JPH0514501B2 - - Google Patents

Info

Publication number
JPH0514501B2
JPH0514501B2 JP8768983A JP8768983A JPH0514501B2 JP H0514501 B2 JPH0514501 B2 JP H0514501B2 JP 8768983 A JP8768983 A JP 8768983A JP 8768983 A JP8768983 A JP 8768983A JP H0514501 B2 JPH0514501 B2 JP H0514501B2
Authority
JP
Japan
Prior art keywords
output
current
section
value
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8768983A
Other languages
Japanese (ja)
Other versions
JPS59216418A (en
Inventor
Hiroshi Itagaki
Akira Koseki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Electric Systems Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Electric Systems Co Ltd filed Critical Hitachi Ltd
Priority to JP8768983A priority Critical patent/JPS59216418A/en
Publication of JPS59216418A publication Critical patent/JPS59216418A/en
Publication of JPH0514501B2 publication Critical patent/JPH0514501B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は3相交流回路、例えば誘導電動機を負
荷とする3相回路の不平衡負荷の保護継電装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a protective relay device for an unbalanced load in a three-phase AC circuit, for example, a three-phase circuit whose load is an induction motor.

〔発明の背景〕[Background of the invention]

例えば特公−昭47−582のような、不平衡負荷
を考慮した保護リレーが提案されているが、これ
はたとえば、不平衡最大、すなわち欠相時には微
小電流でも直ちに検出する。このため、一般的に
許容される不平衡率10%程度以下の不平衡におい
ても動作電流が低下して、負荷に充分能力を発揮
させることができないという欠点があつた。
For example, a protective relay that takes unbalanced loads into account has been proposed, such as Japanese Patent Publication No. 47-582, which immediately detects even a minute current when the unbalance is at its maximum, that is, when a phase is lost. For this reason, even in an unbalanced state where the unbalance rate is less than the generally allowable unbalance rate of about 10%, the operating current decreases, resulting in a drawback that the load cannot fully demonstrate its capacity.

このことをより具体的に説明すると、公知の装
置では負荷平衡時には負荷電流が最小整定基準値
発生器5の基準値を超えれば出力を発生し、負荷
不平衡時には各相電流相当量と最小基準量のうち
の最小のもの(すなわち最小値選択回路4の出
力)と、各相電流相量のうちの最大のもの(すな
わち最大値選択回路3の出力)を比較器6で比較
検出する。従つて、不平衡時は平衡時より小さな
負荷電流で比較器6は出力を発生する。例えば、
不平衡最大時(欠相時)には微小電流でも直ちに
これを検出し出力する。この特性は、平衡負荷で
は最小整定基準値発生器5の基準値で定まる平衡
時整定値である100%となり、不平衡率の増大に
したがつて動作電流は低下し、100%の不平衡で
は微小電流で動作することになる。
To explain this more specifically, in the known device, when the load is balanced, an output is generated if the load current exceeds the reference value of the minimum setting reference value generator 5, and when the load is unbalanced, the output is generated by the amount of current equivalent to each phase and the minimum standard value. A comparator 6 compares and detects the smallest of the quantities (ie, the output of the minimum value selection circuit 4) and the largest of the phase current quantities (ie, the output of the maximum value selection circuit 3). Therefore, in the unbalanced state, the comparator 6 generates an output with a smaller load current than in the balanced state. for example,
When unbalance is at its maximum (phase loss), even the smallest current is immediately detected and output. This characteristic is that in a balanced load, the setting value at equilibrium is 100% determined by the reference value of the minimum setting reference value generator 5, and as the unbalance rate increases, the operating current decreases, and at 100% unbalance. It will operate with a very small current.

