JPH05312710A - Measuring apparatus for concentration of ultra fine particle in gas - Google Patents

Measuring apparatus for concentration of ultra fine particle in gas

Info

Publication number
JPH05312710A
JPH05312710A JP4148271A JP14827192A JPH05312710A JP H05312710 A JPH05312710 A JP H05312710A JP 4148271 A JP4148271 A JP 4148271A JP 14827192 A JP14827192 A JP 14827192A JP H05312710 A JPH05312710 A JP H05312710A
Authority
JP
Japan
Prior art keywords
gas
concentration
sample air
measuring
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4148271A
Other languages
Japanese (ja)
Inventor
Keisuke Sonoda
圭介 園田
Michinori Yamamoto
道則 山本
Tetsuo Yoshida
哲夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4148271A priority Critical patent/JPH05312710A/en
Publication of JPH05312710A publication Critical patent/JPH05312710A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a measuring apparatus for measuring the concentration of ultrafine floating particles of 0.1mum or smaller particle size in a gas with high accuracy without contaminating the measuring environment or giving adverse influences to an operator. CONSTITUTION:In the concentration measuring apparatus for measuring the concentration of ultrafine particles in a gas, a sample air 1 including floating fine particles is classified by an electrostatic classifier 14. Steam of the super pure water generated in a condensable air generating part 5 is mixed with the sample air in a mixer 2. Liquid drops 16 formed when the mixture is cooled are counted in a particle counting part 3 by scattering of a laser light. The steam of the super pure water is used as a condensable gas, and a container 2 is the mixer into which the steam of the super pure water is introduced. The sample air 1 is sent into the container 2, where the steam of the super pure water and the sample air 1 are mixed and cooled in gas phase thereby to generate drops of the super pure water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粒子径が0.1μm以
下の気体中の超微粒子の濃度計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the concentration of ultrafine particles in a gas having a particle size of 0.1 μm or less.

【0002】[0002]

【従来の技術】先端工業で利用される超微粒子製造,粉
体工業や大気環境汚染,衛生,医療及び半導体関連のク
リーンルーム等では、気体、特に大気中に浮遊する粒子
径が0.1μm以下の超微粒子の計測が重要である。従
来、粒子の直径が0.1μm以下の気体中浮遊微粒子の
濃度計測を行う場合、浮遊微粒子を凝縮核として凝縮性
気体の液滴を発生させ、つまり、不均一凝縮を発生さ
せ、微粒子を見掛け上0.1μm以上に肥らせること
で、レーザー光散乱計数法を利用して、液滴をカウント
する手段が採られている。
2. Description of the Related Art In the production of ultrafine particles used in advanced industries, powder industry, atmospheric environmental pollution, hygiene, medical and semiconductor clean rooms, etc., the particle diameter of particles suspended in gas, especially in the atmosphere, is 0.1 μm or less. It is important to measure ultrafine particles. Conventionally, when measuring the concentration of suspended particles in a gas having a particle diameter of 0.1 μm or less, the suspended particles are used as condensation nuclei to generate droplets of a condensable gas, that is, non-uniform condensation is generated, and the particles are apparent. A method of counting droplets by utilizing a laser light scattering counting method by fertilizing to above 0.1 μm is adopted.

【0003】[0003]

【発明が解決しようとする課題】すなわち、図3に示す
ように、浮遊微粒子を核として不均一凝縮を発生させる
際、吸引ポンプ07を作動し、浮遊微粒子を含むサンプ
ル気体01を静電分級器014で分級した上で凝縮性気
体発生部05に導き、サンプル気体と凝縮性気体を混合
させて、下流の冷却部(壁面冷却)013で滴状凝縮を
発生させる。その後に、レーザー光散乱を利用した計測
部03で液滴数をカウントするのである。しかしなが
ら、このような手段では、滴状凝縮を発生させるための
冷却は壁面冷却であるため、凝縮性気体は冷却部壁面に
凝縮し易く、滴状凝縮を発生させるための適切な過飽和
状態が達成され難い。それ故、粒子が0.1μm以上ま
で生長せず、粒子のカウントが十分に行われないなどの
問題があり、さらに、凝縮性気体として人体に有害なブ
チルアルコールを使用しているため、排気により、装置
を使用する環境の汚染や人体へ悪影響を及ぼすなどの問
題がある。
That is, as shown in FIG. 3, when the non-uniform condensation is generated by using the suspended fine particles as the nucleus, the suction pump 07 is operated and the sample gas 01 containing the suspended fine particles is electrostatically classified. After being classified by 014, it is guided to the condensable gas generation unit 05, the sample gas and the condensable gas are mixed, and droplet condensation is generated in the downstream cooling unit (wall surface cooling) 013. After that, the number of droplets is counted by the measuring unit 03 using laser light scattering. However, in such a means, the cooling for generating the droplet condensation is wall cooling, so that the condensable gas easily condenses on the cooling section wall surface, and an appropriate supersaturated state for generating the droplet condensation is achieved. Hard to be done. Therefore, there is a problem that particles do not grow to 0.1 μm or more, particles are not counted sufficiently, and because butyl alcohol, which is harmful to the human body, is used as a condensable gas, However, there are problems such as pollution of the environment where the device is used and adverse effects on the human body.

