JPH05312651A - Continuous temperature measuring apparatus and component analyzing apparatus for molten metal - Google Patents

Continuous temperature measuring apparatus and component analyzing apparatus for molten metal

Info

Publication number
JPH05312651A
JPH05312651A JP4117105A JP11710592A JPH05312651A JP H05312651 A JPH05312651 A JP H05312651A JP 4117105 A JP4117105 A JP 4117105A JP 11710592 A JP11710592 A JP 11710592A JP H05312651 A JPH05312651 A JP H05312651A
Authority
JP
Japan
Prior art keywords
tuyere
gas
temperature
molten metal
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4117105A
Other languages
Japanese (ja)
Inventor
Hiroaki Ishida
博章 石田
Hiroyuki Ikemiya
洋行 池宮
Kazuharu Hanazaki
一治 花崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4117105A priority Critical patent/JPH05312651A/en
Publication of JPH05312651A publication Critical patent/JPH05312651A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an apparatus for continuously measuring temperature and analyzing components of molten metal stably. CONSTITUTION:The continuous temperature measuring/component analyzing apparatus for molten metal comprises an optical measuring unit 4, a tuyere 3, and a gas transmissive porous body 15 having central through hole, wherein the optical measuring unit is disposed at the base end part of the tuyere while the gas transmissive porous body 15 is projected in front of the tuyere so that a through hole 17 will communicate with the central port of the tuyere. Since a desired mashroom shape is obtained for the measuring hole tuyere and a straightforward optical path is obtained stably, temperature and compositional elements of molten metal can be measured stably, continuously, and accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、製鋼転炉、溶融還元
炉、スクラップ溶解炉、電気炉等の金属精錬炉の羽口を
介して、同時に羽口保護を行うことで羽口の長寿命化を
図りながら、炉内溶湯の温度および成分元素を連続的に
測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a long-life tuyere by simultaneously performing tuyere protection through the tuyere of a metal-smelting furnace such as a steelmaking converter, a smelting reduction furnace, a scrap melting furnace, and an electric furnace. The present invention relates to an apparatus for continuously measuring the temperature and constituent elements of a molten metal in a furnace while aiming for improvement.

【0002】[0002]

【従来の技術】例えば、製鋼転炉における1チャージ当
たり約20分間のO2吹錬作業中には、「サブランス」と称
する溶湯の測温および分析試料採取のための装置が用い
られるのが一般的である。しかし、この装置は元々非連
続的な使用を前提としたものである上、採取した試料か
ら溶湯成分の分析結果を得るまでには、最短でも約5分
間程度の待ち時間が必要である。従って、吹錬途中1点
の温度と炭素量のみによって目標終点を予測してコント
ロールする方法しかなく、さらには、炭素以外のMn、P
などの元素は出鋼後ようやく判明するのが現状である。
2. Description of the Related Art For example, during an O 2 blowing operation for about 20 minutes per charge in a steelmaking converter, a device called "sublance" for measuring the temperature of molten metal and collecting an analytical sample is generally used. Target. However, this device is originally intended for discontinuous use, and a waiting time of about 5 minutes is required at the minimum to obtain the analysis result of the molten metal component from the collected sample. Therefore, there is only a method of predicting and controlling the target end point only by the temperature and the carbon content at one point during the blowing, and further, Mn and P other than carbon are used.
The current situation is that elements such as are finally known after tapping.

【0003】排ガス側のガス分析は既に連続測定の技術
が確立しているにも拘らず、短時間の吹錬中にダイナミ
ックに変化して行く溶鋼の温度および成分に係わる連続
的な情報の不足は、更に吹錬作業末期における終点温度
および成分の的中精度の向上および高速連続鋳造とのマ
ッチングによる高能率化を目指す上で大きい障害となっ
ており、連続的な測温や成分分析を行う装置の開発が望
まれている。
In the gas analysis on the exhaust gas side, despite the fact that a continuous measurement technique has already been established, there is a lack of continuous information on the temperature and composition of molten steel that dynamically changes during short-time blowing. Is a major obstacle for improving the end point temperature in the final stage of the blowing operation and the accuracy of the components, and achieving high efficiency by matching with high-speed continuous casting. Continuous temperature measurement and component analysis are performed. Development of the device is desired.

【0004】特開昭60−231141号公報には、パルスレー
ザー光線と、これを炉内溶湯に導くための、主に不活性
ガス冷却を用いる羽口状の細管とを組み合わせる「温度
および化学組成の連続的測定方法」が示されている。
Japanese Patent Laid-Open No. 60-231141 discloses a combination of a pulsed laser beam and a tuyere-shaped thin tube mainly for cooling the molten metal in a furnace using inert gas cooling. The continuous measurement method "is shown.

