JPH0531442A - Method for hardening aqueous alkali silicate-based inorganic coating material - Google Patents

Method for hardening aqueous alkali silicate-based inorganic coating material

Info

Publication number
JPH0531442A
JPH0531442A JP18766491A JP18766491A JPH0531442A JP H0531442 A JPH0531442 A JP H0531442A JP 18766491 A JP18766491 A JP 18766491A JP 18766491 A JP18766491 A JP 18766491A JP H0531442 A JPH0531442 A JP H0531442A
Authority
JP
Japan
Prior art keywords
coating
coating film
temperature
irradiation
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18766491A
Other languages
Japanese (ja)
Inventor
Toshiro Kimura
敏郎 木村
Yukikazu Moritsu
幸和 森津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKUNO SEIYAKU KOGYO KK
Okuno Chemical Industries Co Ltd
Original Assignee
OKUNO SEIYAKU KOGYO KK
Okuno Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKUNO SEIYAKU KOGYO KK, Okuno Chemical Industries Co Ltd filed Critical OKUNO SEIYAKU KOGYO KK
Priority to JP18766491A priority Critical patent/JPH0531442A/en
Publication of JPH0531442A publication Critical patent/JPH0531442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To prevent cracking and film exfoliation and to improve resistance to water, chemicals, corrosion and contamination by specifying the relation between the thickness of a coating film and the temp. of a coated plate and the wavelength of IR having short wavelength for irradiation when the coating material is hardened in a hot stove, and by specifying the temp. of the coated plate at the time of the subsequent concluding hardening. CONSTITUTION:A plate is coated with a coating material and this coating material is hardened in a hot stove irradiation with IR having short wavelength of 0.7-3mum. This irradiation is carried out until the temp. of the coated plate attains to 100-180 deg.C in case of <25mum thickness of the resulting coating film and to 100-130'C in case of 25-45mum. Thereafter, hardening is carried out at 200-300 deg. temp. of the coated plate. Since a change in film thickness due to complex shape can easily be controlled by a wide range of work conditions, the coating film does not crack or exfoliate and performance peculiar to the coating material can be satisfactorily brought out. A coating film having especially excellent resistance to water, chemicals, corrosion and contamination is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種金属製品およびカ
ラス、セラミックス、タイル、スレートなどの窯業製品
等に、クラックおよび膜剥離が起こらず、耐水性、耐化
学性、耐蝕性および耐汚染性に優れた塗膜を形成せしめ
るための硬化方法に係わる。
BACKGROUND OF THE INVENTION The present invention relates to various metal products and ceramic products such as crows, ceramics, tiles and slate, which are free from cracks and film peeling, and have water resistance, chemical resistance, corrosion resistance and stain resistance. The present invention relates to a curing method for forming an excellent coating film.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】水系ア
ルカリ珪酸塩系無機塗料は、珪酸塩のモル比が高くなる
に従い耐水性、耐化学性などは向上するが、同時に塗膜
にクラックが発生したり、素材と塗料の密着性が悪くな
ることが知られている。この原因として、塗装後のセッ
ティング温度、セッティング時間及び硬化時の昇温速
度、硬化炉内の熱風の強弱などに拠るところが大きいた
め、硬化条件を極めて狭い範囲に設定しなければならな
い欠点があった。
2. Description of the Related Art Water-based alkali silicate inorganic coatings have improved water resistance and chemical resistance as the silicate molar ratio increases, but at the same time cracks occur in the coating film. It is known that the adhesion between the material and the paint deteriorates. This is largely due to the setting temperature after coating, the setting time, the temperature rising rate during curing, the strength of the hot air in the curing oven, etc., so the curing conditions had to be set within an extremely narrow range. ..

【0003】また、水系無機塗料の焼き付け方法(特開
平3−30875号公報参照)はこの欠点を一部解消す
るものであるが、この方法ではセッティング時間を10
分以内に抑えること、遠赤外加熱時の塗板の温度を15
0℃以下に抑えること及びその昇温速度を10℃/分以
上、好ましくは50℃/分以上とすること等厳格な設定
条件が要求され、これらの条件をすべて満足させるには
塗板の性状(重量、寸法、材質等)に合わせて照射距
離、照射出力をきめ細かく制御する必要があり、このよ
うな制御を行うのは容易ではなかった。
A method of baking an aqueous inorganic coating (see Japanese Patent Application Laid-Open No. 3-30875) partially eliminates this drawback, but this method requires a setting time of 10 minutes.
Keep it within a minute, and keep the temperature of the coated plate at 15
Strict setting conditions such as keeping the temperature below 0 ° C. and increasing the temperature rising rate at 10 ° C./min or more, preferably 50 ° C./min or more are required. To satisfy all these conditions, the properties of the coated plate ( It is necessary to finely control the irradiation distance and the irradiation output according to the weight, size, material, etc.), and it is not easy to perform such control.