【0004】本発明はこのような事情に鑑みて提案され
たもので、粒子径0.1μm以下の浮遊微粒子濃度を測
定環境の汚染,作業員への悪影響なしに高精度で計測す
る気体中の超微粒子濃度計測装置を提供することを目的
とする。
The present invention has been proposed in view of the above circumstances, and it is possible to measure the concentration of suspended fine particles having a particle diameter of 0.1 μm or less with high accuracy without contamination of the measurement environment and adverse effects on workers. An object is to provide an ultrafine particle concentration measuring device.

【0005】[0005]

【課題を解決するための手段】そのために本発明は、浮
遊微粒子を含むサンプル空気を導入して静電分級器で分
級し、凝縮性気体発生部にて発生した凝縮性気体と上記
サンプル気体とを混合器にて混合及び冷却して発生した
液滴をレーザー光散乱粒子カウント部で計測するように
した気体中の超微粒子濃度計測装置において、上記凝縮
性気体として超純水水蒸気を使用するとともに、上記混
合器として超純水水蒸気を導入した容器内にサンプル空
気を導入し、両者を気相混合冷却して超純水の水滴を発
生するようにしたことを特徴とする。
To this end, according to the present invention, a sample air containing suspended fine particles is introduced and classified by an electrostatic classifier, and the condensable gas generated in the condensable gas generating section and the sample gas are In a device for measuring the concentration of ultrafine particles in a gas, in which a droplet generated by mixing and cooling in a mixer is measured by a laser light scattering particle counting unit, ultrapure water vapor is used as the condensable gas. The sample air is introduced as a mixer into a container into which ultrapure water vapor is introduced, and both are mixed in a gas phase for cooling to generate water droplets of ultrapure water.

【0006】[0006]

【作用】このような構成によれば、気相混合冷却法であ
るため、装置壁面への凝縮性気体の凝縮が無くなり、浮
遊微粒子を核化させるための適切な過飽和状態が容易に
達成され、効果的に液滴が発生する。これにより粒径
0.1μm以下の微粒子は0.1μm以上まで成長し易
くなり、レーザー光散乱により十分にカウントされるよ
うになる。また、凝縮性気体として超純水の水蒸気を使
用し、加えて液滴及び水蒸気は、フィルターと除湿器で
除去して装置外へ排気するので、人体の悪影響,環境汚
染等の問題が無くなる。
According to such a structure, since it is a vapor phase mixed cooling method, condensation of the condensable gas on the wall surface of the apparatus is eliminated, and an appropriate supersaturated state for nucleating suspended fine particles is easily achieved, Effectively droplets are generated. As a result, fine particles having a particle size of 0.1 μm or less are likely to grow to 0.1 μm or more, and are sufficiently counted by laser light scattering. In addition, since ultrapure water vapor is used as the condensable gas, and the droplets and water vapor are removed by a filter and a dehumidifier and exhausted to the outside of the apparatus, problems such as adverse effects on the human body and environmental pollution are eliminated.

【0007】[0007]

【実施例】本発明の一実施例を図面について説明する
と、図1はその全体系統図、図2は図1の気相混合冷却
部を示す拡大図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall system diagram thereof, and FIG. 2 is an enlarged view showing a vapor phase mixing / cooling unit of FIG.