この方式では、一般的に許容される不平衡率10
%程度以下の不平衡においても動作電流が低下し
て負荷に十分能力を発揮させることができない。
また、三相誘導電動機の場合を例にとると、一相
欠相となつて不平衡率が100%になつても、この
ときの電流が定格電流の数10%であれば過熱、焼
損等の異常を生じることなく運転継続できるにも
かかわらず、従来の保護継電器では直ちに負荷遮
断してしまうという問題点があつた。
This method uses a generally accepted unbalance factor of 10
Even if the unbalance is less than about %, the operating current will drop and the load will not be able to fully demonstrate its capacity.
Taking the case of a three-phase induction motor as an example, even if one phase is open and the unbalance rate becomes 100%, if the current at this time is several tens of percent of the rated current, overheating, burnout, etc. Conventional protective relays have the problem of immediately cutting off the load, even though they can continue operating without causing any abnormalities.

〔発明の目的〕[Purpose of the invention]

本発明は不平衡時に合理的に保護することので
きる保護継電装置の提供を目的とする。
An object of the present invention is to provide a protective relay device that can provide reasonable protection in the event of unbalance.

〔発明の概要〕[Summary of the invention]

本発明は、各相電流の最大、最小の偏差、即ち
不平衡のみによつて保護の要否を判断するのでは
なく、不平衡の大きさと、負荷電流の平衡値の大
きさの両方を加味して保護の要否を判定するもの
とした。
The present invention does not judge the necessity of protection only based on the maximum and minimum deviation of each phase current, that is, the unbalance, but takes into account both the magnitude of the unbalance and the magnitude of the balanced value of the load current. The necessity of protection will be determined based on the following criteria.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の実施例を示す回路図である。
1はフイーダ、2は被保護負荷例えば誘導電動機
である。3は電流導出部であり、変流器CT、ダ
イオードD、抵抗R1,R2、コンデンサC1より構
成される。5は電流加減平滑部であり、各相の電
流検出出力および後述する不平衡検出部23の出
力が抵抗R3を介して導入され、抵抗R4,R5およ
びコンデンサC2、演算増巾器OP1よりなるフイル
タ回路で平滑される。OP1の出力は可変抵抗器
VR1、抵抗R6〜R10および任意の一つが選択的に
閉じられるスイツチSW1〜SW4よりなるゲイン調
整回路で所定の入力の大きさに対し、所定の大き
さの出力が得られるよう修正されて出力される。
7は第1基準値発生部であり、可変抵抗器VR2
抵抗R11よりなる。電流平滑部5と基準値発生部
7とは、例えば、負荷2が平衡負荷で定格状態で
運転されるとき、同一の大きさで、逆極性の電圧
を出力するようになされている。9は差演算部で
あり抵抗R12,抵抗R13,R14および演算増巾器
OP2より構成される。抵抗R12を介して導入され
た5,7の出力の差電圧が出力される。11は比
例積分演算部であり、可変抵抗器VR3、抵抗R15
〜R18、コンデンサC3、ダイオードD11、および
演算増巾器OP3より構成される。演算部11は、
入力に比例した大きさと入力を時間積分した大き
さとの和の出力を得ることができる。13は第2
基準値発生部であり、ダイオードD13、抵抗R19
および可変抵抗器VR4より構成される。15は比
較部であり、R20,R21、ダイオードD15、演算増
巾器OP4より構成される。抵抗R20を介して導入
される演算部11と基準値発生部13との出力を
導入し、これらの差が抵抗R20,R21で決まる所
定値をこえたとき、出力が得られる。17は出力
部であり、抵抗R25、トランジスタQ、補助リレ
ーRY、ダイオードD17および発行ダイオードLED
とよりなる。抵抗R25を介して比較部15からの
出力が得られたとき、リレーRYを動作させ、
LEDを発光させる。19は電源部であり、抵抗
R26、コンデンサC4、ダイオードD、コンデンサ
C5、抵抗R27,R28およびツエナーダイオード
ZD19〜ZD21より構成される。出力として共通電
位COM、+電源P10,P14および−電源N10を出力
し、これらは各部に同一符号で示す電源線に接続
される。21は電流最大値検出部であり、電流導
出部3で得られる各相電流を導入する。各相電流
は、抵抗R31,R32,R33ダイオードD31,D32コン
デンサC6および演算増巾器OP5よりなる比較回路
で比較され、その最大値が導出される。23は不
平衡検出部であり、各相電流とともに前記最大値
が導入される。抵抗R34,R35,R36,R37、コン
デンサC7、ダイオードD33および演算増幅器OP6
で構成される回路は、負荷電流が平衡していると
きは出力0であり、不平衡であるときは不平衡に
応じた出力が得られるようになされている。最大
値検出部21の出力の大きさの選び方は回路全体
のバランスを考えて決めれば良いが、例えば、各
相電流がバランスしているとき、この3倍の大き
さとなるようにし、各相電流の和と等しくなるよ
うにするのも良い。D34はダイオード、R38,R39
は抵抗であり、これらは電流の不平衡出力を電流
加算平衡部へ出力するための回路である。抵抗
R39に得られる電圧は抵抗R3を介して演算増巾決
OP1に加えられる。ZD23はツエナーダイオード、
R40は抵抗、Pはトランジスタであり、これら
は、電流の不平衡出力が所定の値を越えたことを
検出するための回路である。不平衡出力が所定の
値をこえたときはトランジスタPがオンとなり、
第2基準値発生部13の可変抵抗器VR4を短絡す
るため、リレー出力要否の判定基準が小となる。
電流加算平滑部5では、各相電流と不平衡出力と
を加算するから、差演算部9では、これらの加算
