JPH05316702A - Reluctance motor - Google Patents

Reluctance motor

Info

Publication number
JPH05316702A
JPH05316702A JP11589192A JP11589192A JPH05316702A JP H05316702 A JPH05316702 A JP H05316702A JP 11589192 A JP11589192 A JP 11589192A JP 11589192 A JP11589192 A JP 11589192A JP H05316702 A JPH05316702 A JP H05316702A
Authority
JP
Japan
Prior art keywords
magnetic
rotor
axis
stator
reluctance motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11589192A
Other languages
Japanese (ja)
Inventor
Masayuki Morimoto
雅之 森本
Eiji Noda
英司 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11589192A priority Critical patent/JPH05316702A/en
Publication of JPH05316702A publication Critical patent/JPH05316702A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/12Machines characterised by means for reducing windage losses or windage noise

Landscapes

  • Synchronous Machinery (AREA)

Abstract

PURPOSE:To prepare the rotor of a reluctance motor to have a smooth and gently sloping shape so as to reduce a wind loss and noise by forming an optomagnetic section having a plurality of stripes along the magnetic path which is generated when exciting the alpha-axis of a cross-section perpendicular to the axis of the rotary shaft of the rotor. CONSTITUTION:A freely rotatable rotor 2 is installed in a cylindrical stator 1 equipped with an exciting coil inside. The rotor 2 is made of magnetic material such as arsenic steel plate, and has a pair of salient poles 2a which rotate facing the inner surface of the stator 1 and keeping a narrow gap 4a therebetween and a pair of recessed poles 2b which rotate facing the inner surface of the stator 1 and keeping a wide gap 4b therebetween. When d-axis excitation is performed by using the exciting coil of rotor 1, this magnetic flux generated flows via the gap 4a in a small magnetic path having a small magnetic resistance in the direction from one salient pole 2a to the other salient pole 2a, thereby forming a non-magnetic section having a plurality of slits 2c along the magnetic paths generated in between a pair of poles 2a. When q-axis excitation is carried out, the magnetic flux flowing in the magnetic path generated is obstructed by slits 2c, thereby increasing the magnetic resistance in the magnetic path. With this, the difference in magnetic resistance is increased, and the torque of the rotor is enhanced, thereby forming the rotor in a smooth and gently sloping shape so as to reduce the wind loss and noise.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、回転子の構造を改善
したリラクタンスモータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reluctance motor having an improved rotor structure.

【0002】[0002]

【従来の技術】従来のリラクタンスモータの断面図を図
7に示す、同図において、1は固定子であり、内部にコ
イルが巻回されている。2は回転子で軸3を中心に回転
する。固定子1と回転子2の極間の空隙部の距離は、突
極部2aでは4aで示され、凹極部2bでは4bで示さ
れる。固定子1および回転子2磁性体で構成されている
が、空隙部4a,4bは空気等の透磁性が低い物質であ
る。
2. Description of the Related Art A sectional view of a conventional reluctance motor is shown in FIG. 7, in which reference numeral 1 is a stator, in which a coil is wound. A rotor 2 rotates about an axis 3. The distance of the gap between the poles of the stator 1 and the rotor 2 is indicated by 4a for the salient pole portion 2a and 4b for the concave pole portion 2b. The stator 1 and the rotor 2 are made of magnetic material, but the voids 4a and 4b are substances having low magnetic permeability such as air.

【0003】図8は従来のリラクタンスモータの励磁状
態を示している。同図において、5aと5bで示す点線
は固定子1のコイル電流により発生す磁力線を表してい
る。同図(a) は固定子1と回転子2の位置関係で磁力線
5aが最小の空隙部4aを通る磁気抵抗が最小の場合で
あり、これをd軸励磁の状態と呼んでいる。同図(b) は
磁力線5bが回転子2の突極部4a以外のギャップの大
きい所を通るので磁気抵抗が最大の場合であり、これを
q軸励磁の状態と呼んでいる。
FIG. 8 shows an excited state of a conventional reluctance motor. In the figure, the dotted lines 5a and 5b represent magnetic lines of force generated by the coil current of the stator 1. FIG. 3A shows the case where the magnetic resistance of the magnetic field lines 5a passing through the void 4a having the smallest magnetic field resistance 5a due to the positional relationship between the stator 1 and the rotor 2 is the minimum, which is called the d-axis excitation state. FIG. 6B shows the case where the magnetic resistance is maximum because the magnetic force lines 5b pass through a large gap other than the salient pole portion 4a of the rotor 2, and this is called the q-axis excitation state.