【0008】本発明装置が図3に示した従来のものに比
べて大きく異なるところは、冷却部における滴状凝縮の
発生を壁面冷却による代わりに、気相混合冷却により行
うようにしたことにある。すなわち、まず、図1におい
て、本装置は、レーザー光散乱粒子カウント部3,超純
水タンク11,超純水水蒸気発生部5,気相混合冷却部
2,吸引ポンプ7,除湿器8,フィルター9,フローメ
ーター6,静電分級器14,水蒸気流量調整バルブ15
等から構成される。ここで、1はサンプル空気,4は超
純水,10は排気,16は水滴,17は相対湿度計,1
8はサンプル空気用温度・圧力計,19は水蒸気用温度
・圧力計である。
A major difference of the apparatus of the present invention from the conventional apparatus shown in FIG. 3 is that the droplet condensation is generated in the cooling section by gas phase cooling instead of wall cooling. .. That is, first, in FIG. 1, the present apparatus includes a laser light scattering particle counting unit 3, an ultrapure water tank 11, an ultrapure water vapor generating unit 5, a vapor phase mixing and cooling unit 2, a suction pump 7, a dehumidifier 8, a filter. 9, flow meter 6, electrostatic classifier 14, steam flow rate adjusting valve 15
Etc. Here, 1 is sample air, 4 is ultrapure water, 10 is exhaust, 16 is water drop, 17 is relative humidity meter, 1
Reference numeral 8 is a temperature / pressure gauge for sample air, and 19 is a temperature / pressure gauge for water vapor.

【0009】このような装置において、まず、吸引ポン
プ7を作動すると、サンプル空気1は、静電分級器14
を通って本装置内へ導入され、その際、静電分級器14
を通過するとき、サンプル空気1中の超微粒子は分級さ
れる。次に、超純水水蒸気発生部5からの水蒸気とサン
プル空気1とが気相混合冷却部2で混合し、サンプル空
気中の超微粒子を凝縮核として水滴16が発生する。こ
こで、気相混合冷却部2では、図2に示すように、10
0℃程度の超純水の水蒸気と、通常室温〜30℃程度の
サンプル空気とが気相状態で混合して水蒸気を冷却し、
サンプル空気中に含まれる浮遊微粒子を凝縮液として超
純水の水滴を発生するのである。なお、冷却部壁面で凝
縮する水蒸気量が多くなると、超微粒子へ凝縮する水蒸
気量が少なくなる結果、水蒸気による超微粒子の肥大化
が難しくなるので装置壁面の温度調節により、壁面への
水蒸気凝縮を少なくする。こうして、発生した水滴はレ
ーザー光散乱粒子カウント部3で計測され、粒子カウン
ト後、水滴を含む空気は、除湿器8で除湿され、気中に
残った水滴はフィルター9で除去され、装置外へ排気1
0される。なおまた、気相混合冷却部2で達成される水
蒸気の過飽和度は、サンプル空気の温度,圧力,流量,
相対湿度,水蒸気の温度,圧力,流量をもとに計算し、
所定の値が設定されるように吸引ポンプ流量,水蒸気流
量調整バルブ15を調節する。
In such an apparatus, first, when the suction pump 7 is operated, the sample air 1 is discharged into the electrostatic classifier 14.
And is introduced into the device through the electrostatic classifier 14 at that time.
When passing through, ultrafine particles in the sample air 1 are classified. Next, the water vapor from the ultrapure water vapor generating unit 5 and the sample air 1 are mixed in the gas phase mixing and cooling unit 2, and the water droplets 16 are generated by using the ultrafine particles in the sample air as condensation nuclei. Here, in the gas-phase mixture cooling unit 2, as shown in FIG.
Ultrapure water vapor of about 0 ° C. and sample air of about room temperature to 30 ° C. are mixed in a vapor phase to cool the water vapor,
The suspended fine particles contained in the sample air are used as a condensate to generate water droplets of ultrapure water. When the amount of water vapor condensed on the wall surface of the cooling unit increases, the amount of water vapor condensed on the ultrafine particles decreases, and as a result, it becomes difficult to enlarge the ultrafine particles due to the water vapor. Reduce. In this way, the generated water droplets are measured by the laser light scattering particle counting unit 3, and after counting the particles, the air containing the water droplets is dehumidified by the dehumidifier 8, and the water droplets remaining in the air are removed by the filter 9 to the outside of the apparatus. Exhaust 1
Zeroed. Furthermore, the degree of supersaturation of water vapor achieved in the gas-phase mixing / cooling unit 2 depends on the temperature, pressure, flow rate of the sample air,
Calculated based on relative humidity, water vapor temperature, pressure, and flow rate,
The suction pump flow rate and the steam flow rate adjusting valve 15 are adjusted so that a predetermined value is set.

【0010】ここで、超純水水蒸気発生部05において
は、ヒーターと超純水との接触面から、超純水中への不
純物発生のないヒーターを使用し又は電子レンジのよう
にマイクロ波加熱を行う。
Here, in the ultrapure water vapor generating section 05, a heater that does not generate impurities in the ultrapure water is used from the contact surface between the heater and the ultrapure water, or microwave heating is performed like a microwave oven. I do.

