JPH05313148A - Liquid crystal display device and its production - Google Patents

Liquid crystal display device and its production

Info

Publication number
JPH05313148A
JPH05313148A JP4114478A JP11447892A JPH05313148A JP H05313148 A JPH05313148 A JP H05313148A JP 4114478 A JP4114478 A JP 4114478A JP 11447892 A JP11447892 A JP 11447892A JP H05313148 A JPH05313148 A JP H05313148A
Authority
JP
Japan
Prior art keywords
crystal display
liquid crystal
display device
fluorine
inorganic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4114478A
Other languages
Japanese (ja)
Inventor
Satoru Miyashita
悟 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4114478A priority Critical patent/JPH05313148A/en
Publication of JPH05313148A publication Critical patent/JPH05313148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To easily produce a liq. crystal display device excellent in brightness and homogeneity and enhanced in antiglaringness. CONSTITUTION:Inorg. oxide layers 23 and 24 and a fluorine-contg. polymer layer 26 are formed on the surfaces of the parts (light-source glass, light transmissive plate, diffusion plate, liq. crystal panel). An excellent reflection reducing effect is obtained by adjusting the refractive index and film thickness of the inorg. oxide and fluorine-contg. polymer formed on the surface. A liq. crystal display device is easily produced by applying a solcontg. the inorg. oxide or a precursor of the inorg. oxide on the surface of the part and further applying a solvent-soluble fluorine-contg. polymer soln.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は表示が明るく、表面反射
が少ない、製造安定性に優れた液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device which has a bright display, little surface reflection, and excellent manufacturing stability.

【0002】[0002]

【従来の技術】バックライトを有する液晶表示装置は、
冷陰極型蛍光放電ランプを側面に置き、導波板で背面に
光を導き、拡散板を介して液晶表示パネルに照射する構
造が一般的である。導波板としては透明アクリル板が通
常用いられており、低電力、高輝度、面内均質性、薄型
軽量をバランスよく達成している。また小型テレビなど
高輝度を必要とする商品には、直下型と呼ばれる、導光
板を用いない方式が用いられている。その他に投影型の
液晶表示装置や、光源の無い反射板を有する液晶表示装
置も用いられている。
2. Description of the Related Art A liquid crystal display device having a backlight is
In general, a cold cathode fluorescent discharge lamp is placed on a side surface, a waveguide plate guides light to the back surface, and the liquid crystal display panel is irradiated with the light through a diffusion plate. A transparent acrylic plate is usually used as the waveguide plate, and achieves a good balance of low power, high brightness, in-plane homogeneity, and thin and lightweight. A product called a direct type, which does not use a light guide plate, is used for products requiring high brightness such as a small television. In addition, a projection type liquid crystal display device and a liquid crystal display device having a reflector without a light source are also used.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の液晶表
示装置では、光が通過する各部品の表面反射により10
%以上の光量が失われてしまうという課題があった。ま
た、表面反射により表示が見ずらいという課題があっ
た。減反射コーティングとしては、フッ化マグネシウム
等の低屈折率材料を蒸着することが知られ、眼鏡レンズ
などで実用化されている。しかし、蒸着法では各種形状
において全表面の成膜均質性に問題がある上、スループ
ットが良くない高価な真空装置を必要とするため特に大
きな面積を必要とする用途のためには、非常に高価なも
のとなってしまうという問題があった。また表示表面に
アンチグレアフィルムを張り付ける方法も取られている
が、透過率も含めた総合的な特性の良いアンチグレアフ
ィルムが無く、満足な効果は得られていない。
However, in the conventional liquid crystal display device, the surface reflection of each component through which the light passes causes the light to pass through.
There was a problem that the amount of light above 100% was lost. Further, there is a problem that the display is difficult to see due to surface reflection. As the antireflection coating, it is known to deposit a low refractive index material such as magnesium fluoride, and it is put to practical use in spectacle lenses and the like. However, in the vapor deposition method, there is a problem in the film formation homogeneity on the entire surface in various shapes, and since an expensive vacuum device with poor throughput is required, it is extremely expensive for applications requiring a large area. There was a problem that it would become something like. Although a method of sticking an anti-glare film on the display surface is also taken, there is no anti-glare film having good overall characteristics including transmittance, and a satisfactory effect cannot be obtained.