【0004】本発明の目的は、厳格な硬化条件を要求す
ること無く、クラックおよび膜剥離が起こらず、耐水
性、耐化学性、耐蝕性および耐汚染性に優れた水系アル
カリ珪酸塩系無機塗料の塗膜を形成させる水系アルカリ
珪酸塩系無機塗料の硬化方法を提供することにある。
The object of the present invention is to provide a water-based alkali silicate-based inorganic coating material which does not require strict curing conditions, does not cause cracks and film peeling, and is excellent in water resistance, chemical resistance, corrosion resistance and stain resistance. Another object of the present invention is to provide a method for curing a water-based alkali silicate-based inorganic coating material for forming the above coating film.

【0005】[0005]

【課題を解決するための手段】本発明者は、水系アルカ
リ珪酸塩系無機塗料の硬化に際し、前述の問題点を解決
すべく鋭意検討を重ねた結果、波長が0.7〜3μmの
短波長赤外線照射を行うと、より簡単な操作条件で優れ
た水系アルカリ珪酸塩系無機塗料の塗膜を形成できるこ
とを見出し、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to cure the above-mentioned problems when curing an aqueous alkaline silicate inorganic coating material, and as a result, have a wavelength of 0.7 to 3 μm. The inventors have found that the irradiation of infrared rays makes it possible to form a coating film of an excellent water-based alkali silicate-based inorganic coating under simpler operating conditions, and completed the present invention.

【0006】即ち、本発明は、水系アルカリ珪酸塩系無
機塗料を塗装後、硬化する方法において、塗料を熱風炉
で硬化するまでに、塗膜厚が25μm未満では塗板の温
度が100〜180℃に達するまで、塗膜厚が25〜4
5μmでは塗板の温度が100〜130℃に達するまで
波長が0.7〜3μmの短波長赤外線照射を行い、その
あと200〜300℃の塗板の温度で本硬化を行うこと
を特徴とする水系アルカリ珪酸塩系無機塗料の硬化方法
を提供するものである。
That is, according to the present invention, in a method of curing after coating a water-based alkaline silicate-based inorganic coating material, the coating plate temperature is 100 to 180 ° C. until the coating material is cured in a hot air oven if the coating film thickness is less than 25 μm. Until the film thickness reaches 25-4
At 5 μm, a short-wave infrared ray with a wavelength of 0.7 to 3 μm is irradiated until the temperature of the coated plate reaches 100 to 130 ° C., and then main curing is performed at the temperature of the coated plate of 200 to 300 ° C. The present invention provides a method for curing a silicate-based inorganic coating material.

【0007】以下に本発明の基本的な概念について説明
する。
The basic concept of the present invention will be described below.

【0008】本発明者らは、水系アルカリ珪酸塩系無機
塗料の硬化に際して最も重要な因子として「熱風」の存
在があるものと考えた。すなわち、熱風の存在化で塗膜
を乾燥硬化すれば、塗膜表面のゲル化はそれ以下の塗膜
層よりもはるかに速く進行しする。また、熱風硬化炉で
は、主に対流エネルギーにより加熱されるため下層への
さらに素材への熱伝導も一層悪いものである。一方、ア
ルカリ珪酸塩のゲル化による体積収縮は、極めて大きく
なるため、各塗膜層で、著しい体積収縮差が発生する。
この差が大きくなると、微細なクラック、さらには大き
いクラックへ進展する。また、素地と塗膜界面では、そ
れぞれのシラノール基同志が反応し密着が完成されるの
であるが、先の理由から十分な熱の供給がない状態で上
層は熱風と対流により加熱されゲル化が進み、収縮して
いくため塗膜剥離へ繋がっていくものと考えられる。
The present inventors have considered that the presence of "hot air" is the most important factor in curing an aqueous alkaline silicate inorganic coating material. That is, when the coating film is dried and hardened in the presence of hot air, the gelation of the coating film surface proceeds much faster than that of the coating layer below that. Further, in the hot-air curing furnace, the heat conduction to the lower layer is even worse because the material is heated mainly by convection energy. On the other hand, since the volume contraction due to gelation of the alkali silicate is extremely large, a significant difference in volume contraction occurs between the coating layers.
When this difference becomes large, it progresses to fine cracks and further to large cracks. In addition, at the interface between the base material and the coating film, the respective silanol groups react to complete the adhesion, but due to the above reason, the upper layer is heated by hot air and convection without sufficient heat supply and gelation occurs. It is thought that this will lead to peeling of the coating as it progresses and shrinks.