【0004】このように、リラクタンスモータの固定子
1のコイルが生成する磁束の磁気回路は、回転子2の突
極部に対向するd軸励磁の状態の位置にあるときは、空
隙部4aの距離が狭いので磁気抵抗が小さく、凹極部2
bに対向するq軸励磁の状態の位置にあるときは、空隙
部4bの距離が広いので磁気抵抗が大きい。リラクタン
ススモータは、この二つの位置で磁気抵抗が異なること
を利用してトルクを発生させるものである。
As described above, when the magnetic circuit of the magnetic flux generated by the coil of the stator 1 of the reluctance motor is in the position of the d-axis excitation facing the salient pole portion of the rotor 2, the magnetic circuit of the gap 4a is formed. Since the distance is narrow, the magnetic resistance is small and the concave pole portion 2
At the position of the q-axis excitation state facing b, the magnetic resistance is large because the gap 4b is wide. The reluctance motor uses the difference in magnetic resistance between these two positions to generate torque.

【0005】このようなリラクタンスモータにおいて、
固定子1の磁極が突極部にあるときの磁気回路の自己イ
ンダンタンスをLd 、磁極が凹極部にあるときの磁気回
路の自己インダンタンスをLq とすれば、リラクタンス
モータのトルクTは次式に比例する。(Ld −Lq )I
2 なお、この式でIはコイルに流す電流である。
In such a reluctance motor,
If the self-inductance of the magnetic circuit when the magnetic pole of the stator 1 is in the salient pole portion is Ld, and the self-inductance of the magnetic circuit when the magnetic pole is in the concave pole portion is Lq, the torque T of the reluctance motor is Proportional to the formula. (Ld-Lq) I
2 In this equation, I is a current flowing through the coil.

【0006】この式を見て分かるとおり、Ld とLq と
の差が大きい程トルクを大きくすることができる。ま
た、自己インダンタンスLd ,Lq はその状態における
磁気抵抗に比例するので、d軸励磁の状態とq軸励磁の
状態における磁気抵抗の差を大きくすることがトルクを
増大させる条件である。
As can be seen from this equation, the larger the difference between Ld and Lq, the larger the torque can be. Since the self-inductances Ld and Lq are proportional to the magnetic resistance in that state, increasing the difference between the magnetic resistances in the d-axis excited state and the q-axis excited state is a condition for increasing the torque.

【0007】また、リラクタンスモータのd軸位置を励
磁した場合の起磁力と空隙中の磁束密度の分布を図9に
示す。固定子1に巻装されたコイルによって発生する一
極分の起磁力の分布は同図(a) の91のように示され
る。また、この起磁力91により空隙部に分布する磁束
密度の形状を同図(b) の92に示している。
FIG. 9 shows the distribution of magnetomotive force and magnetic flux density in the air gap when the d-axis position of the reluctance motor is excited. The distribution of the magnetomotive force of one pole generated by the coil wound around the stator 1 is shown as 91 in FIG. Further, the shape of the magnetic flux density distributed in the void due to the magnetomotive force 91 is shown at 92 in FIG.

【0008】このような磁束密度とモータの特性とは大
きな関係がある。つまり、同図(b)に示す磁束密度を調
波解析した空間的な基本波成分93によってモータのト
ルクの大半は決定されるようになっている。
There is a great relationship between such magnetic flux density and motor characteristics. That is, most of the torque of the motor is determined by the spatial fundamental wave component 93 obtained by harmonic analysis of the magnetic flux density shown in FIG.

【0009】[0009]

【発明が解決しようとする課題】上述したように、リラ
クタンスモータの特性は突極部の空隙距離4aと凹極部
の空隙距離4bによってほぼ決まってしまう。つまり、
突極部2aの磁気抵抗を小さくするためには、空隙距離
4aを極力短くする必要があるが、この空隙距離4aは
回転子2や軸3および軸受等の加工、組み立て精度で制
限されるので、余り空隙距離4aを狭く期待することは
現実的でない。
As described above, the characteristics of the reluctance motor are substantially determined by the gap distance 4a of the salient pole portion and the gap distance 4b of the concave pole portion. That is,
In order to reduce the magnetic resistance of the salient pole portion 2a, it is necessary to make the air gap distance 4a as short as possible, but this air gap distance 4a is limited by the processing and assembling accuracy of the rotor 2, the shaft 3, the bearing and the like. However, it is not realistic to expect the air gap distance 4a to be too small.