信号と基準値との差を出力することになる。即
ち、本実施例によれば、各相電流が大きいことの
み、あるいは、不平衡出力が大きいことのみで保
護の要否を判定するのではなく、両者を加味した
出力によつて判定することになる。比例積分演算
部11は、保護されるべき負荷を反限時特性によ
つて保護しようとするときのみ設ければよいもの
であり、保護の要否の判定出力(9の出力)が大
きいときは比較的短時間のうちに保護動作出力を
得ようとするときは、これを除いて、9の出力を
直ちに比較部15に導入する。第2基準値発生部
13は、前述したように、不平衡検出部23の出
力で制御される。即ち、不平衡が大きいときは、
トランジスタPがオンし基準値が小さくなるよう
になされているから、判定部15は、差演算部9
の出力がより小さくても保護すべき信号を出力す
ることになる。
FIG. 1 is a circuit diagram showing an embodiment of the present invention.
1 is a feeder, and 2 is a protected load, such as an induction motor. 3 is a current deriving section, which is composed of a current transformer CT, a diode D, resistors R1 , R2 , and a capacitor C1 . 5 is a current adjustment/subtraction smoothing unit, into which the current detection output of each phase and the output of an unbalance detection unit 23 (described later) are introduced via a resistor R 3 , and a resistor R 4 , R 5 , a capacitor C 2 , and an operational amplifier. It is smoothed by a filter circuit consisting of OP1 . The output of OP 1 is a variable resistor
VR 1 , resistors R 6 to R 10 , and switches SW 1 to SW 4 , any one of which is selectively closed, are used in the gain adjustment circuit to obtain an output of a predetermined magnitude for a predetermined input magnitude. Corrected and output.
7 is a first reference value generating section, which includes a variable resistor VR 2 ,
Consists of resistor R 11 . The current smoothing unit 5 and the reference value generating unit 7 are configured to output voltages of the same magnitude and opposite polarity, for example, when the load 2 is operated in a rated state with a balanced load. 9 is a difference calculation section, which includes resistors R 12 , resistors R 13 , R 14 and a calculation amplifier.
Consists of OP 2 . The differential voltage between outputs 5 and 7 introduced through resistor R12 is output. 11 is a proportional-integral calculation section, which includes a variable resistor VR 3 and a resistor R 15
~R 18 , a capacitor C 3 , a diode D 11 , and an operational amplifier OP 3 . The calculation unit 11 is
It is possible to obtain an output that is the sum of the magnitude proportional to the input and the magnitude obtained by integrating the input over time. 13 is the second
It is a reference value generation section, and includes a diode D 13 , a resistor R 19 ,
and variable resistor VR 4 . Reference numeral 15 denotes a comparison section, which is composed of R 20 , R 21 , a diode D 15 , and an operational amplifier OP 4 . The outputs of the arithmetic unit 11 and the reference value generating unit 13 are introduced via the resistor R 20 , and when the difference between these exceeds a predetermined value determined by the resistors R 20 and R 21 , an output is obtained. 17 is the output section, which includes resistor R 25 , transistor Q, auxiliary relay R Y , diode D 17 and issuing diode LED
It becomes more. When the output from the comparator 15 is obtained via the resistor R 25 , the relay R Y is operated,
Make the LED emit light. 19 is the power supply section, and the resistor
R 26 , capacitor C 4 , diode D, capacitor
C 5 , resistors R 27 , R 28 and Zener diode