【0005】連続的な測温方法としては、羽口状細管の
中に設けた光ファイバーを用いる方法なども試みられて
おり、この種の温度や化学組成(成分元素)の測定手段
としてはいずれも光学的な計測装置が適用されるのが通
常である。したがって、これらの計測装置の機能を完全
に発揮させるには、計測器側からの光線が常時直接溶湯
に当たる、あるいは、溶湯側からの光線が常時計測器の
検出側に到達するような、前記羽口状細管の炉内側前面
が健全な状態を維持しなければならない。この細管の前
面が溶損して行くというような条件ないし状態は、もち
ろん厳に回避しなければならない。
As a continuous temperature measuring method, a method of using an optical fiber provided in a tuyere-shaped thin tube has been attempted, and any method of measuring temperature and chemical composition (component element) of this kind has been attempted. Optical measuring devices are usually applied. Therefore, in order to fully bring out the functions of these measuring devices, it is necessary that the light beam from the measuring instrument side always directly hits the molten metal, or the light beam from the molten metal side always reaches the detecting side of the measuring instrument. The front of the inner side of the furnace of the mouth-capillary tube must be kept healthy. The condition or state in which the front surface of the thin tube is melted and damaged must of course be strictly avoided.

【0006】このような羽口状細管としては、種々の材
質の単管、あるいは元々精錬用羽口として開発された二
重管羽口などが使用される。しかし、この目的の羽口
は、いずれも基本的に計測装置の検出部を含む羽口を溶
湯の熱から保護するための冷却用ガスを主体として流す
ものであるから、羽口の前面には、溶湯から固形物(い
わゆるマッシュルーム)が形成され、曲がりくねったガ
ス通路、ポーラス状のガス通路、もしくは完全閉塞が生
じやすい。このときは、いわゆる「視野欠け」となって
測定精度の低下や、著しい場合には溶湯側からは何の情
報も得られなくなるという事態を招く。
As such tuyere-shaped thin tubes, single tubes of various materials, or double tube tuyere originally developed as refining tuyere are used. However, since the tuyere for this purpose basically flows mainly the cooling gas for protecting the tuyere including the detection part of the measuring device from the heat of the molten metal, the front of the tuyere does not A solid substance (so-called mushroom) is formed from the molten metal, and a meandering gas passage, a porous gas passage, or complete blockage is likely to occur. At this time, so-called “visual field loss” occurs, which leads to a decrease in measurement accuracy, and in a remarkable case, no information can be obtained from the molten metal side.

【0007】図6は、本発明者らが二重管羽口を用いて
実施した光ファイバーによる連続測温テストの際の、視
野欠けの例を示す図である。耐火煉瓦1および炉の鉄皮
2を貫通して設けられた二重管羽口3の内管3aの炉外側
端(本発明では、この部分を基端部という)に光ファイ
バー4を挿入し、内管3aには(Ar+O2)5a、外管3bには
(C3H8)5bを流したところ、羽口前面の先端部にマッシ
ュルーム6が固着して視野欠けが生じ、このため連続測
温が可能であった時間は全吹錬時間中の約1/2程度であ
った。冷却後この自然形成のマッシュルーム6を取り出
して縦断してみると、中心部のガス通路7は図示するよ
うに曲がっていた。
FIG. 6 is a diagram showing an example of visual field loss in a continuous temperature measurement test by an optical fiber conducted by the inventors using a double tube tuyere. The optical fiber 4 is inserted into the furnace outer end (in the present invention, this part is referred to as the base end) of the inner tube 3a of the double tube tuyere 3 provided through the refractory brick 1 and the iron shell 2 of the furnace, When (Ar + O 2 ) 5a was flown to the inner tube 3a and (C 3 H 8 ) 5b was flown to the outer tube 3b, the mushroom 6 adhered to the tip of the front of the tuyere and the visual field was lost. The time during which warming was possible was about 1/2 of the total blowing time. After cooling, the naturally formed mushrooms 6 were taken out and longitudinally cut, and the gas passage 7 in the central portion was bent as shown in the drawing.

【0008】また、レーザー発光分析計を用いた、上記
と同様の方法による連続成分分析の例では、サブランス
試料による分析結果と一致するデータを得ることは困難
であった。マッシュルームの形状およびガス通路の状況
が不安定であるため、局部的あるいは瞬間的視野欠け等
によっても、光線が遮られるような現象が発生している
と考えられる。
Further, in the example of continuous component analysis using a laser emission spectrometer by the same method as described above, it was difficult to obtain data that is consistent with the analysis result of the sublance sample. Since the shape of the mushrooms and the condition of the gas passages are unstable, it is considered that the phenomenon in which the light rays are blocked occurs due to a local or momentary visual field loss.

