JPH05316798A - Negative phase protective unit for generator - Google Patents

Negative phase protective unit for generator

Info

Publication number
JPH05316798A
JPH05316798A JP4116573A JP11657392A JPH05316798A JP H05316798 A JPH05316798 A JP H05316798A JP 4116573 A JP4116573 A JP 4116573A JP 11657392 A JP11657392 A JP 11657392A JP H05316798 A JPH05316798 A JP H05316798A
Authority
JP
Japan
Prior art keywords
generator
current
negative phase
rotor temperature
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4116573A
Other languages
Japanese (ja)
Inventor
Jiyunji Noumoto
淳司 納本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4116573A priority Critical patent/JPH05316798A/en
Publication of JPH05316798A publication Critical patent/JPH05316798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Protection Of Generators And Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To protect a generator against negative phase at an appropriate level even upon change of operating conditions and to minimize restriction on the operation by calculating rotor temperature of generator, at the time of zero negative phase current, from field current and then modifying set level of negative phase protection. CONSTITUTION:Negative phase current and higher harmonic currents contained in the output current from a generator 2 are detected and then they are synthesized or operated in order to monitor total negative phase current which heats the rotor of the generator. A rotor temperature operating means 11 takes in armature current and field current values of the generator 2 and calculates a rotor temperature when total negative phase current is zero for the values thus taken in. Upon variation of rotor temperature due to variation of the operating conditions of the generator 2, a set value modifying means 13 modifies set levels of trip signal and alarm correspondingly. This protective unit realizes setting of appropriate negative phase protective level corresponding to the margin of rotor temperature provided through variation of the operating conditions of the generator 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発電機を逆相電流による
過熱から保護する発電機逆相保護装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a generator anti-phase protection device for protecting a generator from overheating due to an anti-phase current.

【0002】[0002]

【従来の技術】発電機の電機子に逆相電流または高調波
電流が流れた場合、発電機のロータ表面にうず電流を誘
起する。このうず電流によりロータの構成部材が加熱さ
れる。この加熱の度合が過度となり各構成部材の許容温
度を越えた場合、発電機ロータの損傷につながる。この
ため規格(JEC−114等)により発電機の持つべき
逆相耐量を定めるとともに、過度の逆相電流が流れた場
合トリップ信号又は警報を出す発電機逆相保護装置を設
け発電機を保護する事が一般に行われている。
2. Description of the Related Art When a reverse-phase current or a harmonic current flows through an armature of a generator, an eddy current is induced on the rotor surface of the generator. The eddy current heats the components of the rotor. If this heating degree becomes excessive and exceeds the allowable temperature of each component, the generator rotor may be damaged. For this reason, the reverse phase tolerance that the generator should have is determined by the standard (JEC-114 etc.), and a generator reverse phase protection device that issues a trip signal or alarm when excessive reverse phase current flows is provided to protect the generator. Things are generally done.

【0003】[0003]

【発明が解決しようとする課題】従来の発電機逆相保護
装置においては、トリップ信号又は警報を発する設定値
が固定されていた。通常、この設定値は発電機の定格電
流に対する比率で定められる規格値の近傍に置かれる。
これに対し実際のロータ温度は逆相電流による加熱分と
逆相電流が零で発電機が任意の負荷状態で運転している
時のロータ温度の和となる。負荷状態でのロータ温度は
負荷の大きさ力率で変化し、発電機が軽負荷又は高力率
の場合は、重負荷又は低力率の場合に比べ低い値にな
る。このため、同じ大きさの逆相電流が電機子に流れた
場合、その時の発電機負荷が大きく又は力率が悪ければ
ロータ温度は高く、負荷が小さいか又は力率が良ければ
ロータ温度は低くなる。保護の目的よりすれば、トリッ
プ信号、警報はこのロータ温度を判断して発せられれば
十分であるが、従来の逆相保護装置では電機子に流れる
逆相電流の値が固定の設定値を越えた際出される構成で
あったため、発電機が低負荷又は高力率の場合、ロータ
温度が許容値に対し十分なマージンを取った値に達する
以前にトリップ信号又は警報が発せられる事になる。
In the conventional generator anti-phase protection device, the set value for issuing the trip signal or the alarm is fixed. Normally, this set value is placed near the standard value defined by the ratio to the rated current of the generator.
On the other hand, the actual rotor temperature is the sum of the heating amount due to the anti-phase current and the rotor temperature when the anti-phase current is zero and the generator is operating under an arbitrary load condition. The rotor temperature in the load state changes depending on the magnitude of the load and the power factor, and has a lower value when the generator has a light load or a high power factor as compared with a heavy load or a low power factor. Therefore, when an opposite-phase current of the same magnitude flows through the armature, the rotor temperature is high if the generator load at that time is large or the power factor is bad, and if the load is small or the power factor is good, the rotor temperature is low. Become. For protection purposes, it is sufficient if the trip signal and alarm are issued by judging the rotor temperature, but in the conventional anti-phase protection device, the value of the anti-phase current flowing through the armature exceeds the fixed set value. Because of the above configuration, if the generator has a low load or a high power factor, a trip signal or alarm will be issued before the rotor temperature reaches a value with a sufficient margin with respect to the allowable value.