【0010】反対に凹極部2bの磁気抵抗を大きくする
ためには、空隙距離4bを極力長くする必要があるが、
これも軸3の太さまでより小さくできないので、空隙距
離4bを大きくすることも限度がある。
On the contrary, in order to increase the magnetic resistance of the concave pole portion 2b, it is necessary to make the gap distance 4b as long as possible.
Since this cannot be reduced to the thickness of the shaft 3 as well, there is a limit to increasing the gap distance 4b.

【0011】また、d軸励磁の状態の磁気抵抗を小さく
し、かつq軸励磁の磁気抵抗を大きくするため回転子の
形状を極端に細長い形状にすると、このような形状の回
転子2が回転することで風損が発生し、しかもサイレン
の原理で騒音も発生する。さらに、従来のリラクタンス
モータは固定子1の形状によるLq の増加によりトルク
を低減させる問題もある。
Further, if the shape of the rotor is made extremely slender in order to reduce the magnetic resistance in the d-axis excited state and increase the magnetic resistance in the q-axis excited state, the rotor 2 having such a shape rotates. As a result, windage loss occurs, and noise is also generated due to the siren principle. Further, the conventional reluctance motor has a problem that the torque is reduced due to the increase of Lq due to the shape of the stator 1.

【0012】図10はこの問題の説明図であり、同図
(a) はq軸励磁状態の磁力線の様子を示しており、図中
の1aは固定子1の磁極で、1bは隣り合う磁極1aの
間のスロット開口である。また、コイル巻線は隣り合う
磁極1aの間の1c部分に巻回されている。
FIG. 10 is an explanatory diagram of this problem.
(a) shows the state of magnetic force lines in the q-axis excitation state, where 1a is a magnetic pole of the stator 1 and 1b is a slot opening between adjacent magnetic poles 1a. The coil winding is wound around the portion 1c between the adjacent magnetic poles 1a.

【0013】このときのエアギャップの磁束分布を同図
(b) に示している。同図において5cは同図(a) の突極
部2a部分の磁束密度で、5dはスロット開口1b部分
の磁束密度を示している。同図に示すようにd軸励磁か
らq軸励磁に移る期間に、固定子1のスロット開口1b
の影響を受けて5dに示すような高い磁束が発生し、L
q の値が小さくならない、つまりトルクを低減させる問
題もあった。
The magnetic flux distribution in the air gap at this time is shown in FIG.
It is shown in (b). In the same figure, 5c shows the magnetic flux density of the salient pole portion 2a portion of the same figure, and 5d shows the magnetic flux density of the slot opening 1b portion. As shown in the figure, during the period from d-axis excitation to q-axis excitation, the slot opening 1b of the stator 1 is
High magnetic flux as shown in 5d is generated under the influence of
There was also a problem that the value of q did not become small, that is, the torque was reduced.

【0014】この発明は、このような問題を解決するた
めになされたもので、d軸励磁時とq軸励磁時のと磁気
抵抗の差を大きくすることが可能なリラクタンスモータ
を提供することを目的としている。
The present invention has been made to solve such a problem, and an object thereof is to provide a reluctance motor capable of increasing the difference in magnetic resistance between d-axis excitation and q-axis excitation. Has a purpose.

【0015】[0015]

【課題を解決するための手段】この発明のリラクタンス
モータは、筒状をなし内部に複数の固定子巻線を有する
固定子と、この固定子内に挿入され前記筒状内を回転す
る回転軸を有しこの回転軸の周りに前記固定子の内面と
の空隙が狭い突極部と空隙の広い凹極部とを有する磁性
部材よりなる回転子とを具備するリラクタンスモータで
あって、回転子の回転軸の軸芯と直交する断面のd軸励
磁時の磁路に沿って複数条の非磁性部を設けたことを特
徴としている。また、回転子の突極部から凹極部に至る
表面はなだらかに変化することも特徴としている。ま
た、複数条の非磁性部は空隙または非磁性部材で形成さ
れていることも特徴としている。さらに、複数条の非磁
性部の端部は交互に突極部面に露出していることも特徴
としている。
A reluctance motor according to the present invention comprises a stator having a tubular shape and a plurality of stator windings inside, and a rotary shaft inserted in the stator and rotating in the tubular shape. A reluctance motor comprising: a rotor made of a magnetic member having a salient pole portion having a narrow gap with the inner surface of the stator and a concave pole portion having a wide gap around the rotation axis, Is characterized in that a plurality of non-magnetic portions are provided along the magnetic path when the d-axis is excited in a cross section orthogonal to the axis of the rotating shaft. It is also characterized in that the surface from the salient pole portion to the concave pole portion of the rotor changes gently. Further, it is also characterized in that the plurality of non-magnetic portions are formed by voids or non-magnetic members. Furthermore, it is also characterized in that the end portions of the plurality of non-magnetic portions are alternately exposed to the salient pole portion surface.

