと分割用の膜体13より上方は上述実施例同様
であり、該膜体13より下方の非浮揚用ガス室15はゴ
ンドラ8の吊索12と同一平面に横方向に設けられ、そ
の外周は外皮2と結合された半円形の3枚の分離膜1
6,16' ,16''によって前後方向に4室に分割さ
れ、各室は分離用の膜体17により空気室18と被輸送
ガス室19,19' ,19''に上下に同じく分割されて
いる。
Another embodiment of the non-floating gas chamber 15 shown in FIG. 5 is the same as the above-described embodiment above the dividing film body 13, and the non-floating gas chamber below the film body 13. Numeral 15 is provided laterally on the same plane as the suspension line 12 of the gondola 8, and its outer periphery is joined to the outer skin 2 by three semicircular separation membranes 1.
6, 16 ', 16''are divided into four chambers in the front-rear direction, and each chamber is also vertically divided into an air chamber 18 and a transported gas chambers 19, 19', 19 '' by a separating film body 17. ing.

【0027】この場合の分離用の膜体17の形状は全断
面に於て図に示すようになる。
The shape of the separating film body 17 in this case is as shown in the drawing in the entire cross section.

【0028】尚、この出願の発明の実施態様は上述各実
施例に限るものでないことは勿論であり、例えば、上述
実施例の外皮が柔軟な膜体で形成される軟式飛行船の他
に、該外皮が軽金属や可撓性膜体を用いた硬式飛行船が
採用出来る等、又、設計上被輸送ガスを少ししか搭載出
来ない場合、例えば、図2の非浮揚用ガス室(区間
(ロ))を浮揚ガスで満たす等種々の態様が採用可能で
ある。
Of course, the embodiment of the invention of this application is not limited to the above-mentioned embodiments. For example, in addition to the soft airship in which the outer skin of the above-mentioned embodiment is formed of a flexible film body, When a hard airship with a light metal or a flexible film outer shell can be used, or when the transport gas can be mounted only a little due to the design, for example, the non-floating gas chamber (section (b)) in FIG. It is possible to employ various modes such as filling the levitation gas with the levitation gas.

【0029】又、適用対象のガスは炭酸ガスばかりでな
くLNGやLPG等のガスに対しても適用出来ることは
勿論のことである。
Further, it goes without saying that the gas to be applied is not limited to carbon dioxide gas but can be applied to gases such as LNG and LPG.

【0030】但し、空気より軽いガスを輸送する場合、
先ず復路のためのヘリウム等の浮揚ガス容積があり、こ
れに大気圧の被輸送ガス用容積を加えると飛行船1の容
積が空気より重いガス輸送の場合より大きくなって、空
気抵抗,エンジン馬力等が大きくなり、非経済的になる
ので、液化したガスをゴンドラ8内に搭載した方が経済
的になる場合もある。
However, when a gas lighter than air is transported,
First, there is a floating gas volume such as helium for the return path, and when the volume for the transported gas at atmospheric pressure is added to this, the volume of the airship 1 becomes larger than that for gas transportation that is heavier than air, and the air resistance, engine horsepower, etc. Since it becomes large and uneconomical, it may be economical to mount the liquefied gas in the gondola 8.

【0031】即ち、被輸送ガスの液化の経済損失と航行
の経済損失のどちらが大きいかの問題であるが、実際的
にはある輸送距離を分岐点にして近距離ではガス状輸
送、遠距離では液化輸送の方が得策ということになる。
That is, the question is whether the economic loss of liquefaction of the transported gas or the economic loss of navigation is large. In practice, a certain transportation distance is set as a branch point, and gaseous transportation is performed at a short distance, and in a long distance. Liquefied transportation is a better option.

【0032】このような事態に対応して、ガス状輸送と
ゴンドラ8内を用いて液化ガス輸送の双方を可能にした
ガス輸送飛行船もこの出願の発明の技術的範囲内に入る
ものである。
In response to such a situation, a gas transport airship that enables both gaseous transport and liquefied gas transport using the gondola 8 is also within the technical scope of the present invention.

【0033】[0033]

【発明の効果】以上、この出願の発明によれば、基本的
に火力発電所等から大量発生する炭酸ガス等のガスを発
生源から次段処理施設に輸送するに際し、飛行船内のチ
ャンバに当該ガスを充填貯留して輸送することにより、
大量のガスを一挙に安全に効率的に輸送することが出来
る効果があり、陸路や海路を用いる等の交通上の制約が
なく、比較的自由に航行することが出来、したがって、
能率が良く、低コストで輸送することが出来る効果があ
る。
As described above, according to the invention of this application, basically, when a large amount of gas such as carbon dioxide gas generated from a thermal power plant or the like is transported from a generation source to a next stage treatment facility, the chamber in the airship is concerned. By filling and storing gas and transporting it,
There is an effect that a large amount of gas can be safely and efficiently transported all at once, and there is no restriction on traffic such as using land and sea routes, and it is possible to navigate relatively freely, therefore,
It is efficient and can be transported at low cost.