【0011】[0011]

【発明の効果】このような装置によれば、下記の効果が
奏せられる。 (1)気相混合冷却部では、壁面への凝縮性気体の凝縮
がなくなり、浮遊微粒子を核化するための適切な過飽和
状態が容易に発生することで、気体中の粒子径0.1μ
m以下の浮遊微粒子は、0.1μm以上に成長し易くな
り、レーザー光散乱による濃度計測精度が向上する。 (2)凝縮性気体として、人体に無害である超純水の水
蒸気を使用するので、人体に有害なブチルアルコール等
を使用せずに済むから、排気による環境の汚染や人体へ
の悪影響は生じない。
According to such a device, the following effects can be obtained. (1) In the gas-phase mixing / cooling unit, the condensation of the condensable gas on the wall surface is eliminated, and an appropriate supersaturated state for nucleating the suspended fine particles is easily generated.
Floating particles of m or less easily grow to 0.1 μm or more, and the concentration measurement accuracy by laser light scattering is improved. (2) Since the water vapor of ultrapure water, which is harmless to the human body, is used as the condensable gas, it is not necessary to use butyl alcohol, which is harmful to the human body, so that environmental pollution due to exhaust gas and adverse effects on the human body occur. Absent.

【0012】要するに、本発明によれば、浮遊微粒子を
含むサンプル空気を導入して静電分級器で分級し、凝縮
性気体発生部にて発生した凝縮性気体と上記サンプル気
体とを混合器にて混合及び冷却して発生した液滴をレー
ザー光散乱粒子カウント部で計測するようにした気体中
の超微粒子濃度計測装置において、上記凝縮性気体とし
て超純水水蒸気を使用するとともに、上記混合器として
超純水水蒸気を導入した容器内にサンプル空気を導入
し、両者を気相混合冷却して超純水の水滴を発生するよ
うにしたことにより、粒子径0.1μm以下の浮遊微粒
子濃度を測定環境の汚染,作業員への悪影響なしに高精
度で計測する気体中の超微粒子濃度計測装置を得るか
ら、本発明は産業上極めて有益なものである。
In short, according to the present invention, sample air containing suspended fine particles is introduced and classified by the electrostatic classifier, and the condensable gas generated in the condensable gas generating section and the sample gas are mixed in the mixer. In a device for measuring the concentration of ultrafine particles in a gas, in which droplets generated by mixing and cooling are measured by a laser light scattering particle counting unit, ultrapure water vapor is used as the condensable gas, and the mixer is used. As a sample air was introduced into a container in which ultrapure water vapor was introduced, and both were mixed and cooled in a gas phase to generate water droplets of ultrapure water, the concentration of suspended fine particles having a particle diameter of 0.1 μm or less was obtained. The present invention is extremely useful industrially, because an ultrafine particle concentration measuring device in a gas can be measured with high accuracy without contamination of the measuring environment and adverse effects on workers.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す全体系統図である。FIG. 1 is an overall system diagram showing an embodiment of the present invention.

【図2】図1の気相混合冷却部を示す拡大図である。FIG. 2 is an enlarged view showing a vapor phase mixing / cooling unit of FIG.

【図3】従来の気体浮遊微粒子の濃度計測装置を示す系
統図である。
FIG. 3 is a system diagram showing a conventional device for measuring the concentration of airborne particulates.

【符号の説明】[Explanation of symbols]

1 サンプル空気 2 気相混合冷却部 3 レーザー光散乱粒子カウント部 4 超純水 5 超純水水蒸気発生部 6 フローメーター 7 吸引ポンプ 8 除湿器 9 水滴捕集用フィルター 10 排気 11 超純水タンク 14 静電分級器 15 流量調整バルブ 16 水滴 17 相対湿度計 18 サンプル空気用温度・圧力計 19 水蒸気用温度・圧力計 1 Sample Air 2 Gas Phase Mixing Cooling Section 3 Laser Light Scattering Particle Counting Section 4 Ultrapure Water 5 Ultrapure Water Vapor Generation Section 6 Flow Meter 7 Suction Pump 8 Dehumidifier 9 Water Drop Collection Filter 10 Exhaust 11 Ultrapure Water Tank 14 Electrostatic classifier 15 Flow rate control valve 16 Water drop 17 Relative hygrometer 18 Temperature / pressure gauge for sample air 19 Temperature / pressure gauge for water vapor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 浮遊微粒子を含むサンプル空気を導入し
て静電分級器で分級し、凝縮性気体発生部にて発生した
凝縮性気体と上記サンプル気体とを混合器にて混合及び
冷却して発生した液滴をレーザー光散乱粒子カウント部
で計測するようにした気体中の超微粒子濃度計測装置に
おいて、上記凝縮性気体として超純水水蒸気を使用する
とともに、上記混合器として超純水水蒸気を導入した容
器内にサンプル空気を導入し、両者を気相混合冷却して
超純水の水滴を発生するようにしたことを特徴とする空
気中の超微粒子濃度計測装置。
1. A sample air containing suspended fine particles is introduced and classified by an electrostatic classifier, and the condensable gas generated in the condensable gas generating section and the sample gas are mixed and cooled in a mixer. In a device for measuring ultrafine particle concentration in a gas, in which a droplet generated is measured by a laser light scattering particle counting unit, ultrapure water vapor is used as the condensable gas, and ultrapure water vapor is used as the mixer. A device for measuring ultrafine particle concentration in air, characterized in that sample air is introduced into the introduced container and both are mixed and cooled in a gas phase to generate water droplets of ultrapure water.
JP4148271A 1992-05-14 1992-05-14 Measuring apparatus for concentration of ultra fine particle in gas Withdrawn JPH05312710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4148271A JPH05312710A (en) 1992-05-14 1992-05-14 Measuring apparatus for concentration of ultra fine particle in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4148271A JPH05312710A (en) 1992-05-14 1992-05-14 Measuring apparatus for concentration of ultra fine particle in gas