【0016】[0016]

【作用】このように構成することで、回転子のd軸励磁
時における磁気抵抗とq軸励磁時における磁気抵抗との
差を大きくすることができ、トルクを増大することが可
能になる。また、回転子の突極部から凹極部に至る表面
をなだらかに変化させることで風損や騒音を軽減でき
る。また、複数条の非磁性部に非磁性部材を充填して形
成することで風損や騒音を軽減できる。
With this structure, the difference between the magnetic resistance when the rotor is d-axis excited and the magnetic resistance when the rotor is q-axis excited can be increased, and the torque can be increased. Further, by gently changing the surface from the salient pole portion to the concave pole portion of the rotor, windage loss and noise can be reduced. Further, wind loss and noise can be reduced by forming a plurality of non-magnetic portions by filling non-magnetic members.

【0017】さらに、複数条の非磁性部の端部を交互に
突極部面に露出させることで、回転子の機械的強度を損
なうことなくq軸励磁時における磁気抵抗を大きくする
ことができる。
Further, by alternately exposing the end portions of the plurality of non-magnetic portions to the salient pole portion surface, it is possible to increase the magnetic resistance during q-axis excitation without impairing the mechanical strength of the rotor. ..

【0018】[0018]

【実施例】以下、図面を参照しながらこの発明の一実施
例を説明する。図1は第一の実施例の説明するリラクタ
ンスモータの断面図である。同図において、1は筒状の
固定子で、この固定子1の内部には図示しない励磁コイ
ルが設けられている。2は回転子で、この回転子2は回
転軸3に軸支されて、固定子1の筒状の内面に沿って回
転するように構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a reluctance motor described in the first embodiment. In the figure, reference numeral 1 denotes a cylindrical stator, and an exciting coil (not shown) is provided inside the stator 1. A rotor 2 is rotatably supported by a rotary shaft 3 and is configured to rotate along the cylindrical inner surface of the stator 1.

【0019】回転子2は珪素鋼板等の磁性部材でなり、
固定子1の筒状の内面に近接し空隙4aを保って回転す
る一対の突極部2aと、固定子1との間に大きな空隙4
bを有する凹極部2bで形成されており、固定子1の励
磁コイルで発生したd軸励磁時の磁束は、空隙4aを介
して一方の突極部2aから他方の突極部2aへ抜けるよ
うに磁路が形成されている。
The rotor 2 is made of a magnetic material such as silicon steel plate,
A large gap 4 is provided between the stator 1 and a pair of salient pole portions 2a which are close to the cylindrical inner surface of the stator 1 and rotate with a gap 4a.
The magnetic flux at the time of d-axis excitation generated by the exciting coil of the stator 1 is formed by the concave pole portion 2b having b, and escapes from one salient pole portion 2a to the other salient pole portion 2a through the air gap 4a. Thus, the magnetic path is formed.

【0020】また、この回転子2の内部には磁路に沿っ
て複数のスリット2cが設けられている。このスリット
2cは回転子2が珪素鋼板で構成される場合は、少なく
とも1mm以上の幅に形成する。なお、スリット2c内は
単なる空隙でもよく、回転子2の強度を保つため非磁性
部材を充填してもよい。
A plurality of slits 2c are provided inside the rotor 2 along the magnetic path. When the rotor 2 is made of a silicon steel plate, the slit 2c is formed to have a width of at least 1 mm or more. It should be noted that the slit 2c may be simply a void, or may be filled with a non-magnetic member in order to maintain the strength of the rotor 2.