【0004】以上の様に従来の発電機逆相保護装置にお
いては発電機の運転状態を考慮できないため、低負荷時
の発電機の運用を逆相耐量の面より制限する結果となっ
ていた。
As described above, in the conventional generator anti-phase protection device, since the operating state of the generator cannot be taken into consideration, the result is that the operation of the generator at a low load is limited in terms of the anti-phase withstand capability.

【0005】本発明は発電機の電機子電流、界磁電流か
ら逆相電流が零の場合の発電機ロータ温度を算出し、そ
の値によって逆相保護の設定値を変更する事により、運
転状態が変化した場合でも、発電機に対し適切なレベル
で逆相保護を与えるとともに運用に対する制限を最小と
する逆相保護装置を提供する事にある。
The present invention calculates the generator rotor temperature when the reverse-phase current is zero from the armature current and field current of the generator, and changes the set value of the reverse-phase protection according to the calculated value to determine the operating condition. It is to provide an anti-phase protection device that provides an appropriate level of anti-phase protection to a generator and minimizes restrictions on operation even when the power supply changes.

【0006】[0006]

【課題を解決するための手段】本発明の発電機逆相保護
装置は、発電機の電機子電流および界磁電流の値を取り
込みその値での全逆相電流が零の場合のロータ温度を算
出するロータ温度演算手段と、発電機の運転状態により
このロータ温度が変化した場合それに応じてトリップ信
号や警報の設定値を変更する設定値変更手段とを具備し
たことを特徴とする。
The generator anti-phase protection device of the present invention takes in the values of the armature current and field current of the generator, and determines the rotor temperature when the total anti-phase current at that value is zero. It is characterized by comprising a rotor temperature calculating means for calculating and a set value changing means for changing a set value of a trip signal or an alarm in accordance with a change in the rotor temperature due to an operating state of a generator.

【0007】[0007]

【作用】これにより、発電機の運転状態が変化した場合
でも発電機に対して適切なレベルで逆相保護を与えると
共に運用に関する制限を最小とする。
As a result, even when the operating condition of the generator changes, the anti-phase protection is given to the generator at an appropriate level and the limitation on operation is minimized.

【0008】[0008]

【実施例】以下本発明の一実施例を図1を参照して説明
する。図1は本発明による発電機逆相保護装置の構成例
を示すものである。1は電力系統を示す。この電力系統
1に本図では示していない原動機により駆動される発電
機2が主変圧器3、しゃ断器4を介して接続されてい
る。5は発電機2の界磁電流If を検出するシャント、
6は発電機2の出力電流(電機子電流)Ia を検出する
変流器である。変流器6により検出された発電機電流は
逆相電流検出回路7に入力され発電機電流に含まれる逆
相電流が検出される。検出された逆相電流を比較出力回
路8で設定器9で与えられる設定値と比較し、逆相電流
が設定値を上回った場合8の出力装置からトリップ信号
又は警報の出力が出される。本発明においてはこの設定
値が10の設定値変更装置により発電機の運転状態に合せ
て変更される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows a configuration example of a generator anti-phase protection device according to the present invention. 1 shows an electric power system. A generator 2 driven by a prime mover (not shown in the figure) is connected to the power system 1 via a main transformer 3 and a circuit breaker 4. 5 detects the field current I f of the generator 2 shunt,
A current transformer 6 detects the output current (armature current) I a of the generator 2. The generator current detected by the current transformer 6 is input to the antiphase current detection circuit 7, and the antiphase current included in the generator current is detected. The detected reverse phase current is compared with the set value given by the setter 9 in the comparison output circuit 8, and when the reverse phase current exceeds the set value, the output device 8 outputs a trip signal or an alarm. In the present invention, this set value is changed by the set value changing device of 10 according to the operating state of the generator.