【0004】そこで本発明はこのような課題を解決する
もので、その目的とするところは、明るさと均質性に優
れ、アンチグレア度が高く見やすい液晶表示装置、及び
その容易な製造法を提供するところにある。
Therefore, the present invention solves such a problem, and an object thereof is to provide a liquid crystal display device which is excellent in brightness and homogeneity, has a high anti-glare degree and is easy to see, and an easy manufacturing method thereof. It is in.

【0005】[0005]

【課題を解決するための手段】上記目的は、液晶表示パ
ネルを備えた液晶表示装置において、光が通過する部品
の表面に、無機酸化物層及び含フッ素高分子層が形成さ
れていることで達成される。二層間にカップリング層が
形成されていてもよい。また前記液晶表示装置は、光が
通過する部品表面に無機酸化物または無機酸化物前駆体
を含むゾルを塗布、及び加熱することにより無機酸化物
層を形成し、更に溶剤可溶性含フッ素高分子溶液を塗布
することにより、含フッ素高分子層を形成することで製
造できる。
The above object is to provide an inorganic oxide layer and a fluorine-containing polymer layer on the surface of a component through which light passes in a liquid crystal display device having a liquid crystal display panel. To be achieved. A coupling layer may be formed between the two layers. Further, the liquid crystal display device, a sol containing an inorganic oxide or an inorganic oxide precursor is applied to the surface of a component through which light passes, and an inorganic oxide layer is formed by heating, and a solvent-soluble fluorine-containing polymer solution is further formed. It can be produced by forming a fluorine-containing polymer layer by coating.

【0006】[0006]

【作用】無機酸化物微粒子または、水酸化化合物等の無
機酸化物前駆体を含むゾルは、アルコキシドやアセテー
トなどの有機化合物を原料として調製することができ
る。ゾルの分散媒に適当なアルコール等を用いると、ガ
ラスや樹脂上に均質に、しかも基材を犯すことなく塗布
することができる。比較的低温の加熱で密着性や膜強度
を得ることができ、無機酸化物の種類や混合比を調製す
ることで、1.55以上の高屈折率薄膜が容易に形成で
きる。単独での屈折率を例に挙げるとTiO2 が2.
7、CeO2 が2.3、ZrO2 が2.1、Sb23
2.0、Nd23が2.0、Al23で1.7となる
が、成膜性や屈折率調製のためにシリカやホウ酸成分を
混合するとよい。
The sol containing the inorganic oxide fine particles or the inorganic oxide precursor such as a hydroxide compound can be prepared by using an organic compound such as alkoxide or acetate as a raw material. When a suitable alcohol or the like is used as the dispersion medium of the sol, it can be applied uniformly on glass or resin without breaking the substrate. Adhesion and film strength can be obtained by heating at a relatively low temperature, and a high refractive index thin film of 1.55 or more can be easily formed by adjusting the type and mixing ratio of inorganic oxides. Taking the refractive index alone as an example, TiO 2 is 2.
7, CeO 2 is 2.3, ZrO 2 is 2.1, Sb 2 O 3 is 2.0, Nd 2 O 3 is 2.0, and Al 2 O 3 is 1.7. It is advisable to mix silica and boric acid components for adjusting the refractive index.