【0021】このように回転子2を構成することで、図
2(a) に示すようにd軸励磁時の磁束5aは、一方の突
極部2aから他方の突極部2aへスリット2cに沿った
磁路を通るので、スリット2cによる磁気抵抗の増加は
少ない。一方、図2(b) に示すようにq軸励磁時の磁束
5bは、スリット2cにより、回転子2内の磁路が妨げ
られるので磁気抵抗が大巾に増加する。
By constructing the rotor 2 in this way, as shown in FIG. 2 (a), the magnetic flux 5a at the time of d-axis excitation is formed in the slit 2c from one salient pole portion 2a to the other salient pole portion 2a. Since it passes along the magnetic path, the increase in magnetic resistance due to the slit 2c is small. On the other hand, as shown in FIG. 2B, the magnetic flux of the magnetic flux 5b during the q-axis excitation is greatly increased because the slit 2c blocks the magnetic path in the rotor 2.

【0022】つまりq軸励磁時におけるインダンタンス
をLq は大巾に減少して、d軸励磁時のインダンタンス
をLd との差が大きくなり、この実施例のリラクタンス
モータのトルクを増大させることができる。
That is, the inductance at the time of q-axis excitation is greatly reduced, and the difference between the inductance at the time of d-axis excitation and Ld becomes large, and the torque of the reluctance motor of this embodiment can be increased. it can.

【0023】図3は第二の実施例の構成を示している。
この実施例では複数のスリット2cの内で交互に配置さ
れる一方のスリット2cの端部を突極部2aの端面に露
出させている。
FIG. 3 shows the configuration of the second embodiment.
In this embodiment, one end of one slit 2c, which is alternately arranged among the plurality of slits 2c, is exposed to the end face of the salient pole portion 2a.

【0024】このように構成することで、図4(a) に示
すようにd軸励磁時の磁束5aは、第一の実施例と同様
に、一方の突極部2aから他方の突極部2aへスリット
2cに沿った磁路を通るので、スリット2cによる磁気
抵抗の増加は少ない。
With this structure, as shown in FIG. 4 (a), the magnetic flux 5a at the time of d-axis excitation is similar to that of the first embodiment from one salient pole portion 2a to the other salient pole portion. Since the magnetic path along the slit 2c is passed to 2a, the increase in magnetic resistance due to the slit 2c is small.

【0025】一方、図4(b) に示すようにq軸励磁時の
磁束5bは、突極部2aの端面近くの磁路が、突極部2
aの端面に端部が露出したスリット2cにより妨げげら
れて磁路は長くなるので磁気抵抗がさらに大巾に増加す
る。したがって、この実施例のリラクタンスモータのト
ルクをさらに増大させることができる。
On the other hand, as shown in FIG. 4 (b), in the magnetic flux 5b during the q-axis excitation, the magnetic path near the end face of the salient pole portion 2a is
Since the magnetic path is lengthened by being obstructed by the slit 2c whose end is exposed on the end face of a, the magnetic resistance is further greatly increased. Therefore, the torque of the reluctance motor of this embodiment can be further increased.

【0026】第一の実施例では、スリット2cの端部が
突極部2aの端面に露出しないものを、第二の実施例で
は、スリット2cの端部が交互に突極部2aの端面に露
出したものを示したが、回転子2の機械的強度が許せ
ば、すべてのスリット2cの端部を突極部2aの端面に
露出させることもできる。
In the first embodiment, the end of the slit 2c is not exposed on the end face of the salient pole portion 2a. In the second embodiment, the end of the slit 2c is alternately placed on the end face of the salient pole portion 2a. Although the exposed portion is shown, the end portions of all the slits 2c can be exposed at the end surface of the salient pole portion 2a if the mechanical strength of the rotor 2 permits.

【0027】第一,第二の実施例は説明の都合で、空隙
4aと空隙4bとの寸法差が大きいつまり、回転子2の
形は対向する突極部2aに沿って細長いものを説明した
が、スリット2cを設けることで、極端に細長くしない
でも、q軸励磁時の磁気抵抗を十分に大きくすることが
できる。したがって、回転子2を円筒に近い形にするこ
とも可能で、風損を減少させることができる。
In the first and second embodiments, for convenience of description, the dimensional difference between the air gap 4a and the air gap 4b is large, that is, the shape of the rotor 2 is elongated along the opposing salient pole portions 2a. However, by providing the slit 2c, it is possible to sufficiently increase the magnetic resistance at the time of q-axis excitation without making it extremely thin. Therefore, the rotor 2 can be formed into a shape close to a cylinder, and windage loss can be reduced.

【0028】このような考えに基づいた第三の実施例を
図5により説明する。同図において1aは固定子1の磁
極であり、隣合う磁極1aの間にスロット開口1bが設
けられている。
A third embodiment based on such an idea will be described with reference to FIG. In the figure, 1a is a magnetic pole of the stator 1, and a slot opening 1b is provided between adjacent magnetic poles 1a.