【0009】そこで、長波長の遠赤外照射は、水の蒸
発、反応生成水の気化に対しては極めて効果的に働く
が、その加熱効率の良さのため、とくに素材が厚くなれ
ばなるほど、塗膜は短時間で昇温することになり、素材
温度はついていかれず塗膜界面と素材の反応が進む前に
上層がゲル化して収縮し、密着を阻害する。また、セッ
テイングを10分以内にしなければクラック、剥離が発
生するのは、セッテイングの間に表面のゲル化が進みつ
つあり、そこに高効率遠赤外照射が加速して、表面は大
きい体積収縮が起こることに起因し、セッテイングを1
0分以上にするとクラック、剥離へと進み、良好な塗膜
がえられない。また、高効率であるため、常に塗板の形
状(重量、寸法、材質)の変化に対して照射距離などの
きめ細かい制御をしなければ、昇温加熱速度が速くなり
すぎて、塗膜が膨れる。この制御のために、遠赤外炉の
炉長、炉幅を長くする必要性が生じ、非経済的で作業能
率も低下し、かつ又、設置面積も大きくなり最適な硬化
方法とは言いがたい。
Therefore, long-wavelength far-infrared irradiation works extremely effectively against evaporation of water and vaporization of reaction product water, but because of its good heating efficiency, the thicker the material, the more The temperature of the coating film rises in a short time, the temperature of the material is not kept up, and the upper layer gels and shrinks before the reaction between the coating material interface and the material proceeds, which hinders adhesion. If the setting is not done within 10 minutes, cracks and peeling will occur because the gelation of the surface is progressing during the setting, and highly efficient far-infrared irradiation accelerates there, causing a large volume shrinkage of the surface. Due to the occurrence of
If it is 0 minutes or more, cracking and peeling proceed, and a good coating film cannot be obtained. Further, since the efficiency is high, the temperature rising heating rate becomes too fast and the coating film swells unless fine control of the irradiation distance or the like is always performed with respect to changes in the shape (weight, size, material) of the coated plate. Due to this control, it is necessary to increase the furnace length and furnace width of the far infrared furnace, which is uneconomical, the work efficiency is reduced, and the installation area is large. I want to.

【0010】本発明で用いる短波長の近赤外照射は、水
系アルカリ珪酸塩系無機塗料の塗膜加熱昇温という点で
は遠赤照射に比べ効率は悪いが、過度の急激な昇温をと
らないため、塗膜表面から素地界面までゲル化度に大き
い差を生じることなく進行するので、クラック、剥離も
なく塗膜を形成するため、後の実施例で示されるように
水系アルカリ珪酸塩無機塗料に極めて適した予備加熱方
法であることが判明した。而も、その照射距離の制御幅
も広く結果的には、照射炉長、幅とも長くすることなく
作業できることが判った。
The short-wavelength near-infrared irradiation used in the present invention is inefficient as compared with far-infrared irradiation in terms of heating temperature of a coating film of a water-based alkali silicate-based inorganic coating, but excessively rapid temperature rise is caused. Since it does not occur, it progresses from the surface of the coating film to the interface of the substrate without causing a large difference in gelation degree, so that the coating film is formed without cracks or peeling. It proved to be a very suitable preheating method for paints. Moreover, it was found that the control range of the irradiation distance was wide and, as a result, the work could be performed without increasing the length and width of the irradiation furnace.

【0011】このように、赤外照射は、塗膜の表面層か
ら素地界面まで著しいゲル化度の差を生じない加熱方式
が最適であることを見出し、とくに実験1から素地と界
面でのシラノール基間で反応が進んでいる状況ができれ
ば、クラック、剥離のない良好な塗膜が得られることが
判った。
As described above, it has been found that the infrared irradiation is most suitable for the heating method that does not cause a remarkable difference in gelation degree from the surface layer of the coating film to the interface of the substrate, and especially from Experiment 1, silanol at the substrate and the interface is found. It was found that a good coating film free from cracks and peeling can be obtained if the reaction between the bases is allowed to proceed.