【0007】一方、溶剤可溶性含フッ素高分子が最近得
られるようになった。含フッ素高分子特有の低屈折率を
維持し、しかも溶媒に可溶なため、塗布によりピンホー
ルのない可視光の透過率に優れた薄膜を容易に得ること
ができる。材料によっては、屈折率1.29という驚異
的な特性を得ることができる。減反射コーティングとし
て用いるには、フッ化マグネシウムと同等の屈折率1.
40以下であればある程度の効果が得られる。溶剤可溶
性含フッ素高分子を溶かす溶剤は、不活性なフッ素系溶
媒で、一般的に用いられるガラスや樹脂を犯すことはな
い。
On the other hand, solvent-soluble fluorine-containing polymers have recently been obtained. Since the low refractive index peculiar to the fluorine-containing polymer is maintained and the solvent is soluble in the solvent, a thin film having no pinhole and excellent in visible light transmittance can be easily obtained by coating. Depending on the material, an astonishing characteristic with a refractive index of 1.29 can be obtained. To be used as an antireflection coating, the refractive index of 1.
If it is 40 or less, some effect can be obtained. The solvent that dissolves the solvent-soluble fluorine-containing polymer is an inert fluorine-based solvent and does not violate commonly used glass or resin.

【0008】普通に反射防止効果を得るために用いられ
る膜厚は、(光の波長)÷4÷(膜の屈折率)の整数倍
で求められ、0.05から0.2μm程度であるため成
膜が容易であり、膜の吸収による光の減衰もほとんど無
い。無機酸化物層は、加熱を十分にできないので必ずし
も安定ではないが、表面の含フッ素高分子層が保護膜の
役目も果たし、対環境性も十分である。但し、無機酸化
物層と含フッ素高分子層との密着力が低く、使用目的に
よってはシランカップリング剤等のカップリング層を介
す必要がある。
The film thickness normally used for obtaining the antireflection effect is obtained by an integral multiple of (wavelength of light) / 4 (refractive index of film), and is about 0.05 to 0.2 μm. Film formation is easy, and there is almost no attenuation of light due to film absorption. The inorganic oxide layer is not always stable because it cannot be sufficiently heated, but the fluorine-containing polymer layer on the surface also serves as a protective film and has sufficient environmental resistance. However, the adhesion between the inorganic oxide layer and the fluorine-containing polymer layer is low, and it is necessary to interpose a coupling layer such as a silane coupling agent depending on the purpose of use.

【0009】[0009]

【実施例】【Example】

(実施例1)「テフロンAF2400」(デュポン社
製)の屈折率は1.29であるので、表面の含フッ素高
分子層の膜厚が1000Åとなる塗布条件を求めた。ま
た、基材の屈折率を1.55として計算すると、無機酸
化物層の屈折率は1.61で膜厚850Å程度が好まし
い。そこで屈折率が1.61となるよう、アルミナ微粒
子とエチルシリケートの加水分解物を含む2−メトキシ
エタノールを主溶媒とするゾルを調整し、塗布条件を求
めた。
(Example 1) Since the refractive index of "Teflon AF2400" (manufactured by DuPont) is 1.29, the coating conditions were determined so that the film thickness of the fluorine-containing polymer layer on the surface was 1000Å. Further, when the refractive index of the base material is calculated as 1.55, it is preferable that the inorganic oxide layer has a refractive index of 1.61 and a film thickness of about 850Å. Therefore, a coating sol was determined by adjusting a sol having 2-methoxyethanol as a main solvent containing alumina fine particles and a hydrolyzate of ethyl silicate so as to have a refractive index of 1.61.

【0010】まず透明アクリル製の導光板に前述のゾル
を塗布し、80℃に加熱して膜厚850Åの無機酸化物
層を形成した。次にパーフルオロ溶媒に溶解させた「テ
フロンAF2400」をその上に塗布し、60℃で乾燥
させ、膜厚1000Åの含フッ素高分子層を積層した。
膜厚は50Å程度の範囲で十分制御できる。顕微鏡観察
により形成された薄膜は、非常に緻密かつ均質であるこ
とを確認した。空気中の反射率は、550nmで0.2
%と高い減反射効果が得られた。同様に光源ランプのガ
ラス表面にも、無機酸化物層及び、含フッ素高分子層を
形成した。
First, the above-mentioned sol was applied to a transparent acrylic light guide plate and heated to 80 ° C. to form an inorganic oxide layer having a film thickness of 850 Å. Next, "Teflon AF2400" dissolved in a perfluoro solvent was applied onto it, dried at 60 ° C, and a fluorine-containing polymer layer having a film thickness of 1000 Å was laminated.
The film thickness can be sufficiently controlled within the range of about 50Å. It was confirmed by microscopic observation that the thin film formed was extremely dense and homogeneous. The reflectance in air is 0.2 at 550 nm.
%, A high antireflection effect was obtained. Similarly, an inorganic oxide layer and a fluorine-containing polymer layer were formed on the glass surface of the light source lamp.