【0029】回転子2は断面が楕円状をなしており、こ
の楕円の長軸の先端部が突極部2aとなり、短軸の先端
部が凹極部2bとなっている。この回転子2の楕円の長
軸方向つまり、d軸励磁時の磁路に沿ってスリット2c
を、固定子1のスロット開口1bに対応する間隔位置に
複数設けている。この実施例では、スリット2cの端部
を回転子2の表面に露出させて、q軸励磁時における磁
気抵抗の増大を図っている。
The rotor 2 has an elliptical cross section, and the major axis of the ellipse has a salient pole portion 2a, and the minor axis has a concave pole portion 2b. The slit 2c is formed along the major axis direction of the ellipse of the rotor 2, that is, along the magnetic path when the d-axis is excited.
Are provided at intervals corresponding to the slot openings 1b of the stator 1. In this embodiment, the end of the slit 2c is exposed on the surface of the rotor 2 to increase the magnetic resistance during q-axis excitation.

【0030】このように構成することで、回転子2の形
状が突極部2aから凹極部2bに向かってなだらかな楕
円状をなし、空隙4aと4bとの寸法差が少なくても、
スリット2cの作用でd軸励磁時の磁気抵抗とq軸励磁
時における磁気抵抗の差を大きく確保することができ
る。
With this structure, the rotor 2 has a gentle elliptical shape from the salient pole portion 2a toward the concave pole portion 2b, and even if the dimensional difference between the gaps 4a and 4b is small,
Due to the action of the slits 2c, a large difference can be secured between the magnetic resistance during d-axis excitation and the magnetic resistance during q-axis excitation.

【0031】また、スリット2cを固定子1のスロット
開口1bに対応する間隔位置に設けることで、隣の磁極
1aによる磁束の増加を防いで、q軸励磁時において磁
気抵抗が減少するのを防止している。図6は、この実施
例のエアギャップにおける磁束分布を示している。同図
(a)はd軸励磁の場合を、同図(b) はq軸励磁時の場合
の磁束分布を示している。
Further, by providing the slits 2c at intervals corresponding to the slot openings 1b of the stator 1, it is possible to prevent the magnetic flux from increasing due to the adjacent magnetic pole 1a and prevent the magnetic resistance from decreasing when the q-axis is excited. is doing. FIG. 6 shows the magnetic flux distribution in the air gap of this embodiment. Same figure
(a) shows the magnetic flux distribution in the case of d-axis excitation, and (b) shows the magnetic flux distribution in the case of q-axis excitation.

【0032】これらの図に示すように、d軸励磁の場合
は、磁束分布は正弦波状になっており、基本波成分は従
来のものより大きく、したがってインダンタンスをLd
は大きくなる。
As shown in these figures, in the case of d-axis excitation, the magnetic flux distribution is sinusoidal, and the fundamental wave component is larger than that of the conventional one, so the inductance is Ld.
Grows.

【0033】一方、同図(b) に示すq軸励磁時の場合
は、磁束分布は凹形になっており、d軸励磁の場合より
基本波成分は大きいが、スリット2cにより磁束密度を
小さく抑えている。この実施例によれば、回転子2は断
面がだらかな楕円形状をなしているので、空気抵抗が少
なく風損や騒音を軽減することができる。
On the other hand, in the case of q-axis excitation shown in FIG. 7B, the magnetic flux distribution is concave, and the fundamental wave component is larger than in the case of d-axis excitation, but the slit 2c reduces the magnetic flux density. Hold down. According to this embodiment, since the rotor 2 has an elliptical shape with a gentle cross section, air resistance is small and windage and noise can be reduced.

【0034】また、この実施例においても、スリット2
cは単なる空隙でも、非磁性材が充填されていてもよい
が、非磁性材が充填されていれば、さらに、風損や騒音
を軽減することができる。なお、この発明は上記各実施
例に限定されるものではなく、要旨を変更しない範囲で
変形して実施できる。
Also in this embodiment, the slit 2
c may be a mere void or may be filled with a non-magnetic material, but if filled with a non-magnetic material, windage loss and noise can be further reduced. The present invention is not limited to the above embodiments, and can be modified and implemented without changing the scope of the invention.