【0009】ここで、発電機はその構成部材より決まる
許容温度TP 以内で運転されなければならない。一般に
逆相電流および高調波電流はロータ表面にうず電流を誘
起する。このうず電流がロータ表面を流れる際損失を発
生するためロータ表面が加熱される。この加熱分による
温度上昇をTN とすると通常運転時のロータ温度TR
対し(1) 式を満す様保護装置は動作しなければならな
い。
Here, the generator must be operated within an allowable temperature T P determined by its constituent members. Generally, the antiphase current and the harmonic current induce an eddy current on the rotor surface. When the eddy current flows on the rotor surface, a loss is generated, so that the rotor surface is heated. Assuming that the temperature rise due to this heating is T N , the protective device must be operated so as to satisfy the formula (1) with respect to the rotor temperature T R during normal operation.

【0010】[0010]

【数1】TP ≧TR +TN ……(1)[Equation 1] T P ≧ T R + T N …… (1)

【0011】一方、定常運転時のロータ温度TR は発電
機の冷却ガス温度TG に界磁電流に依存する温度上昇分
F および電機子電流に依存する温度上昇分TA の運転
状態により変化する温度上昇分と風損、鉄損等負荷状態
により変化しない固定損による温度上昇分TC の和とし
て表現する事ができる。
On the other hand, the rotor temperature T R during steady operation depends on the operating state of the temperature rise T F depending on the field current and the temperature rise T A depending on the armature current in the cooling gas temperature T G of the generator. It can be expressed as the sum of the temperature rise that changes and the temperature rise T C due to the fixed loss that does not change due to load conditions such as windage loss and iron loss.

【0012】[0012]

【数2】TR =TG +TF +TA +TC ……(2) TF ,TA をそれぞれ界磁電流If と電機子電流Ia
関数として
(2) T R = T G + T F + T A + T C (2) T F and T A are functions of the field current If and the armature current I a , respectively.

【0013】[0013]

【数3】TF =F(If) ……(3) TA =G(Ia) ……(4) と表わし、(2) ,(3) ,(4) 式を(1) 式に代入して整理
すると逆相による加熱分として許容される温度上昇は
(5) 式で表わす事ができる。
[Equation 3] T F = F (If) …… (3) T A = G (Ia) …… (4) is expressed, and equations (2), (3), and (4) are substituted into equation (1). By rearranging, the temperature rise allowed as the heating amount due to the reverse phase
It can be expressed by equation (5).

【0014】[0014]

【数4】 TN ≦TP −TG −TC −{F(If)+G(Ia)} …(5) ## EQU4 ## T N ≦ T P −T G −T C − {F (If) + G (Ia) } (5)

【0015】一般に発電機の冷却ガス温度は調整装置に
よって一定に保たれているため右辺のTP −TG −TC
はある一定値Kとして与える事ができる。以上より逆相
による加熱分として許容される温度上昇は
Generally, the cooling gas temperature of the generator is kept constant by the adjusting device, so T P -T G -T C on the right side.
Can be given as a certain value K. From the above, the temperature rise allowed as the heating due to the reverse phase is

【0016】[0016]

【数5】TN ≦K−{F(If)+G(Ia)} ……(6) と表わされる。## EQU5 ## T N ≤K- {F (If) + G (Ia) } (6)

【0017】つまり、発電機の設計条件および保護のレ
ベルよりKの値が与えられると、発電機の運転状態して
界磁電流If および電機子電流Ia を測定する事でその
運転状態において許容される逆相による温度上昇値TN
が求まる。
That is, when the value of K is given from the design condition of the generator and the level of protection, the field current If and the armature current Ia are measured while the generator is operating, and the operating condition is obtained. Allowable reverse phase temperature rise value T N
Is required.

【0018】さらに、逆相による温度上昇は逆相損失ω
N に比例し、逆相損失は逆相電流IN の2乗に比例する
事より、ある運転状態(If ,Ia )において発電機は
(8)式で求まる逆相電流まで許容する。
Further, the temperature rise due to the reverse phase causes the reverse phase loss ω
Since the anti-phase loss is proportional to N and the anti-phase loss is proportional to the square of the anti-phase current I N , the generator allows up to the anti-phase current obtained by the equation (8) in a certain operating state (I f , I a ).

【0019】[0019]

【数6】 [Equation 6]

【0020】以上の原理より発電機の界磁電流、電機子
電流を検出し、その値から求まる発電機の許容逆相電流
の値に自動的に設定変更する設定値変更装置を得る事が
できる。
According to the above principle, it is possible to obtain a set value changing device for detecting the field current and the armature current of the generator and automatically changing the setting to the value of the allowable reverse phase current of the generator obtained from the values. ..