【0009】視野欠けの発生を防止し、光の直進路を確
保する手段としては、冷却ガス中にO2を混入するととも
に、羽口に設けられた別の測温装置によるデータと連動
させて、自動的にO2比率をコントロールする方法(前記
の特開昭60−231141号公報参照)もあるが、羽口測温箇
所の温度に代表性があるのか否かという問題、応答性の
遅れの問題があって、一般には実用性に乏しい。
As a means for preventing the occurrence of visual field loss and ensuring a straight path of light, O 2 is mixed into the cooling gas, and it is linked with data from another temperature measuring device provided at the tuyere. Although there is also a method of automatically controlling the O 2 ratio (see Japanese Patent Laid-Open No. 60-231141), the problem of whether or not the temperature at the tuyere temperature measurement point is representative, and the delay in response However, it is generally not practical.

【0010】視野欠けが発生した場合、光の通路を回復
する手段としては、測定孔羽口に流す冷却ガス中に通常
比率以上のO2を混入し、酸化反応を促進させ、この反応
熱によってマッシュルームの一部を溶解して除去する方
法もあるが、混入比率を決定する根拠を瞬時に得る方法
にも確たるものがなく、一歩誤ると羽口そのものまで溶
損させ、ひいては計測器の重要な検出部をも溶損させて
しまうこともある。
When a visual field loss occurs, the means for recovering the light passage is to mix O 2 in a cooling gas flowing to the tuyere of the measurement hole at a ratio higher than a normal ratio to accelerate the oxidation reaction, and to heat the reaction. There is also a method to dissolve and remove a part of mushrooms, but there is no reliable method to obtain the basis for determining the mixing ratio instantaneously, and if you make a mistake, you will melt the tuyere itself, and eventually the important part of the measuring instrument. It may also cause the detector to melt.

【0011】[0011]

【発明が解決しようとする課題】上記のように、従来の
羽口に備える非接触式の温度計あるいは成分分析計によ
って、金属溶湯の温度あるいは成分を連続的に計測する
方法では、羽口前面の先端に生成する自然のマッシュル
ームの形状や構造の変化に大きく左右され、安定的かつ
正確な計測が不可能であった。他方、視野欠けのないマ
ッシュルームを形成させようとすれば、マッシュルーム
を形成させない方向のガス吹込み条件しか選択すること
ができず、羽口およびその周辺の耐火物が損耗する事態
に陥る。
As described above, in the method of continuously measuring the temperature or the component of the molten metal by the non-contact type thermometer or the component analyzer provided in the conventional tuyere, the front face of the tuyere is used. Stable and accurate measurement was impossible because the shape and structure of the natural mushrooms generated at the tip of the was greatly affected. On the other hand, if it is attempted to form a mushroom having no visual field loss, only gas blowing conditions in a direction in which no mushroom is formed can be selected, and the refractory in the tuyere and its surroundings will be worn.

【0012】そのため、マッシュルームの形成を防止し
ながら、羽口の溶損をも同時に防止するという困難な課
題を解決しようとすれば、O2量や冷却ガスの流量を常に
変動させなければならないという問題があった。
Therefore, in order to solve the difficult problem of preventing melting of tuyere at the same time while preventing the formation of mushrooms, it is necessary to constantly change the O 2 amount and the cooling gas flow rate. There was a problem.

【0013】本発明の課題は、例えば製鋼転炉の吹錬末
期で微妙に変化する温度および成分を測定して、その結
果を基に吹錬条件をコントロールし、終点温度や成分の
的中率向上に寄与しうるシステムを志向し、既知の計測
手段(例えば、光ファイバー温度計、レーザ発光分光
計)を用いて、羽口保護を図りながら、同時に安定的
に、かつ正確に溶湯の温度あるいは成分元素の連続測定
を可能ならしめる装置を提供することにある。
The object of the present invention is to measure, for example, the temperature and components that slightly change in the final stage of blowing of a steelmaking converter, and control the blowing conditions based on the results to determine the end temperature and the hit rate of the components. Aiming at a system that can contribute to improvement, by using known measuring means (for example, optical fiber thermometer, laser emission spectrometer), while protecting the tuyere, at the same time, the temperature or composition of the molten metal is stable and accurate. It is to provide a device that enables continuous measurement of elements.