Consists of ZD 19 to ZD 21 . A common potential COM, + power supplies P 10 , P 14 and - power supplies N 10 are output as outputs, and these are connected to power lines indicated by the same symbols in each part. Reference numeral 21 denotes a current maximum value detection section, into which each phase current obtained by the current derivation section 3 is introduced. Each phase current is compared by a comparison circuit consisting of resistors R 31 , R 32 , R 33 diodes D 31 , D 32 capacitor C 6 and operational amplifier OP 5 , and the maximum value thereof is derived. Reference numeral 23 denotes an unbalance detection section, into which the maximum value is introduced together with each phase current. Resistors R 34 , R 35 , R 36 , R 37 , capacitor C 7 , diode D 33 and operational amplifier OP 6
When the load current is balanced, the output is 0, and when the load current is unbalanced, an output corresponding to the unbalance is obtained. The size of the output of the maximum value detection section 21 can be selected by considering the balance of the entire circuit, but for example, when the currents of each phase are balanced, the size of the output of the maximum value detection section 21 should be three times this value, and the current of each phase It is also good to make it equal to the sum of . D 34 is a diode, R 38 , R 39
are resistors, and these are circuits for outputting an unbalanced output of current to the current addition/balancing section. resistance
The voltage obtained at R 39 is amplified through the resistor R 3 .
Added to OP 1 . ZD 23 is a Zener diode,
R 40 is a resistor, P is a transistor, and these are circuits for detecting that the unbalanced output of the current exceeds a predetermined value. When the unbalanced output exceeds a predetermined value, transistor P turns on,
Since the variable resistor VR 4 of the second reference value generating section 13 is short-circuited, the criterion for determining whether or not a relay output is necessary becomes small.
Since the current addition and smoothing unit 5 adds the currents of each phase and the unbalanced output, the difference calculation unit 9 outputs the difference between these added signals and the reference value. In other words, according to this embodiment, the necessity of protection is not determined only based on the large current of each phase or only on the large unbalanced output, but is determined based on the output that takes both into account. Become. The proportional-integral calculation section 11 only needs to be provided when the load to be protected is to be protected by the inverse time limit characteristic, and when the judgment output (output of 9) as to whether protection is necessary is large, the comparison is performed. When the protection operation output is to be obtained within a short period of time, the output of 9 is immediately introduced into the comparator 15 except for this. The second reference value generating section 13 is controlled by the output of the unbalance detecting section 23, as described above. That is, when the imbalance is large,
Since the transistor P is turned on and the reference value becomes small, the determination unit 15 uses the difference calculation unit 9
Even if the output is smaller, it will still output a signal that should be protected.