【0012】実験1. 加熱塗板への水系アルカリ珪酸
塩系無機塗料の塗布、熱風硬化 素材 脱脂されたステンレスSUS304 (0.4×
70×150mm) 塗装 水系アルカリ珪酸塩系無機塗料 CRM−700S(奥野製薬工業株社製) 20μm(硬化膜厚) スプレー塗布 硬化 25〜100℃ 20分で昇温 100〜150℃ 10分で昇温 150〜230℃ 12分で昇温 230℃で20分
硬化
Experiment 1. Application of water-based alkaline silicate inorganic coating on heat-coated plate, hot air curing Material Degreased stainless steel SUS304 (0.4 x
70 × 150 mm) Coating Water-based alkaline silicate-based inorganic coating CRM-700S (Okuno Pharmaceutical Co., Ltd.) 20 μm (cured film thickness) Spray coating Curing 25-100 ° C. 20 minutes temperature increase 100-150 ° C. 10 minutes temperature increase 150-230 ℃ 12 minutes temperature increase 230 ℃ 20 minutes curing

【0013】[0013]

【表1】 [Table 1]

【0014】 微細クラック:金属顕微鏡×150倍で観察 剥 離:目視観察 実験2では、赤外照射昇温速度と塗膜の膨れの関係につ
いて求めた。結果を図1に示す。
Fine cracks: observed with a metallurgical microscope × 150 times Peeling off: visual observation In Experiment 2, the relationship between the infrared irradiation temperature rising rate and the swelling of the coating film was determined. The results are shown in Figure 1.

【0015】素材、塗膜は実験1と同様の条件で行っ
た。硬化膜厚は45μmであった。
The materials and the coating film were formed under the same conditions as in Experiment 1. The cured film thickness was 45 μm.

【0016】短波長赤外照射(近赤外)及び、その後の
熱風式硬化炉で、26〜45μmの硬化膜厚を得るため
には、赤外照射時の昇温速度をおよそ30℃/分以下と
する必要があり、それ以上の速さで昇温すると、塗膜膨
れが発生する。さらに、赤外での最終昇温は100〜1
30℃とする必要があり、それ以下では塗膜クラック、
それ以上では塗膜膨れが発生する。
In order to obtain a cured film thickness of 26 to 45 μm in short wavelength infrared irradiation (near infrared) and the subsequent hot air curing furnace, the temperature rising rate during infrared irradiation is about 30 ° C./minute. It is necessary to be below, and when the temperature is raised at a speed higher than that, swelling of the coating film occurs. Furthermore, the final temperature rise in the infrared is 100 to 1
It is necessary to set the temperature to 30 ° C, and below that, coating film cracks,
Above that, swelling of the coating film occurs.

【0017】一方、硬化膜厚が25μm以下のときは、
照射昇温100℃/分以下で、最終昇温は、100〜1
80℃まで行うことにより、クラック、膨れもなく仕上
がる。
On the other hand, when the cured film thickness is 25 μm or less,
The irradiation temperature rise is 100 ° C./min or less, and the final temperature rise is 100 to 1
By performing the heating up to 80 ° C., the finish is completed without cracks and swelling.

【0018】遠赤外照射でも、30℃/分の昇温は決し
て不可能なものではないが、10℃/分未満の昇温で
は、クラック、剥離を生じるため照射条件の制御が厳し
くなる。
Even with far-infrared irradiation, it is not impossible to raise the temperature by 30 ° C./min. However, if the temperature is raised below 10 ° C./minute, cracks and peeling will occur, and the control of irradiation conditions will become strict.

【0019】塗装現場において、塗装物が複雑形状にな
ればなるほど、硬化膜厚を一定に25μm以下にするこ
とは難しいため、照射の制御が厳しいものであっては作
業上の問題といわざるをえない。
At the coating site, as the coated object becomes more complicated in shape, it is more difficult to keep the cured film thickness constant at 25 μm or less. Therefore, if the irradiation control is strict, it is a work problem. I can't.

【0020】なお、実験に用いた赤外照射の波長域と放
射率は、図2の通りである。
The wavelength range and emissivity of infrared irradiation used in the experiment are as shown in FIG.

【0021】本発明は、第一工程として、塗装後の塗板
を短波長赤外照射(近赤照射)し、所定の温度に達しめ
たのち、第二工程として、熱風硬化炉でもって昇温し2
00〜300℃硬化するものである。
In the present invention, as a first step, the coated plate after coating is irradiated with short-wave infrared rays (near red irradiation) to reach a predetermined temperature, and then, as a second step, the temperature is raised in a hot air curing oven. 2
It cures at 00 to 300 ° C.