【0021】この設定値変更装置を逆相保護装置に組み
込む事で発電機の運転状態の変化に対し最も適切なレベ
ルで逆相保護を行い発電機運用に対する逆相からの制御
を最小とする逆相保護装置を得る事ができる。
By incorporating this set value changing device in a reverse phase protection device, reverse phase protection is performed at the most appropriate level against changes in the operating state of the generator, and reverse control that minimizes control from the reverse phase for generator operation is performed. You can get a phase protector.

【0022】次に、この設定値変更の原理を同じく図1
により説明する。シャント5により検出した発電機界磁
電流If と変流器6により検出した発電機電機子電流I
a をロータ温度演算回路11に入力し(If ,Ia )の運
転状態におけるロータ温度を算出する。この温度とロー
タの許容温度の差から逆相加熱に対する温度上昇の許容
値が求まる((6) 式)。
Next, the principle of changing the set value is also shown in FIG.
Will be explained. Generator field current I f detected by shunt 5 and generator armature current I detected by current transformer 6
The value a is input to the rotor temperature calculation circuit 11 to calculate the rotor temperature in the operating state of (I f , I a ). From the difference between this temperature and the allowable temperature of the rotor, the allowable value of temperature rise due to antiphase heating can be obtained (Equation (6)).

【0023】ここで求められた温度上昇の許容値を設定
値変更回路13において(7) 式に従い逆相電流に変換す
る。さらに設定値変更回路13は変換して得られた逆相電
流の値で設定器9の設定値を自動的に変更する。
The allowable value of the temperature rise obtained here is converted into a reverse phase current in the set value changing circuit 13 according to the equation (7). Further, the set value changing circuit 13 automatically changes the set value of the setter 9 by the value of the reverse phase current obtained by the conversion.

【0024】このようにして本実施例によれば発電機の
運転状態により変化する逆相電流の許容値に追従して保
護装置の設定値を変更し、運転状態に見合った適切な保
護を行う事が可能になるとともに、発電機の運用に対す
る逆相電流からの制限を最小とする事ができる。
As described above, according to the present embodiment, the set value of the protective device is changed in accordance with the allowable value of the reverse phase current which varies depending on the operating state of the generator, and the appropriate protection corresponding to the operating state is performed. In addition to being able to do so, it is possible to minimize the restrictions on the operation of the generator from the reverse-phase current.

【0025】本発明においては発電機のロータ温度の算
出の際、発電機の冷却ガスの温度TG が温度調整装置に
より一定に保たれているとしたが、この条件が成立しな
い場合、図2の構成により図1の実施例と同じ効果を得
る事ができる。
According to the present invention, when the rotor temperature of the generator is calculated, the temperature T G of the generator cooling gas is kept constant by the temperature adjusting device. With this configuration, the same effect as that of the embodiment of FIG. 1 can be obtained.

【0026】図2において、本図には示されていない発
電機冷却ガス用冷却器(以下ガスクーラ)に供給される
冷却水温度を冷却水温度検出器14で検出し、ロータ温度
演算回路11に入力する構成とする。ガスクーラに流れる
冷却ガスおよび冷却水の流量は通常一定であるため、ガ
スクーラへの入熱量と冷却水温度が明らかであれば冷却
ガス温度を求める事ができる。入熱量は発電機の発生ロ
スにより求まるためロータ温度演算回路11を発電機界磁
電流If 、発電機電機子電流Ia および冷却水温度から
ロータ温度を算出する構成に変更する事で実施例と同じ
効果を得る事ができる。
In FIG. 2, the cooling water temperature detector 14 detects the temperature of the cooling water supplied to a generator cooling gas cooler (hereinafter referred to as a gas cooler), which is not shown in the figure, and the rotor temperature calculating circuit 11 detects the temperature. Input configuration. Since the flow rates of the cooling gas and the cooling water flowing through the gas cooler are usually constant, the cooling gas temperature can be obtained if the heat input to the gas cooler and the cooling water temperature are clear. Since the amount of heat input is determined by the loss generated by the generator, the rotor temperature calculation circuit 11 is changed to a configuration in which the rotor temperature is calculated from the generator field current If , the generator armature current Ia, and the cooling water temperature. You can get the same effect as.