【0011】このようにして作製した導光板及びランプ
を用いた液晶表示装置の、模式的な断面図を図1に示
す。図1において、11は液晶パネル、12が拡散板、
13が導光板、14が反射板、15がランプである。ま
た、16が前述の方法で形成した無機酸化物層と含フッ
素高分子層からなる減反射層である。表示表面における
輝度は60カンデラから70カンデラに向上した。面内
の輝度分布もほとんど観察されず、明るく見やすいディ
スプレイを達成できた。また、熱、湿度、耐光等の信頼
性も十分であった。
FIG. 1 shows a schematic cross-sectional view of a liquid crystal display device using the light guide plate and the lamp thus manufactured. In FIG. 1, 11 is a liquid crystal panel, 12 is a diffusion plate,
13 is a light guide plate, 14 is a reflection plate, and 15 is a lamp. Further, 16 is an antireflection layer comprising an inorganic oxide layer formed by the above-mentioned method and a fluorine-containing polymer layer. The brightness on the display surface improved from 60 candela to 70 candela. Almost no in-plane luminance distribution was observed, and a bright and easy-to-see display was achieved. Also, the reliability of heat, humidity, light resistance, etc. was sufficient.

【0012】(実施例2)「サイトップCTX」(旭硝
子社製)の屈折率は1.34であるので、表面の含フッ
素高分子層の膜厚が950Åとなる塗布条件を求めた。
また、基材の屈折率を1.50として計算し、無機酸化
物層の第一層を屈折率1.64で膜厚850Å程度、無
機酸化物層の第二層を屈折率2.2で膜厚1250Å程
度を目標値とした。そこで屈折率が1.64となるよ
う、酸化スズ微粒子とホウ酸とメチルシリケートの加水
分解物を含むエタノールを主溶媒とするゾル1を調整
し、塗布条件を求めた。また、酢酸セリウムの加水分解
物を含む酢酸と2−エトキシエタノールを主溶媒とする
ゾル2を調整し、塗布条件を求めた。
(Example 2) Since the refractive index of "CYTOP CTX" (manufactured by Asahi Glass Co., Ltd.) was 1.34, coating conditions were determined so that the film thickness of the fluorine-containing polymer layer on the surface was 950Å.
Also, the refractive index of the base material was calculated as 1.50, and the first layer of the inorganic oxide layer had a refractive index of 1.64 and a film thickness of about 850Å, and the second layer of the inorganic oxide layer had a refractive index of 2.2. The target value was about 1250Å. Therefore, Sol 1 having ethanol as a main solvent containing tin oxide fine particles and a hydrolyzate of boric acid and methyl silicate was adjusted so as to have a refractive index of 1.64, and coating conditions were determined. In addition, sol 2 containing acetic acid containing a hydrolyzate of cerium acetate and 2-ethoxyethanol as a main solvent was prepared, and coating conditions were determined.