【0022】本発明で用いる短波長赤外線(以下、近赤
外と略す)とは、波長が0.7〜3μmの光が主成分と
なるものであり、近赤外の光源としては、タングステ
ン、炭素、タンタル等のフィラメントが使用される。本
発明で使用される水系アルカリ珪酸塩系無機塗料とは、
例えばCRM−700S、CRM−300S(以上、奥
野製薬工業株式会社製)、が挙げられる。
The short-wave infrared rays (hereinafter, abbreviated as near infrared rays) used in the present invention is mainly composed of light having a wavelength of 0.7 to 3 μm. As a near infrared light source, tungsten, Filaments such as carbon and tantalum are used. The water-based alkaline silicate inorganic coating used in the present invention,
For example, CRM-700S and CRM-300S (above, Okuno Pharmaceutical Industry Co., Ltd. make) are mentioned.

【0023】塗膜厚が25μm未満の場合、塗板の温度
が100〜180℃に達するまで、好ましくは120〜
150℃に達するまで短波長赤外線照射を行うのが良
い。また、塗膜厚が25〜45μmの場合、塗板の温度
が100〜130℃に達するまで、好ましくは100〜
120℃に達するまで短波長赤外線照射を行うのが良
い。さらに、塗膜厚が25μm付近である場合、塗板の
温度が、100〜130℃に達するまで短波長赤外線の
照射を行なうのが良い。
When the coating thickness is less than 25 μm, the temperature of the coated plate reaches 100 to 180 ° C., preferably 120 to 120 ° C.
It is preferable to perform short-wave infrared irradiation until the temperature reaches 150 ° C. When the coating film thickness is 25 to 45 μm, the temperature of the coated plate reaches 100 to 130 ° C., preferably 100 to 130 ° C.
It is preferable to perform short-wave infrared irradiation until the temperature reaches 120 ° C. Further, when the coating film thickness is around 25 μm, it is preferable to irradiate short wavelength infrared rays until the temperature of the coated plate reaches 100 to 130 ° C.

【0024】近赤外照射後に行う塗膜の本硬化時の温度
は、200〜300℃、好ましくは200〜300℃の
範囲内であるのが良い。
The temperature at the time of main curing of the coating film after irradiation with near-infrared rays is in the range of 200 to 300 ° C, preferably 200 to 300 ° C.

【0025】[0025]

【発明の効果】本発明の硬化方法は、塗装後のセッテイ
ング時間一温度、さらにはその本硬化に際し、雰囲気の
変化、昇温速度変化に十分対応でき、複雑形状からくる
膜厚の変化に対してもその幅広い作業性で容易に制御で
きるため、塗膜のクラック、剥離の発生がなく、本来そ
の塗料のもつ性能を十分に引き出せることができ、耐水
性、耐化学生、耐蝕性、さらに耐汚染性にとくに優れた
塗膜を得るのによりいっそうの向上につながり、より好
ましいものである。
EFFECTS OF THE INVENTION The curing method of the present invention can sufficiently cope with changes in atmosphere and changes in temperature rising rate during the setting time after coating, one temperature, and further during the main curing thereof, and against changes in film thickness due to a complicated shape. However, since it can be easily controlled by its wide range of workability, there is no cracking or peeling of the coating film, and the performance that the paint originally has can be fully exploited, and water resistance, chemical resistance, corrosion resistance, and It is more preferable because a coating film having particularly excellent stain resistance is obtained, which leads to further improvement.

【0026】[0026]

【実施例】以下に実施例を挙げて、本発明を詳しく説明
する。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0027】実施例1. アルカリ脱脂したSUS30
4(0.4×70×150mm、重量48g)に、硬化
膜厚40μmとなるように水系アルカリ珪酸塩系無機塗
料 CRM−700S(ホワイト)(奥野製薬工業株社
製)を塗布し、表−1の条件でセッテイングしたのち、
実験−1と同じ熱風式硬化炉を用いて、同じ昇温硬化条
件で硬化(No.1)、図−2に示した波長域の遠赤外
照射(No.2)、あるいは近赤外照射(No.3,
4,5)したのち、No.1と同様に熱風硬化し、その
それぞれを試験に供した。その結果を表2に示した。
Example 1. Alkaline degreased SUS30
4 (0.4 × 70 × 150 mm, weight 48 g) was coated with a water-based alkaline silicate inorganic coating CRM-700S (white) (manufactured by Okuno Chemical Industries Co., Ltd.) so that a cured film thickness was 40 μm. After setting under the condition of 1,
Using the same hot-air curing furnace as in Experiment-1, curing under the same temperature rising curing conditions (No. 1), far infrared irradiation in the wavelength range shown in Fig. 2 (No. 2), or near infrared irradiation (No. 3,
4, 5) and then No. It was hot-air cured in the same manner as 1 and each was subjected to the test. The results are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】硬化塗膜試験 クラックの有無 ;金属顕微鏡(×150倍)にて
観察。
Cured coating film test: Presence of cracks; observation with a metallurgical microscope (× 150).