【0034】そして、ガスをチャンバ内の膜体を介して
の複数室に郭成して充填輸送出来ることにより浮揚ガス
と空気とのバランスが保て全断面に於ける浮揚力と重力
とが打ち消し合い熱気球のようなモーメントが働かず、
保形性も維持され、安定した輸送が出来るという効果が
ある。
Since the gas can be filled and transported by being divided into a plurality of chambers through the film body in the chamber, the balance between the levitation gas and the air can be maintained and the levitation force and the gravity in the entire cross section can be canceled out. A moment like a hot air balloon does not work,
Shape retention is also maintained, and there is an effect that stable transportation is possible.

【0035】そして、チャンバの構造としては可撓性の
気密膜体により、上部の浮揚ガス室と下部の非浮揚用ガ
ス室とに郭成することから分離抽出された炭酸ガス等の
ガスを空気や浮揚ガスとの混合状態を避けて分離抽出し
た状態のまま輸送することが出来る効果があり、輸送先
の処理施設に於ても所定の処理がし易いというメリット
もある。
As a chamber structure, a flexible gas-tight film body is formed between an upper levitation gas chamber and a lower non-floating gas chamber to separate and extract gases such as carbon dioxide gas from the air. It has the effect that it can be transported in the state of being separated and extracted while avoiding the mixed state with the levitation gas, and also has the merit that it is easy to perform a predetermined treatment even at the treatment facility of the destination.

【0036】更に、チャンバ内は縦横に可撓性の気密膜
体を介し所望数の室に郭成することが出来ることによ
り、チャンバ内の圧力を設定圧力に保持出来、飛行船の
断面形状の保持を確実に図ることが出来るという効果が
ある。
Furthermore, since the chamber can be vertically and laterally divided into a desired number of chambers through flexible airtight membranes, the pressure in the chamber can be maintained at the set pressure, and the cross-sectional shape of the airship can be maintained. There is an effect that can be surely achieved.

【0037】そして、ガス輸送においては液化にエネル
ギーを用いずに済み、経済的に極めてメリットがある効
果がある。
In gas transportation, energy is not used for liquefaction, which is extremely economically advantageous.

【図面の簡単な説明】[Brief description of drawings]

【図1】この出願の発明の1実施例の全体概略斜視図で
ある。
FIG. 1 is an overall schematic perspective view of an embodiment of the invention of this application.

【図2】同、縦断面図である。FIG. 2 is a vertical sectional view of the same.

【図3】図2のIII −III 断面図である。FIG. 3 is a sectional view taken along line III-III in FIG.

【図4】図2のIV−IV断面図である。4 is a sectional view taken along line IV-IV in FIG.

【図5】別の実施例の模式縦断面図である。FIG. 5 is a schematic vertical sectional view of another embodiment.

【符号の説明】[Explanation of symbols]

2 外皮 14 浮揚用ガス室 19,19' ,19'' 被輸送ガス室 8 ゴンドラ 1 飛行船 13 膜体 15 非浮揚用ガス室 11 垂下膜体 17 変位膜体 18 空気室 2 Outer skin 14 Floating gas chamber 19, 19 ', 19' 'Transported gas chamber 8 Gondola 1 Airship 13 Membrane 15 Non-floating gas chamber 11 Pendant membrane 17 Displacement membrane 18 Air chamber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】外皮内に浮揚用ガス室と被輸送ガス室を有
し下部にゴンドラを吊設しているガス輸送用飛行船構造
において、上記外皮内を膜体により上部の浮揚用ガス室
と下部の非浮揚用ガス室とに郭成し、外皮に上端を固設
した垂下膜体を介して上記ゴンドラを吊設し、而して非
浮揚用ガス室が変位膜体により上側の空気室と下側の被
輸送ガス室に分割されていることを特徴とするガス輸送
用飛行船構造。
1. A gas transport airship structure having a levitation gas chamber and a transported gas chamber in an outer skin, and a gondola suspended in a lower portion of the outer skin. The gondola is hung from the lower non-floating gas chamber through a hanging film body having an upper end fixed to the outer skin, and thus the non-floating gas chamber is an upper air chamber by the displacement film body. An airship structure for gas transportation, characterized in that it is divided into a lower gas chamber and a lower gas chamber to be transported.
【請求項2】上記ゴンドラに被輸送液化ガス室が形成さ
れていることを特徴とする特許請求の範囲第1項記載の
ガス輸送用飛行船構造。
2. A gas transport airship structure according to claim 1, wherein a liquefied gas chamber to be transported is formed in the gondola.
JP14800092A 1992-05-15 1992-05-15 Airship structure for gas transport Pending JPH05319391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14800092A JPH05319391A (en) 1992-05-15 1992-05-15 Airship structure for gas transport