【0035】上記各実施例は回転子が二極構成のものを
説明したが、複極構成の回転子についても適用できる。
この場合もスリットは回転子のd軸励磁時の磁路に沿っ
て設ければよい。また、スリットの形状や配置も実施例
のものに限定されない。
In each of the above embodiments, the rotor has a two-pole structure, but it can be applied to a multi-pole rotor.
Also in this case, the slits may be provided along the magnetic path when the d-axis of the rotor is excited. Further, the shape and arrangement of the slits are not limited to those of the embodiment.

【0036】[0036]

【発明の効果】この発明によれば、回転子のd軸励磁時
の磁路に沿ってスリットを設けることで、q軸励磁時に
おける磁気抵抗を大きくすることができ、トルクの増大
が図れる。また、スリットを設けることで、回転子の形
状を風損や騒音の発生の少ないなだらか形に形成でき
る。さらに、スリット内に非磁性部材を充填すること
で、更に風損や騒音の軽減が図れる。
According to the present invention, by providing the slit along the magnetic path when the d-axis of the rotor is excited, the magnetic resistance when the q-axis is excited can be increased and the torque can be increased. Further, by providing the slit, the shape of the rotor can be formed into a gentle shape with less generation of wind loss and noise. Furthermore, by filling the slits with a non-magnetic member, wind loss and noise can be further reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第一の実施例のリラクタンスモータ
の構成断面図。
FIG. 1 is a structural cross-sectional view of a reluctance motor according to a first embodiment of the present invention.

【図2】同実施例の磁路の説明図。FIG. 2 is an explanatory diagram of a magnetic path of the embodiment.

【図3】第二の実施例のリラクタンスモータの構成断面
図。
FIG. 3 is a configuration cross-sectional view of a reluctance motor according to a second embodiment.

【図4】同実施例の磁路の説明図。FIG. 4 is an explanatory diagram of a magnetic path of the embodiment.

【図5】第三の実施例のリラクタンスモータの構成断面
図。
FIG. 5 is a structural cross-sectional view of a reluctance motor according to a third embodiment.

【図6】同実施例の回転電気角に対応する磁束密度につ
いての説明図。
FIG. 6 is an explanatory diagram of a magnetic flux density corresponding to a rotating electrical angle in the example.

【図7】従来のリラクタンスモータの構成断面図。FIG. 7 is a configuration cross-sectional view of a conventional reluctance motor.

【図8】従来のリラクタンスモータの磁路の説明図。FIG. 8 is an explanatory diagram of a magnetic path of a conventional reluctance motor.

【図9】従来のリラクタンスモータの電気角に対応する
磁束密度についての説明図。
FIG. 9 is an explanatory diagram of a magnetic flux density corresponding to an electrical angle of a conventional reluctance motor.

【図10】従来のリラクタンスモータの固定子の形状が
磁路に与える影響を説明する磁束分布図。
FIG. 10 is a magnetic flux distribution diagram for explaining the influence of the shape of the stator of the conventional reluctance motor on the magnetic path.

【符号の説明】[Explanation of symbols]

1…固定子、1a…磁極、1b…スロット開口、2…回
転子、2a…突極部、2b…凹極部、2c…スリット、
3…回転軸、4a、4b…空隙、5a,5b…磁束、5
c,5d……磁束密度。
1 ... Stator, 1a ... Magnetic pole, 1b ... Slot opening, 2 ... Rotor, 2a ... Salient pole part, 2b ... Recessed pole part, 2c ... Slit,
3 ... Rotation axis, 4a, 4b ... Air gap, 5a, 5b ... Magnetic flux, 5
c, 5d ... Magnetic flux density.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】筒状をなし内部に複数の固定子巻線を有す
る固定子と、この固定子内に挿入され前記筒状内を回転
する回転軸を有しこの回転軸の周りに前記固定子の内面
との空隙が狭い突極部と空隙の広い凹極部とを有する磁
性部材よりなる回転子とを具備するリラクタンスモータ
であって、 上記回転子の上記回転軸の軸芯と直交する断面のd軸励
磁時の磁路に沿って複数条の非磁性部を設けたことを特
徴とするリラクタンスモータ。
1. A stator having a tubular shape and having a plurality of stator windings inside thereof, and a rotary shaft inserted into the stator and rotating in the tubular shape, wherein the fixed shaft is provided around the rotary shaft. A reluctance motor including a rotor made of a magnetic member having a salient pole portion having a narrow gap with an inner surface of a child and a concave pole portion having a wide gap, and being orthogonal to an axis of the rotation shaft of the rotor. A reluctance motor having a plurality of non-magnetic portions provided along a magnetic path when a d-axis is excited in a cross section.
【請求項2】上記回転子の突極部から凹極部に至る表面
はなだらかに変化させたことを特徴とした請求項1記載
のリラクタンスモータ。
2. The reluctance motor according to claim 1, wherein the surface of the rotor from the salient pole portion to the concave pole portion is gently changed.
【請求項3】上記複数条の非磁性部は空隙または非磁性
部材で形成されていることを特徴とする請求項1または
請求項2記載のリラクタンスモータ。
3. The reluctance motor according to claim 1, wherein the plurality of non-magnetic portions are formed of voids or non-magnetic members.
【請求項4】上記複数条の非磁性部の端部は交互に突極
部面に露出していることを特徴とする請求項1乃至請求
項3のいずれかに記載のリラクタンスモータ。
4. The reluctance motor according to claim 1, wherein end portions of the plurality of non-magnetic portions are alternately exposed on the salient pole portion surface.
JP11589192A 1992-05-08 1992-05-08 Reluctance motor Withdrawn JPH05316702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11589192A JPH05316702A (en) 1992-05-08 1992-05-08 Reluctance motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11589192A JPH05316702A (en) 1992-05-08 1992-05-08 Reluctance motor