【0030】油性黒マジック汚染 ;油性黒マジックを
塗膜表面に塗り、24時間後、水にて拭き取る。
Oily black magic stain: Apply oily black magic on the surface of the coating film, and after 24 hours, wipe with water.

【0031】耐沸騰水性 ;沸騰水10時間浸
せき後の塗膜の変化を観察。
Boiling resistance: Observation of changes in coating film after immersion in boiling water for 10 hours.

【0032】耐アルカリ性 ;5%水酸化ナトリ
ウム、室温、240時間浸せき後の塗膜の変化を観察。
Alkali resistance: 5% sodium hydroxide was observed at room temperature for 240 hours to observe changes in the coating film.

【0033】耐酸性 ;5%硫酸、室温、
240時間浸せき後の塗膜の変化を観察。
Acid resistance: 5% sulfuric acid, room temperature,
Observe the change in the coating after dipping for 240 hours.

【0034】耐蝕性 ;キャス試験(JI
S H8681)720時間後の塗膜の観察。
Corrosion resistance: Cass test (JI
SH8681) Observation of coating film after 720 hours.

【0035】試験評価 〇 ; 各試験において、塗膜に変化、異常のないも
の。
Test evaluation ◯: No change or abnormality in the coating film in each test.

【0036】× ; 各試験において、塗膜に変化、
異常のあるもの。
X: Change in coating film in each test,
Something abnormal.

【0037】表2の結果から、熱風だけで硬化したもの
は(No.1)、クラック、剥離の発生が見られ、塗料
本来の性能を引き出すことが出来いこと。遠赤外照射し
たものは(No.2)、その照射時に膨れを呈すること
及び近赤外照射では、セッテイング時間、温度に関係な
く良好な塗膜が得られ、塗料本来の性能が引き出せるこ
とが判明した。
From the results shown in Table 2, those cured only with hot air (No. 1) were found to have cracks and peeling, and the original performance of the coating could not be brought out. Far-infrared irradiation (No. 2) shows swelling at the time of irradiation, and near-infrared irradiation can obtain a good coating film regardless of setting time and temperature, and bring out the original performance of the coating material. found.

【0038】実施例2. 実施例1.と同様に、塗料を
かえ表−2の条件にしたがって、試験を実施し、その結
果を表3に示した。
Example 2. Example 1. Similarly to the above, the paint was replaced and a test was conducted according to the conditions of Table-2, and the results are shown in Table 3.

【0039】素材;SUS304 0.4×70×15
0mm 重量48g 硬化膜厚;20μm 塗料;水系アルカリ珪酸塩系無機塗料 CRM−300
S(奥野製薬工業株製)
Material: SUS304 0.4 × 70 × 15
0 mm Weight 48 g Cured film thickness; 20 μm Paint; Water-based alkaline silicate inorganic paint CRM-300
S (Made by Okuno Pharmaceutical Co., Ltd.)

【0040】[0040]

【表3】 [Table 3]

【0041】表3の結果から、塗装後のセッテイング時
間について、遠赤照射では(No.6,8)、近赤照射
の(No.7,9,10)の比較から前者はある範囲内
でなければならないことが判った。
From the results of Table 3, regarding the setting time after coating, from the comparison of far-red irradiation (No. 6, 8) and near-red irradiation (No. 7, 9, 10), the former is within a certain range. I knew I had to.

【0042】実施例3. 素材を変えた以外は実施例
1.と同様の条件にしたがって、試験を実施した。その
結果を表4に示した。
Example 3. Example 1 except that the material was changed. The test was carried out under the same conditions as described above. The results are shown in Table 4.