【0013】まず偏光板を張り付けた液晶カラー表示パ
ネルに前述のゾル1を塗布し、80℃に加熱して膜厚8
50Åの無機酸化物層を形成した。次にゾル2を塗布
し、80℃に加熱して膜厚1250Åの無機酸化物層を
積層した。次にシランカップリング剤であるアミノシラ
ン(SH6020、トーレシリコーン社製)の0.5重
量%水溶液に2分間浸漬し、水洗した後60℃で乾燥し
カップリング層を形成した。更にフッ素系の専用溶媒
(CT−Solv.100)に溶解させた「サイトップ
CTX」をその上に塗布し、60℃で乾燥させ、膜厚9
50Åの含フッ素高分子層を積層した。膜厚は50Å程
度の範囲で十分制御できる。顕微鏡観察により形成され
た薄膜は、非常に緻密かつ均質で、クラック等が発生し
ていないことを確認した。空気中の反射率は、可視波長
全域で0.5%以下と高い減反射効果が得られた。同様
に光源ランプのガラス表面及び拡散板の両面にも、前述
のコーティングを施した。
First, the above-mentioned sol 1 is applied to a liquid crystal color display panel to which a polarizing plate is attached and heated to 80 ° C. to obtain a film thickness of 8
A 50Å inorganic oxide layer was formed. Next, sol 2 was applied and heated to 80 ° C. to form an inorganic oxide layer having a film thickness of 1250Å. Next, it was immersed in a 0.5 wt% aqueous solution of aminosilane (SH6020, manufactured by Toray Silicone Co., Ltd.), which is a silane coupling agent, for 2 minutes, washed with water, and then dried at 60 ° C. to form a coupling layer. Further, "Cytop CTX" dissolved in a fluorine-based dedicated solvent (CT-Solv.100) is applied thereon, and dried at 60 ° C to give a film thickness of 9
A 50Å fluorine-containing polymer layer was laminated. The film thickness can be sufficiently controlled within the range of about 50Å. It was confirmed by microscopic observation that the thin film formed was extremely dense and homogeneous, and that cracks and the like did not occur. The reflectance in air was 0.5% or less over the entire visible wavelength range, and a high antireflection effect was obtained. Similarly, the above-mentioned coating was applied to both the glass surface of the light source lamp and both surfaces of the diffusion plate.

【0014】このようにして作製した液晶パネルの、模
式的な断面の拡大図を図2に示す。図2において、21
はガラス基板、22が偏光板、23が第一無機酸化物
層、24が第二無機酸化物層、25がカップリング層、
また26が含フッ素高分子層である。表示表面における
輝度は70カンデラから80カンデラに向上した。面内
の輝度分布もほとんど観察されず、明るいディスプレイ
を達成できた。またアンチグレア度が高く見やすい液晶
表示装置となった。また、熱、湿度、耐光等の信頼性も
十分であった。
FIG. 2 shows an enlarged view of a schematic cross section of the liquid crystal panel thus manufactured. In FIG. 2, 21
Is a glass substrate, 22 is a polarizing plate, 23 is a first inorganic oxide layer, 24 is a second inorganic oxide layer, 25 is a coupling layer,
Further, 26 is a fluorine-containing polymer layer. The brightness on the display surface improved from 70 candela to 80 candela. Almost no in-plane luminance distribution was observed, and a bright display could be achieved. Moreover, the liquid crystal display device has a high degree of anti-glare and is easy to see. Also, the reliability of heat, humidity, light resistance, etc. was sufficient.

【0015】(実施例3)ポリジパーフルオロアルキル
フマレートとポリビニルエステルの共重合体の屈折率は
1.39であるので、表面の含フッ素高分子層の膜厚が
900Åとなる塗布条件を求めた。また、基材の屈折率
を1.5として計算すると、無機酸化物層の屈折率は
2.0で膜厚1350Å程度が好ましい。そこで屈折率
が2.0となるよう、アルミナ微粒子とジルコニア微粒
子を含む2−メトキシエタノールを主溶媒とするゾルを
調整し、塗布条件を求めた。
(Example 3) Since the refractive index of the copolymer of polydiperfluoroalkyl fumarate and polyvinyl ester is 1.39, the coating conditions are determined so that the film thickness of the fluorine-containing polymer layer on the surface becomes 900 Å. It was Further, when the refractive index of the substrate is calculated as 1.5, the refractive index of the inorganic oxide layer is 2.0 and the film thickness is preferably about 1350Å. Then, a sol containing alumina fine particles and zirconia fine particles and containing 2-methoxyethanol as a main solvent was adjusted so that the refractive index was 2.0, and the coating conditions were obtained.