Publications (1)

Publication Number Publication Date
JPH05312710A true JPH05312710A (en) 1993-11-22

Family

ID=15449038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4148271A Withdrawn JPH05312710A (en) 1992-05-14 1992-05-14 Measuring apparatus for concentration of ultra fine particle in gas

Country Status (1)

Country Link
JP (1) JPH05312710A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431941B1 (en) * 1997-12-30 2004-09-10 주식회사 현대교정인증기술원 Apparatus and method of measuring exactness of condensation nucleus counter using reference part
KR100614101B1 (en) * 2005-09-15 2006-08-22 한국과학기술연구원 Particle counter
JP2013170872A (en) * 2012-02-20 2013-09-02 Shimadzu Corp Optical particle measuring apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431941B1 (en) * 1997-12-30 2004-09-10 주식회사 현대교정인증기술원 Apparatus and method of measuring exactness of condensation nucleus counter using reference part
KR100614101B1 (en) * 2005-09-15 2006-08-22 한국과학기술연구원 Particle counter
US7437908B2 (en) * 2005-09-15 2008-10-21 Korea Institute Of Science And Technology Particle counter
JP2013170872A (en) * 2012-02-20 2013-09-02 Shimadzu Corp Optical particle measuring apparatus

Similar Documents

Publication Publication Date Title
Hering et al. A method for particle size amplification by water condensation in a laminar, thermally diffusive flow
Fuchs Sampling of aerosols
US3854321A (en) Aerosol beam device and method
Rodes et al. Measurements of the size distribution of aerosols produced by ultrasonic humidification
US4689052A (en) Virtual impactor
US4067703A (en) Gas scrubber and method of operation
JPH0663961B2 (en) Method for measuring impurities in liquid and its measuring device
US3674435A (en) Low concentration constituent of gaseous mixture selective converter and detector
Ondov et al. Elemental particle-size emissions from coal-fired power plants: Use of an inertial cascade impactor
JPH05264432A (en) Method and system for diffusional dilution of fluid containing particles
JP3280464B2 (en) Device for monitoring concentration of non-volatile residue in test liquid and method for measuring the same
Xu et al. Effects of chemical composition and carbon residue on removal of coal-fired particles by vapor condensation
JPH05312710A (en) Measuring apparatus for concentration of ultra fine particle in gas
JP2017003384A (en) Particle measuring device and particle measuring method
JPH11258139A (en) Method and system for measuring particle in liquid sample
Sloane et al. Measurements of aerosol particle size: improved precision by simultaneous use of optical particle counter and nephelometer
CN107271236A (en) System and its purposes in hud typed aerosol is prepared occur for a kind of hud typed aerosol
Caffrey et al. In‐cloud oxidation of SO2 by O3 and H2O2: Cloud chamber measurements and modeling of particle growth
Bunz et al. The novel aerosol chamber facility AIDA: status and first results
Schwab et al. Laboratory characterization of modified tapered element oscillating microbalance samplers
Helsper et al. On the influence of the vapour substance on the behaviour of an expansion-type condensation nucleus counter
JP2002189007A (en) Method and device for measuring moisture in gas
Fuks et al. Highly disperse aerosols
Cossey et al. A higher-flow rate cyclone for determination of respirable dust
Beamer et al. Comparison of capture efficiencies measured by tracer gas and aerosol tracer techniques

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803