【0043】素材;冷間圧延鋼板SPCC 2×50×
150mm 重量128g 硬化膜厚;45μm 塗料;CRM−700S
Material: Cold rolled steel plate SPCC 2 × 50 ×
150 mm Weight 128 g Cured film thickness; 45 μm Paint; CRM-700S

【0044】[0044]

【表4】 [Table 4]

【0045】表4の結果から、塗板の重量が128gを
用い、同じ照射距離で、遠赤と近赤の昇温を比較したと
ころ、重量が増加するに従って、明らかに近赤では昇温
速度に大きい差が生じたが(No.13,14)遠赤で
は大きい差が生じないことが判明した。(No.11,
12)。
From the results of Table 4, when the weight of the coated plate was 128 g and the temperature increase of far red and near red was compared at the same irradiation distance, as the weight increased, the temperature increase rate was clearly apparent in near red. Although there was a large difference (Nos. 13 and 14), it was found that a large difference did not occur with far-infrared rays. (No. 11,
12).

【0046】遠赤外照射の場合の昇温時間は(30〜1
20℃)、1分程度となり塗膜が膨れた。遠赤外照射で
は、高効率のため塗膜の昇温が極めて速く、一気に気化
した水は厚膜を突き破って外界に放出されるときに膨れ
るものと考えられる。
The temperature rising time in the case of far infrared irradiation is (30 to 1)
(20 ° C.) About 1 minute and the coating film swelled. With far-infrared irradiation, the temperature rise of the coating film is extremely fast due to the high efficiency, and it is considered that the water vaporized all at once bursts through the thick film and swells when released to the outside.

【0047】実施例4. 塗料、素材を変える以外は実
施例1.と同様の条件にしたがって、試験を実施した。
その結果を表5に示した。
Example 4. Example 1 except that the paint and materials are changed. The test was carried out under the same conditions as described above.
The results are shown in Table 5.

【0048】素材;アルマイト(6μm)アルミニウム
JH4000 (1×70×150mm) 重量28
g 硬化膜厚;25μm 塗料;CRM−300S
Material: Alumite (6 μm) Aluminum JH4000 (1 × 70 × 150 mm) Weight 28
g Cured film thickness; 25 μm Paint; CRM-300S

【0049】[0049]

【表5】 [Table 5]

【0050】表5の結果から、遠赤、近赤照射で昇温時
に到達させる温度が100℃未満のときは、塗膜にクラ
ック、剥離が発生し、(No.15,16)塗膜厚25
μmでは、照射到達温度が、180℃でも膨れなく仕上
がることが判明した。(No.20,21) 実施例5. 硬化膜厚を45μmとした以外は実施例4
と同様の条件に従って、試験を実施した。その結果を表
6に示した。
From the results shown in Table 5, when the temperature reached at the time of temperature increase by far-infrared and near-red irradiation is less than 100 ° C., cracks and peeling occur in the coating film, and (No. 15 and 16) coating film thickness. 25
It was found that when the particle size is μm, the irradiation temperature reaches 180 ° C. without blistering. (No. 20, 21) Example 5. Example 4 except that the cured film thickness was 45 μm
The test was carried out under the same conditions as in. The results are shown in Table 6.

【0051】[0051]

【表6】 [Table 6]

【0052】表6の結果から、硬化膜厚45μmとした
とき赤外照射による昇温到達温度は、130℃未満であ
れば膨れなく仕上がったが(No.22,23)、15
0℃では膨れが発生することがわかった。(No.2
4)。
From the results shown in Table 6, when the cured film thickness was 45 μm and the temperature reached by the infrared irradiation was less than 130 ° C., the product was not swollen and finished (No. 22, 23).
It was found that swelling occurred at 0 ° C. (No. 2
4).

【0053】実施例6. 硬化膜厚のみ20μmとした
以外は、実施例1.と同様の条件に従い、試験を実施し
た。その結果を表7に示した。なお、硬化開始塗板温度
は28℃。
Example 6. Example 1 except that only the cured film thickness was 20 μm. The test was carried out under the same conditions as in. The results are shown in Table 7. The temperature of the coating plate for curing initiation is 28 ° C.

【0054】[0054]

【表7】 [Table 7]

【0055】表7の結果から、赤外照射での昇温速度と
クラックの有無を見たところ、遠赤外照射では、およそ
5℃/1分の昇温でクラックが発生するが(No.2
5)、近赤照射では、およそ5℃/1分さらに2℃/1
分でもクラックの発生は見られないことが明らかになっ
た。(No.26,27)。
From the results in Table 7, the temperature rising rate in infrared irradiation and the presence or absence of cracks were examined. In far infrared irradiation, cracks were generated at a temperature increase of about 5 ° C./1 minute (No. Two
5), with near red irradiation, approximately 5 ° C / 1 minute and 2 ° C / 1
It was revealed that no crack was found even in minutes. (No. 26, 27).