以上説明した本発明においては、各相電流に比
例した直流出力を発生する電流導出部3の出力の
うちの最大値を選択してその三倍値を電流最大値
検出部21で求め、21の出力と各相電流の和の
減算を不平衡検出部23で求める。そして23の
出力をダイオードD34を介して各相電流ととも
に電流加算平滑部5で加算し、差演算部9におい
て第1基準値発生部7の出力と比較し負荷を保護
するようにしている。
In the present invention described above, the maximum value of the outputs of the current deriving section 3 that generates a DC output proportional to each phase current is selected, and its triple value is determined by the current maximum value detecting section 21. The unbalance detector 23 calculates the subtraction of the output and the sum of each phase current. Then, the output of 23 is added together with each phase current through a diode D34 in a current adding and smoothing unit 5, and compared with the output of the first reference value generating unit 7 in a difference calculation unit 9 to protect the load.

この構成のおいて、不平衡検出部23は、不平
衡率が大きくなるほど、出力が増大する。電流加
算平滑部5の出力は各相電流の和と、不平衡検出
部23の出力が加算されたものである。第1基準
値発生部7の出力と電流加算平滑部5の出力が比
較され、電流加算平滑部5の出力の方が大きけれ
ば、この不平衡継電器は動作出力を与える。従つ
て、不平衡率の大きさによつても動作電流は変化
する。他方、不平衡率が100%、即ち、一相次相
時には平衡時の動作電流値に対して40乃至60%の
値で動作するように不平衡検出部23の増幅率を
決定しておく。
In this configuration, the output of the unbalance detector 23 increases as the unbalance rate increases. The output of the current addition and smoothing section 5 is the sum of the currents of each phase and the output of the unbalance detection section 23 added together. The output of the first reference value generation section 7 and the output of the current addition and smoothing section 5 are compared, and if the output of the current addition and smoothing section 5 is larger, the unbalanced relay provides an operating output. Therefore, the operating current changes depending on the magnitude of the unbalance factor. On the other hand, the amplification factor of the unbalance detector 23 is determined so that the unbalance rate is 100%, that is, the unbalance detecting section 23 operates at a value of 40 to 60% of the operating current value at the time of equilibrium when the first phase is the next phase.

この結果、平衡時と同一の各相電流の合計値が
許容される約5ないし15%以下では平衡時の動作
特性と同一になり、不平衡率が順次増大すればそ
れに従つて動作する各相電流の合計値も低下し、
不平衡率100%では各相電流の合計値が平衡時整
定量の約40乃至60%で動作し、不平衡による負荷
の局部加熱も補償して負荷の全発熱量が平衡整定
量より小さい状態で動作し負荷を安全に保護し、
それ以下では負荷の能力を発揮させることが可能
となる。すなわち、本発明によれば、平衡時、微
小不平衡時及び不平衡が極めて大きい場合にも、
負荷の耐量以下の場合はその能力を十分に発揮
し、耐量を超えた場合には安全、確実に負荷を保
護する効果がある。
As a result, when the total value of each phase current is the same as when balanced, the operating characteristics are the same as when they are balanced below approximately 5 to 15%, and as the unbalance rate increases sequentially, each phase operates accordingly. The total value of current also decreases,
When the unbalance rate is 100%, the total value of each phase current operates at approximately 40 to 60% of the balanced setting amount, and the local heating of the load due to unbalance is compensated for, and the total heat generation amount of the load is smaller than the balanced setting amount. operates to safely protect the load,
If it is less than that, it becomes possible to make full use of the load capacity. That is, according to the present invention, even in the case of equilibrium, slight unbalance, and extremely large unbalance,
When the load is below the withstand capacity, it fully demonstrates its capacity, and when the withstand capacity is exceeded, it has the effect of safely and reliably protecting the load.

なお、ここで負荷の耐量とは、 a 不平衡率が5乃至10%と小さい場合、定格負
荷で運転しても支障なく、 b 不平衡率が100%でも、負荷が数十%なら運
転しても支障がない。
Note that the load capacity here means: a. If the unbalance rate is as small as 5 to 10%, there is no problem in operating at the rated load, and b. Even if the unbalance rate is 100%, the load can be operated at several tens of percent. There is no problem.