【0027】[0027]

【発明の効果】本発明により、発電機の運転状態の変化
により生ずるロータ温度の余裕に応じた適切な逆相保護
レベルの設定が可能となり、さらにこの様な設定が可能
となる事によって逆相電流の面より生じる発電機の運用
制限を最小とする事が可能となる。
According to the present invention, it is possible to set an appropriate anti-phase protection level according to the margin of the rotor temperature caused by a change in the operating state of the generator, and by enabling such setting, the anti-phase protection level can be set. It is possible to minimize the operational limitation of the generator caused by the current.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】本発明の他の一実施例を示すブロック図FIG. 2 is a block diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電力系統 2 発電機 3 主変圧器 4 しゃ断器 5 シャント 6 変流器 7 逆相電流検出器 8 出力装置 9 設定器 10 設定値変更装置 11 ロータ温度演算回路 12 許容温度上昇演算回路 13 設定値変更回路 14 冷却水温度検出装置 1 Power system 2 Generator 3 Main transformer 4 Breaker 5 Shunt 6 Current transformer 7 Reverse-phase current detector 8 Output device 9 Setting device 10 Setting value changing device 11 Rotor temperature computing circuit 12 Allowable temperature rise computing circuit 13 Setting value Change circuit 14 Cooling water temperature detector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 発電機の出力電流中に含まれる逆相電流
および高調波電流を検出し、これらを合成または演算し
て発電機ロータを加熱する全逆相電流を監視し、その値
が所定の発電機耐量を越えた場合トリップ信号や警報を
発する発電機逆相保護装置において、前記発電機の電機
子電流および界磁電流の値をとり込みその値での全逆相
電流が零の場合のロータ温度を算出するロータ温度演算
手段と、発電機の運転状態によりこのロータ温度が変化
した場合それに応じてトリップ信号や警報の設定値を変
更する設定値変更手段とを具備したことを特徴とする発
電機逆相保護装置。
1. A reverse-phase current and a harmonic current contained in an output current of a generator are detected, and these are combined or calculated to monitor a total reverse-phase current for heating a generator rotor. In the generator anti-phase protection device that issues a trip signal or alarm, when the value of armature current and field current of the generator is taken in and the total anti-phase current at that value is zero A rotor temperature calculating means for calculating the rotor temperature and a setting value changing means for changing the trip signal and the alarm setting value when the rotor temperature changes depending on the operating state of the generator. Generator reverse-phase protection device.
JP4116573A 1992-05-11 1992-05-11 Negative phase protective unit for generator Pending JPH05316798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4116573A JPH05316798A (en) 1992-05-11 1992-05-11 Negative phase protective unit for generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4116573A JPH05316798A (en) 1992-05-11 1992-05-11 Negative phase protective unit for generator

Publications (1)

Publication Number Publication Date
JPH05316798A true JPH05316798A (en) 1993-11-26

Family

ID=14690461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116573A Pending JPH05316798A (en) 1992-05-11 1992-05-11 Negative phase protective unit for generator

Country Status (1)

Country Link
JP (1) JPH05316798A (en)

Similar Documents

Publication Publication Date Title
KR100711338B1 (en) Method and apparatus for controlling the exitation of a synchronous generator driven by a turbine
US5629598A (en) Speed control for induction motor having improved sensing of motor operative conditions
JPS5937834A (en) Device for forming thermal model for electric equipment
US5298842A (en) Thermal protection for locomotive main traction alternators
CA1221412A (en) Apparatus and method for detecting a rotating rectifier fault
US3748493A (en) Over and under excitation protection circuit for alternating current power systems including improved demodulator circuit
JPH10225158A (en) Controller for induction machine
JPH05316798A (en) Negative phase protective unit for generator
CA1115344A (en) Voltage regulator for a.c. generator
SU1317545A2 (en) Device for overheating protection of traction electric motors
JPH05284656A (en) Reverse power preventing system for wind power plant
JPH0736446Y2 (en) Private generator protection device
JPH05316800A (en) Overexcitation preventive controller for synchronous generator
JPH11143561A (en) Voltage variation suppressing device
JPH01308187A (en) Calculating method for secondary resistance of induction motor, control method, presuming method for secondary winding temperature protecting method and controller thereof
JPH04281399A (en) Generator reverse-phase current suppressing device
SU613473A1 (en) Synchronous generator excitation limiting device
JPH09308299A (en) Operation controller of ac generator
JP2003061364A (en) Photovoltaic power generating system
JPS58179190A (en) Controller for induction motor
JPS58212342A (en) Cooler for synchronous rotary electric machine
JPH0514501B2 (en)
JPS6146676B2 (en)
JPH05316797A (en) Output controller for generator
JPS60134800A (en) Frequency control circuit