【図面の簡単な説明】[Brief description of drawings]

【図1】昇温速度と塗料膜膨れの関係を示す。FIG. 1 shows the relationship between the temperature rising rate and the swelling of a paint film.

【図2】実験に供したヒーターの放射率と波長を示す。FIG. 2 shows the emissivity and wavelength of the heater used in the experiment.

Claims (1)

【特許請求の範囲】 【請求項1】水系アルカリ珪酸塩系無機塗料を塗装後、
硬化する方法において、塗料を熱風炉で硬化するまで
に、塗膜厚が25μm未満では塗板の温度が100〜1
80℃に達するまで、塗膜厚が25〜45μmでは塗板
の温度が100〜130℃に達するまで波長が0.7〜
3μmの短波長赤外線照射を行い、そのあと200〜3
00℃の塗板の温度で本硬化を行うことを特徴とする水
系アルカリ珪酸塩系無機塗料の硬化方法。
Claims: 1. After coating with a water-based alkali silicate inorganic coating,
In the curing method, when the coating film thickness is less than 25 μm, the temperature of the coated plate is 100 to 1 before the coating material is cured in a hot air oven.
When the coating film thickness is 25 to 45 μm until the temperature reaches 80 ° C., the wavelength is 0.7 to 100 ° C. until the temperature of the coated plate reaches 100 to 130 ° C.
Irradiate short wavelength infrared rays of 3μm, then 200 ~ 3
A method for curing an aqueous alkali silicate inorganic coating material, which comprises performing main curing at a temperature of a coated plate of 00 ° C.
JP18766491A 1991-07-26 1991-07-26 Method for hardening aqueous alkali silicate-based inorganic coating material Pending JPH0531442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18766491A JPH0531442A (en) 1991-07-26 1991-07-26 Method for hardening aqueous alkali silicate-based inorganic coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18766491A JPH0531442A (en) 1991-07-26 1991-07-26 Method for hardening aqueous alkali silicate-based inorganic coating material

Publications (1)

Publication Number Publication Date
JPH0531442A true JPH0531442A (en) 1993-02-09

Family

ID=16210018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18766491A Pending JPH0531442A (en) 1991-07-26 1991-07-26 Method for hardening aqueous alkali silicate-based inorganic coating material

Country Status (1)

Country Link
JP (1) JPH0531442A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5567167B1 (en) * 2013-02-28 2014-08-06 日新製鋼株式会社 Metal siding manufacturing method and manufacturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5567167B1 (en) * 2013-02-28 2014-08-06 日新製鋼株式会社 Metal siding manufacturing method and manufacturing apparatus
WO2014132309A1 (en) * 2013-02-28 2014-09-04 日新製鋼株式会社 Production method and production device for metal siding

Similar Documents

Publication Publication Date Title
KR101735383B1 (en) Inorganic coating composition, and method for forming inorganic layer using the same
EP1251972B1 (en) Process for coating metallic substrate surfaces and coated surface
KR20040071077A (en) System and Method for Forming a Low Temperature Cured Ceramic Coating for Elevated Temperature Applications
JPH0531442A (en) Method for hardening aqueous alkali silicate-based inorganic coating material
KR20210072753A (en) High emissivity coating composition and substrate coated therewith
US3488262A (en) Method of heat treating hard anodized surfaces
JP2529124B2 (en) Baking method of water-based inorganic paint
JPS6112878A (en) Surface treatment of heat resistant stainless steel
JPS5916571A (en) Curing method of powder paint
RU2776525C1 (en) Application of solcoat ceramic coating to increase heat flow passing through structural elements subject to surface ununiform heating by external source
JPS62186970A (en) Method for repariring coated film
JPS6052552B2 (en) Manufacturing method of far-infrared radiation element
JPS646150B2 (en)
JPH02240283A (en) Method for locally repairing glass-lined device
JPS60125363A (en) Long wavelength ir radiating body plasma sprayed with ceramics
JP2003211040A (en) Coating method and coating booth
SU395522A1 (en)
JPH02282461A (en) Treatment of self-fluxing alloy for cr-mo steel tube for boiler
JPH0280227A (en) Coat forming method for coated metal tube material
JP4321001B2 (en) Painting method
SU1280044A1 (en) Method of burning glass enamel
JPH1110078A (en) Baking method for coated steel sheet in continuous coating line
WO2023075647A1 (en) Using a solcoat ceramic coating to increase heat flux
JPH0393539A (en) Surface treatment of aluminum
JPS6369570A (en) Baking painting method