ことを述べたものである。This is what I said.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によるときは、各相電流
の不平衡が、単に不平衡のみによつて処理される
のではなく、各相電流の大きさとの相対的なもの
として処理されるから、合理的な保護の要否判定
ができる。
As described above, according to the present invention, the unbalance of each phase current is not handled simply by unbalance, but is handled relative to the magnitude of each phase current. Able to reasonably determine whether protection is necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示すブロツク図である。 1……フイーダ、2……負荷、3……電流導出
部、5……電流加算平滑部、7……第1基準値発
生部、9……差演算部、11……比例積分演算
部、13……第2基準値発生部、15……比較
部、17……出力部、19……電源部、21……
電流最大値検出部、23……不平衡検出部。
The figure is a block diagram showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Feeder, 2... Load, 3... Current derivation part, 5... Current addition smoothing part, 7... First reference value generation part, 9... Difference calculation part, 11... Proportional integral calculation part, 13... Second reference value generation section, 15... Comparison section, 17... Output section, 19... Power supply section, 21...
Maximum current value detection section, 23...Unbalance detection section.

Claims (1)

【特許請求の範囲】 1 三相負荷に供給される各相電流を検出してこ
れに相当する直流出力を夫々発生する電流導出
部、該電流導出部の出力のうちの最大値を選択し
てその三倍値を出力する電流最大検出部、電流最
大値検出部の出力から、電流導出部で求めた各相
電流の和を減算する不平衡検出部、ダイオードを
介して得た不平衡検出部の出力と各相電流を加算
する電流加算平滑部、第1基準値発生部の出力と
電流加算平滑部の出力とを比較し電流加算平滑部
の出力が第1基準値よりも大きいときに出力する
差演算部とから構成される不平衡リレー。 2 第1項記載の不平衡リレーにおいて、 電流導出部の出力のうちの最大値を選択してそ
の三倍値を出力する電流最大値検出部は、 入力抵抗を介して各相の電流導出部の出力を得
る演算増幅器、該演算増幅器に夫々並列に設けら
れたコンデンサと第1のダイオード、演算増幅器
の出力側に設けられた第2のダイオード、第2の
ダイオードと演算増幅器の直列回路に並列に設け
られた抵抗とを各相ごとに備え、 第1と第2のダイオードはその導通方向が演算
増幅器の入力端子側とされるとともに、第2のダ
イオードと抵抗の接続点間が共通に接続されて出
力端子とされたことを特徴とする不平衡リレー。 3 三相負荷に供給される各相電流を検出してこ
れに相当する直流出力を夫々発生する電流導出
部、該電流導出部の出力のうちの最大値を選択し
てその三倍値を出力する電流最大値検出部、電流
最大値検出部の出力から、電流導出部で求めた各
相電流の和を減算する不平衡検出部、ダイオード
を介して得た不平衡検出部の出力と各相電流を加
算する電流加算平滑部、第1基準値発生部の出力
と電流加算平滑部の出力とを比較し電流加算平滑
部の出力が第1基準値よりも大きいときに出力す
る差演算部、該差演算部の出力を積分する積分回
路、該積分回路の出力あるいは前記不平衡検出部
の出力が所定値に達したことをもつて出力する出
力回路とから構成される不平衡リレー。
[Scope of Claims] 1. A current derivation unit that detects each phase current supplied to a three-phase load and generates a DC output corresponding to the current, and selects the maximum value among the outputs of the current derivation unit. A maximum current detection section that outputs the triple value, an unbalance detection section that subtracts the sum of the phase currents obtained in the current derivation section from the output of the maximum current detection section, and an unbalance detection section that obtains the value via a diode. Compares the output of the first reference value generation section with the output of the current addition and smoothing section, and outputs when the output of the current addition and smoothing section is larger than the first reference value. An unbalanced relay consisting of a difference calculating section. 2. In the unbalanced relay described in paragraph 1, the maximum current value detection section that selects the maximum value among the outputs of the current derivation section and outputs its triple value is connected to the current derivation section of each phase via the input resistance. an operational amplifier that obtains an output, a capacitor and a first diode each provided in parallel with the operational amplifier, a second diode provided on the output side of the operational amplifier, and a second diode connected in parallel with the series circuit of the operational amplifier. The conduction direction of the first and second diodes is set to the input terminal side of the operational amplifier, and the connection point of the second diode and the resistor is commonly connected. An unbalanced relay characterized by having an output terminal. 3 A current derivation unit that detects each phase current supplied to the three-phase load and generates a DC output corresponding to this, selects the maximum value among the outputs of the current derivation unit, and outputs the tripled value. An unbalance detection section that subtracts the sum of the currents for each phase obtained in the current derivation section from the output of the maximum current value detection section, an output of the unbalance detection section obtained via the diode and each phase a current addition and smoothing unit that adds current; a difference calculation unit that compares the output of the first reference value generation unit with the output of the current addition and smoothing unit and outputs an output when the output of the current addition and smoothing unit is larger than the first reference value; An unbalanced relay comprising: an integrating circuit that integrates the output of the difference calculating section; and an output circuit that outputs when the output of the integrating circuit or the output of the unbalance detecting section reaches a predetermined value.
JP8768983A 1983-05-20 1983-05-20 Unequilibrium relay Granted JPS59216418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8768983A JPS59216418A (en) 1983-05-20 1983-05-20 Unequilibrium relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8768983A JPS59216418A (en) 1983-05-20 1983-05-20 Unequilibrium relay