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14800092A JPH05319391A (en) 1992-05-15 1992-05-15 Airship structure for gas transport

Publications (1)

Publication Number Publication Date
JPH05319391A true JPH05319391A (en) 1993-12-03

Family

ID=15442874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14800092A Pending JPH05319391A (en) 1992-05-15 1992-05-15 Airship structure for gas transport

Country Status (1)

Country Link
JP (1) JPH05319391A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002347697A (en) * 2001-05-24 2002-12-04 Fuji Heavy Ind Ltd Diaphragm-type airship
CN105151269A (en) * 2015-09-18 2015-12-16 哈尔滨工业大学 Airship supporting structure composed of inflation rings arranged in crossing manner
JP2017047896A (en) * 2015-07-31 2017-03-09 パナソニックIpマネジメント株式会社 Flight body and balloon
KR101716487B1 (en) * 2015-10-01 2017-03-14 최천기 Double-tube structure of the airship and electrical energy supply and transport systems using the same
CN109515679A (en) * 2018-10-17 2019-03-26 中国特种飞行器研究所 It is a kind of can hoist cable structure in the external aerostatics for adjusting tension

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002347697A (en) * 2001-05-24 2002-12-04 Fuji Heavy Ind Ltd Diaphragm-type airship
JP4541591B2 (en) * 2001-05-24 2010-09-08 富士重工業株式会社 Diaphragm airship
JP2017047896A (en) * 2015-07-31 2017-03-09 パナソニックIpマネジメント株式会社 Flight body and balloon
CN105151269A (en) * 2015-09-18 2015-12-16 哈尔滨工业大学 Airship supporting structure composed of inflation rings arranged in crossing manner
KR101716487B1 (en) * 2015-10-01 2017-03-14 최천기 Double-tube structure of the airship and electrical energy supply and transport systems using the same
CN109515679A (en) * 2018-10-17 2019-03-26 中国特种飞行器研究所 It is a kind of can hoist cable structure in the external aerostatics for adjusting tension
CN109515679B (en) * 2018-10-17 2022-06-28 中国特种飞行器研究所 Internal suspension cable structure of aerostat capable of externally adjusting tension

Similar Documents

Publication Publication Date Title
US8820681B2 (en) Lighter-than-air craft docking system using unmanned flight vehicle
US20180050785A1 (en) Airship including aerodynamic, floatation, and deployable structures
US7350749B2 (en) Mass transfer system for stabilizing an airship and other vehicles subject to pitch and roll moments
US6311925B1 (en) Airship and method for transporting cargo
US20150203184A1 (en) Sail-equipped amphibious aerostat or dirigible
EA014254B1 (en) Hybrid lift air vehicle, a method of lifting and transporting a payload utilizing said vehicle
IL27731A (en) Airship
CN204606152U (en) A kind of river and sea type liquified natural gas carrier (LNGC)
US3488019A (en) Cargo-gas airship with boundary layer control
US8113463B2 (en) Blimp
US20190330033A1 (en) System, method and apparatus for widespread commercialization of hydrogen as a carbon-free alternative fuel source
JPH05319391A (en) Airship structure for gas transport
US20220144405A1 (en) Method and apparatus for transporting hydrogen
JPH07507021A (en) Airship for transporting cargo and passengers
US3338203A (en) Skiboat
CN109050866A (en) A kind of dirigible
RU2511500C2 (en) Aerostatic airborne vehicle (versions)
Bock et al. Lenticular cargo airships: the case for carbon-free fuel operation
ES2750845T3 (en) Large displacement hull ship
CN212605662U (en) LNG dual-fuel transport ship capable of meeting requirements of specific air route
Whale British Airships, Past, Present & Future
EP3947141A1 (en) Airship with rigid supporting structure
Nastasenko et al. New top-7 vessels wind projects and analysis of their practical possibilities for the transport fleet
WO2012063258A1 (en) Helium vehicles
RU2244639C2 (en) Combination aircraft transportation system for carrying compressed gases