Publications (1)

Publication Number Publication Date
JPH05316702A true JPH05316702A (en) 1993-11-26

Family

ID=14673758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11589192A Withdrawn JPH05316702A (en) 1992-05-08 1992-05-08 Reluctance motor

Country Status (1)

Country Link
JP (1) JPH05316702A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191618A (en) * 1995-10-30 1997-07-22 Okuma Mach Works Ltd Synchronous motor and rotor of motor
JP2001268868A (en) * 2000-03-22 2001-09-28 Daikin Ind Ltd Switched reluctance motor
EP1995426A1 (en) * 2007-05-24 2008-11-26 SycoTec GmbH & Co. KG Electric motor
FR3029026A1 (en) * 2014-11-20 2016-05-27 Valeo Systemes De Controle Moteur ELECTRIC MACHINE HAVING HELICOIDAL TEETH FOR APPLICATION IN A MOTOR VEHICLE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191618A (en) * 1995-10-30 1997-07-22 Okuma Mach Works Ltd Synchronous motor and rotor of motor
JP2001268868A (en) * 2000-03-22 2001-09-28 Daikin Ind Ltd Switched reluctance motor
EP1995426A1 (en) * 2007-05-24 2008-11-26 SycoTec GmbH & Co. KG Electric motor
WO2008141670A1 (en) * 2007-05-24 2008-11-27 Lindenmaier Ag Turbocharger ii
FR3029026A1 (en) * 2014-11-20 2016-05-27 Valeo Systemes De Controle Moteur ELECTRIC MACHINE HAVING HELICOIDAL TEETH FOR APPLICATION IN A MOTOR VEHICLE

Similar Documents

Publication Publication Date Title
JP6702550B2 (en) Rotor and reluctance motor
JPS61280744A (en) Rotor with permanent magnet
JP2001103719A (en) Flux-barrier synchronous reluctance motor
JP2004104962A (en) Permanent magnet type reluctance rotary electric machine
JP6671553B1 (en) Rotating electric machine
JP3280896B2 (en) Permanent magnet type reluctance type rotating electric machine
JPS6028758A (en) Rotary electric machine with permanent magnet
JP5910464B2 (en) Rotating electrical machine rotor
JPH0456542B2 (en)
JPH11299131A (en) Motor with gap having various shape
JP4284981B2 (en) Permanent magnet motor
JP5920472B2 (en) Rotating electric machine and rotor
JP3835231B2 (en) Electric motor
JP3703907B2 (en) Brushless DC motor
JP3487667B2 (en) Rotor structure
JP3772819B2 (en) Coaxial motor rotor structure
JPH05316702A (en) Reluctance motor
JP6904882B2 (en) Rotor of synchronous motor
KR100548716B1 (en) Rotor structure having a flux barrier for flux concentration in a spoke type permanent magnet motor
JPH10290542A (en) Motor
JP2005210828A (en) Rotating electric machine and rotor therefor
JP4720024B2 (en) Permanent magnet synchronous motor
JP2004032918A (en) Permanent magnet rotary electric machine
JPH1080124A (en) Permanent magnet type rotating electric machine
JPH04271258A (en) Motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803