Publications (2)

Publication Number Publication Date
JPS59216418A JPS59216418A (en) 1984-12-06
JPH0514501B2 true JPH0514501B2 (en) 1993-02-25

Family

ID=13921888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8768983A Granted JPS59216418A (en) 1983-05-20 1983-05-20 Unequilibrium relay

Country Status (1)

Country Link
JP (1) JPS59216418A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5383560B2 (en) * 2010-03-05 2014-01-08 三菱電機株式会社 Harmonic countermeasure device, refrigeration cycle apparatus having harmonic countermeasure device, and current detector connection state detection method

Also Published As

Publication number Publication date
JPS59216418A (en) 1984-12-06

Similar Documents

Publication Publication Date Title
US4825327A (en) Negative and zero sequence directional overcurrent unit for AC power transmission line protection
KR0169174B1 (en) Regenerative ac/de/ac power converter for a plurality of motors
JP3383100B2 (en) Abnormality detection device for power converter
GB2160722A (en) Uninterruptible power supply
EP0881732B1 (en) Apparatus for RMS current approximation
JPH0626473B2 (en) Current balance type switching regulator
US5506743A (en) Solid state overload relay with phase unbalance protection having RMS current approximation
US4870527A (en) Ground fault protection system
US5243489A (en) Protection circuit for multiple phase power system
US7649724B2 (en) Protective circuit for a converter
JPH0514501B2 (en)
JPH0630579A (en) Current detecting circuit
KR102551607B1 (en) Leakage Current Detector
JP2575474B2 (en) Circuit breaker
JP2575475B2 (en) Circuit breakers and breakers
JPH06233533A (en) Overcurrent control circuit of variable output regulator
JPS6059915A (en) Defect current protecting device
JP2504027B2 (en) Electronic thermal relay
JP2003302435A (en) Open phase detection device
JPH06121534A (en) Parallel operation system for dc power supply
KR0137953Y1 (en) Overcurrent protection circuit
JPS63209422A (en) Electronic thermal relay
JPS63228916A (en) Air harmonizer protector
JPH0566181A (en) Abnormal-state discriminating apparatus of resolver
JPH04105512A (en) Electronic switchgear