【0016】偏光板を張り付けた液晶表示パネルに前述
のゾルを塗布し、80℃に加熱して膜厚1350Åの無
機酸化物層を形成した。次にトリフルオロメチルベンゼ
ンに溶解させたポリジパーフルオロアルキルフマレート
とポリビニルエステルの共重合体をその上に塗布し、6
0℃で乾燥させ、膜厚900Åの含フッ素高分子層を積
層した。膜厚は50Å程度の範囲で十分制御できる。顕
微鏡観察により形成された薄膜は、非常に緻密かつ均質
であることを確認した。空気中の反射率は、可視波長全
域で0.8%以下と高い減反射効果が得られた。この液
晶表示パネルの背面に反射板を配した液晶表示装置は、
表面反射の少ない明るく見やすいディスプレイを達成で
きた。
The above-mentioned sol was applied to a liquid crystal display panel to which a polarizing plate was attached and heated to 80 ° C. to form an inorganic oxide layer having a film thickness of 1350 Å. Next, a copolymer of polydiperfluoroalkyl fumarate and polyvinyl ester dissolved in trifluoromethylbenzene is coated thereon, and 6
It was dried at 0 ° C., and a fluorine-containing polymer layer having a film thickness of 900 Å was laminated. The film thickness can be sufficiently controlled within the range of about 50Å. It was confirmed by microscopic observation that the thin film formed was extremely dense and homogeneous. The reflectance in the air was 0.8% or less in the entire visible wavelength range, and a high antireflection effect was obtained. A liquid crystal display device with a reflector on the back of this liquid crystal display panel
We were able to achieve a bright and easy-to-read display with little surface reflection.

【0017】(実施例4)「テフロンAF1600」
(デュポン社製)の屈折率は1.31であるので、表面
の含フッ素高分子層の膜厚が800から1200Åとな
る塗布条件を求めた。また、基材の屈折率を1.55と
して計算すると、無機酸化物層の屈折率は1.63で膜
厚600から1000Å程度が好ましい。そこで屈折率
が1.63となるよう、アルミナ微粒子とエチルシリケ
ートの加水分解物を含む2−メトキシエタノールを主溶
媒とするゾルを調整し、塗布条件を求めた。
(Example 4) "Teflon AF1600"
Since the refractive index of Dupont (manufactured by DuPont) is 1.31, the coating conditions were determined so that the film thickness of the fluorine-containing polymer layer on the surface was 800 to 1200Å. Further, when the refractive index of the base material is calculated as 1.55, the refractive index of the inorganic oxide layer is 1.63, and the film thickness is preferably about 600 to 1000Å. Then, a sol having a main solvent of 2-methoxyethanol containing fine particles of alumina and a hydrolyzate of ethyl silicate was adjusted so that the refractive index was 1.63, and the coating conditions were determined.

【0018】偏光板を張り付けた投影用の液晶表示パネ
ルに前述のゾルを塗布した。膜厚は、レッドのパネルに
950Å、グリーンのパネルに800Å、ブルーのパネ
ルに650Åの無機酸化物層を形成した。次にパーフル
オロ溶媒に溶解させた「テフロンAF1600」をその
上に塗布し、レッドのパネルに1200Å、グリーンの
パネルに1000Å、ブルーのパネルに800Åの膜厚
の含フッ素高分子層を積層した。膜厚は50Å程度の範
囲で十分制御できる。顕微鏡観察により形成された薄膜
は、非常に緻密かつ均質であることを確認した。空気中
の反射率は、各波長域で0.2%以下と高い減反射効果
が得られた。
The above-mentioned sol was applied to a liquid crystal display panel for projection having a polarizing plate attached thereto. An inorganic oxide layer with a film thickness of 950Å was formed on the red panel, 800Å on the green panel, and 650Å on the blue panel. Next, "Teflon AF1600" dissolved in a perfluoro solvent was applied thereon, and a fluorine-containing polymer layer having a film thickness of 1200 Å on the red panel, 1000 Å on the green panel and 800 Å on the blue panel was laminated. The film thickness can be sufficiently controlled within the range of about 50Å. It was confirmed by microscopic observation that the thin film formed was extremely dense and homogeneous. The reflectance in air was 0.2% or less in each wavelength range, and a high antireflection effect was obtained.