【0014】[0014]

【課題を解決するための手段】既知の技術である光学的
な計測器や羽口等を使って溶鋼の温度や成分組成を計測
しようとする場合、計測の成功率や計測精度は、計測孔
羽口前面の先端に付着するマッシュルームの形状と流す
冷却ガス流量の変動に大きく影響を受ける。
[Means for Solving the Problems] When attempting to measure the temperature and composition of molten steel by using a known technique such as an optical measuring instrument or tuyere, the success rate and accuracy of the measurement are The shape of the mushrooms attached to the tip of the tuyere front and the fluctuation of the flow rate of the cooling gas are greatly affected.

【0015】そこで本発明では、問題の根本であるマッ
シュルームの安定性を高め、同時に光の直進路を確保す
る手段として羽口前面の先端にガス通気性多孔質体(人
工的なマッシュルーム)を適用することとした。
Therefore, in the present invention, a gas-permeable porous body (artificial mushroom) is applied to the tip of the front of the tuyere as a means for improving the stability of the mushroom, which is the root of the problem, and at the same time securing the straight path of light. It was decided to.

【0016】本発明の要旨は次の装置にある。The gist of the present invention resides in the following device.

【0017】(1) 非接触温度計と、羽口と、中心部に貫
通孔を備えたガス通気性多孔質体から構成される溶湯の
連続測温装置であって、前記非接触温度計は羽口基端部
に設置され、前記ガス通気性多孔質体は貫通孔が羽口中
心口と連なるように羽口前面に突出して取り付けられて
いることを特徴とする溶湯の連続測温装置。
(1) A continuous temperature measuring device for a molten metal, comprising a non-contact thermometer, a tuyere, and a gas-permeable porous body having a through hole in the center thereof, wherein the non-contact thermometer is A continuous temperature measuring device for molten metal, which is installed at a base end portion of a tuyere, and wherein the gas-permeable porous body is attached so as to project from a tuyere front face such that a through hole is continuous with a tuyere center opening.

【0018】(2) 光学的分析計と、羽口と、中心部に貫
通孔を備えたガス通気性多孔質体から構成される溶湯の
連続成分分析装置であって、前記光学的分析計は羽口基
端部に設置され、前記ガス通気性多孔質体は貫通孔が羽
口中心口と連なるように羽口前面に突出して取り付けら
れていることを特徴とする溶湯の連続成分分析装置。
(2) An apparatus for continuous component analysis of molten metal comprising an optical analyzer, a tuyere, and a gas-permeable porous body having a through hole in the center thereof, wherein the optical analyzer is A continuous component analyzer for molten metal, which is installed at a base end of a tuyere, and wherein the gas-permeable porous body is attached so as to project to the front of the tuyere so that a through hole is continuous with the center of the tuyere.

【0019】[0019]

【作用】本発明の装置に用いる人工的なマッシュルーム
は、金属精錬炉の多重管羽口前面の中心孔(最内管)の
先端に接続し、しかも、炉内に突出するように取付けら
れる部材であって、全体がガス通気性多孔質体から構成
され、羽口中心孔に対応する炉外の基端部に光ファイバ
ー温度計あるいはレーザ発光分光計のセンサーを取付け
て溶鋼の温度や成分元素を計測するものである。
The artificial mushroom used in the apparatus of the present invention is a member which is connected to the tip of the center hole (innermost tube) in front of the multi-tuyer tuyeres of the metal refining furnace and is attached so as to project into the furnace. That is, the whole is composed of a gas-permeable porous body, and a fiber optic thermometer or a laser emission spectrometer sensor is attached to the base end outside the furnace corresponding to the tuyere center hole to detect the temperature and constituent elements of molten steel. It is something to measure.

【0020】図1は、本発明の装置を適用する金属精錬
炉(上底吹き転炉)を示す図である。すなわち、金属精
錬炉8の溶鋼9の貯留部の側壁(炉底でもよい)10の耐
火煉瓦1の内部に二重管羽口3と3′を設ける。このい
ずれか一方が連続測温装置用、他方が連続成分分析装置
用であり、それぞれ独立している。図1の炉では、酸素
を上吹きするメインランス11、前記のサブランス12、底
吹き羽口13、集塵用フード14などの所要設備が設けられ
ている。
FIG. 1 is a diagram showing a metal refining furnace (upper-bottom blowing converter) to which the apparatus of the present invention is applied. That is, double tube tuyeres 3 and 3'are provided inside the refractory brick 1 on the side wall (or the bottom of the furnace) 10 of the storage part of the molten steel 9 of the metal refining furnace 8. One of them is for a continuous temperature measuring device and the other is for a continuous component analyzer, which are independent of each other. The furnace shown in FIG. 1 is provided with necessary equipment such as a main lance 11 for blowing oxygen upward, the sub lance 12, a bottom blowing tuyere 13, and a dust collecting hood 14.