【0019】このようにして作製した部品を用いた液晶
投影装置において、スクリーン上における輝度は15%
程度向上した。面内の輝度分布もほとんど観察されず、
明るディスプレイを達成できた。また、熱、湿度、耐光
等の信頼性も十分であった。
In the liquid crystal projection device using the parts thus manufactured, the brightness on the screen is 15%.
Improved. Almost no in-plane brightness distribution is observed,
We were able to achieve a bright display. Also, the reliability of heat, humidity, light resistance, etc. was sufficient.

【0020】[0020]

【発明の効果】以上述べたように、本発明によれば光が
通過する部品の表面に、無機酸化物層及び含フッ素高分
子層が形成されている液晶表示装置を提供することによ
って、明るさと均質性に優れ、アンチグレア度が高く見
やすい液晶表示装置を作成することができた。本発明の
液晶表示装置は部品構成上は全く従来と変わらないた
め、本発明の導入により即座に大きな効果を得ることが
できる。
As described above, according to the present invention, by providing a liquid crystal display device in which an inorganic oxide layer and a fluorine-containing polymer layer are formed on the surface of a component through which light passes, Therefore, it was possible to create a liquid crystal display device which is excellent in uniformity and high in antiglare degree and easy to see. Since the liquid crystal display device of the present invention is completely the same as the conventional one in terms of component structure, the introduction of the present invention can immediately obtain a great effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における液晶表示装置の概念
を模式的に表す断面図である。
FIG. 1 is a cross-sectional view schematically showing the concept of a liquid crystal display device according to a first embodiment of the present invention.

【図2】本発明の実施例2における減反射層を模式的に
表す断面の拡大図である。
FIG. 2 is an enlarged view of a cross section schematically showing an antireflection layer in Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

11‥‥‥‥‥液晶パネル 12‥‥‥‥‥拡散板 13‥‥‥‥‥導光板 14‥‥‥‥‥反射板 15‥‥‥‥‥ランプ 16‥‥‥‥‥減反射層 21‥‥‥‥‥ガラス基板 22‥‥‥‥‥偏光板 23‥‥‥‥‥第一無機酸化物層 24‥‥‥‥‥第二無機酸化物層 25‥‥‥‥‥カップリング層 26‥‥‥‥‥含フッ素高分子層 11 ‥‥‥‥‥‥ Liquid crystal panel 12 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ Glass substrate 22 Polarizing plate 23 First inorganic oxide layer 24 Second inorganic oxide layer 25 Coupling layer 26 Fluorine-containing polymer layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液晶表示パネルを備えた表示装置におい
て、光が通過する部品の表面に、無機酸化物層及び含フ
ッ素高分子層が形成されていることを特徴とする液晶表
示装置。
1. A liquid crystal display device comprising a liquid crystal display panel, wherein an inorganic oxide layer and a fluorine-containing polymer layer are formed on the surface of a component through which light passes.
【請求項2】 上記液晶表示装置において部品表面に形
成される無機酸化物の屈折率が1.55以上であり、含
フッ素高分子の屈折率が1.40以下であることを特徴
とする請求項1記載の液晶表示装置。
2. The liquid crystal display device according to claim 1, wherein the inorganic oxide formed on the surface of the component has a refractive index of 1.55 or more, and the fluorine-containing polymer has a refractive index of 1.40 or less. Item 3. A liquid crystal display device according to item 1.
【請求項3】 上記液晶表示装置における部品表面に形
成される無機酸化物が、チタン、セリウム、ジルコニウ
ム、ネオジウム、アンチモン、スズ、タンタル、アルミ
ニウムを少なくとも一つ以上含む酸化物であることを特
徴とする請求項1記載の液晶表示装置。
3. The inorganic oxide formed on the surface of a component of the liquid crystal display device is an oxide containing at least one of titanium, cerium, zirconium, neodymium, antimony, tin, tantalum, and aluminum. The liquid crystal display device according to claim 1.
【請求項4】 上記液晶表示装置において部品表面に形
成される無機酸化物層と含フッ素高分子層との間に、シ
ランカップリング剤等のカップリング層が形成されてい
ることを特徴とする液晶表示装置。
4. A coupling layer such as a silane coupling agent is formed between the inorganic oxide layer and the fluorine-containing polymer layer formed on the surface of the component in the liquid crystal display device. Liquid crystal display device.
【請求項5】 液晶表示パネルを備えた表示装置におい
て、光が通過する部品表面に無機酸化物または無機酸化
物前駆体を含むゾルを塗布、及び加熱することにより無
機酸化物層を形成し、更に溶剤可溶性含フッ素高分子溶
液を塗布することにより、含フッ素高分子層を形成する
ことを特徴とする液晶表示装置の製造法。
5. In a display device including a liquid crystal display panel, a sol containing an inorganic oxide or an inorganic oxide precursor is applied to the surface of a component through which light passes, and heated to form an inorganic oxide layer, A method for producing a liquid crystal display device, which further comprises forming a fluorine-containing polymer layer by applying a solvent-soluble fluorine-containing polymer solution.
JP4114478A 1992-05-07 1992-05-07 Liquid crystal display device and its production Pending JPH05313148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4114478A JPH05313148A (en) 1992-05-07 1992-05-07 Liquid crystal display device and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4114478A JPH05313148A (en) 1992-05-07 1992-05-07 Liquid crystal display device and its production

Publications (1)

Publication Number Publication Date
JPH05313148A true JPH05313148A (en) 1993-11-26

Family

ID=14638748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4114478A Pending JPH05313148A (en) 1992-05-07 1992-05-07 Liquid crystal display device and its production

Country Status (1)

Country Link
JP (1) JPH05313148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321448A (en) * 2004-05-06 2005-11-17 Hitachi Displays Ltd Liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321448A (en) * 2004-05-06 2005-11-17 Hitachi Displays Ltd Liquid crystal display device
JP4585226B2 (en) * 2004-05-06 2010-11-24 株式会社 日立ディスプレイズ Liquid crystal display

Similar Documents

Publication Publication Date Title
CN103260870B (en) There are the article of low-reflection film
JP2007004104A (en) Optical element, liquid crystal panel and liquid crystal display device
JP3387204B2 (en) Polarizing plate, method for manufacturing polarizing plate, and liquid crystal display device
KR20010051778A (en) Substrate for liquid crystal display elements
US20170291392A1 (en) Article having low reflection film
JPH02245702A (en) Antireflection file and production thereof
CN110780488A (en) Display panel and display device
JP2004341098A (en) Color liquid crystal panel
WO2022188412A1 (en) Display device
WO2017206284A1 (en) Ultrathin liquid crystal display
TW583413B (en) Projecting film and method of forming the same
JPH05313148A (en) Liquid crystal display device and its production
JPH11109328A (en) Liquid crystal device and its production
KR20110009857A (en) Liquid crystal display and method of manufacturing a antireflection layer
CN208819015U (en) Projection screen and optical projection system
CN100392435C (en) Method of forming projecting film
US11428853B2 (en) Touch device and manufacturing method thereof, intelligent mirror
JPH06273740A (en) Liquid crystal display device and its production
JP2005249849A (en) Transmission type screen
WO2014042129A1 (en) Product having low-reflection film
TW200411283A (en) Liquid crystal display device
JP2003131010A (en) Optical parts, optical unit and graphic display device using it
JPH05203939A (en) Liquid crystal display device and its production
US20080107827A1 (en) Diffusing structure
JPH05203804A (en) Antireflection film and display device