【0021】図2は、ガス通気性多孔質体15の形状と二
重管羽口3に対する取付け状態の例を説明する図であ
る。この場合、ガス通気性多孔質体15は、きのこ状であ
りその内部にガス拡散を均一にするためのガス溜まり16
を有している。その中心には、貫通孔17があり、これが
羽口内管3aに対応する位置に、ガス通気性多孔質体15と
耐火煉瓦1とが接する側の貫通孔は、羽口外管3bと対応
する位置に、それぞれくるように取り付けられる。
FIG. 2 is a diagram for explaining an example of the shape of the gas-permeable porous body 15 and the state of attachment to the double tube tuyere 3. In this case, the gas-permeable porous body 15 has a mushroom shape and has a gas reservoir 16 for uniform gas diffusion therein.
have. At its center, there is a through hole 17, which is located at a position corresponding to the tuyere inner pipe 3a. The through hole on the side where the gas-permeable porous body 15 and the refractory brick 1 are in contact with the outer tuyere pipe 3b. It is attached so that it comes to each.

【0022】図3は、図1の金属精錬炉に適用する、連
続測温装置の構成の一例を示す概略図であるが、この図
のようにガス通気性多孔質体15′は、その内部にガス溜
まり16を有しない形状としてもよい。この装置は、二重
管羽口3、この炉内側前面の先端にガス通気性多孔質体
15′および羽口3の炉外の基端部に金属浴温を検出でき
る集光器18と非接触式光ファイバー温度計4を設置し
て、溶鋼9の浴温データを処理する装置19で温度に変換
し、温度記録計20に記録表示するものである。
FIG. 3 is a schematic view showing an example of the structure of a continuous temperature measuring device applied to the metal refining furnace of FIG. 1. As shown in this figure, the gas permeable porous body 15 'has an internal structure. The shape may be such that the gas reservoir 16 is not provided. This equipment consists of a double tube tuyere, and a gas permeable porous body at the tip of the front surface of the inside of this furnace.
A condenser 18 capable of detecting the temperature of the metal bath and a non-contact type optical fiber thermometer 4 are installed at the base end of the furnace 15 'and the tuyere 3 outside the furnace, and the temperature is measured by a device 19 for processing the bath temperature data of the molten steel 9. It is converted into the temperature, and is recorded and displayed on the temperature recorder 20.

【0023】羽口3は、上記のように羽口内管3aと羽口
外管3bで構成され、羽口そのもの、集光器18および非接
触式光ファイバー温度計4を冷却保護するために不活性
ガスを主体とする内管ガス5aを、また羽口およびガス通
気性多孔質体15′を保護するためにプロパンなどの外管
ガス5bを流す。
The tuyere 3 is composed of the tuyere inner tube 3a and the tuyere outer tube 3b as described above, and is provided with an inert gas for cooling and protecting the tuyere itself, the condenser 18 and the non-contact type optical fiber thermometer 4. The inner tube gas 5a mainly composed of, and the outer tube gas 5b such as propane is flowed to protect the tuyere and the gas-permeable porous body 15 '.

【0024】レーザ発光分光計などを用いる溶湯の連続
成分分析装置の場合は、次のような装置構成にすればよ
い。すなわち、図3に示す羽口3の炉外の基端部にある
集光器18と非接触式光ファイバー温度計4の位置にパル
スレーザの送信部およびパルスレーザにより発生するプ
ラズマビームの受信部を、浴温データを処理する装置19
の位置にプラズマビームを成分値に変換する装置を、ま
た、温度記録計20の位置に成分記録計を、それぞれ設置
する。冷却ガスの流し方は、上記の連続測温装置の場合
と同様である。
In the case of an apparatus for analyzing continuous components of molten metal using a laser emission spectrometer or the like, the following apparatus configuration may be used. That is, a pulse laser transmitter and a plasma beam receiver generated by the pulse laser are provided at the positions of the condenser 18 and the non-contact optical fiber thermometer 4 at the base end outside the furnace of the tuyere 3 shown in FIG. Equipment for processing bath temperature data 19
An apparatus for converting a plasma beam into a component value is installed at the position, and a component recorder is installed at the position of the temperature recorder 20. The method of flowing the cooling gas is the same as in the case of the above continuous temperature measuring device.

【0025】通常、計測する場合には、図3に示す5a、
5bのN2(Arでも可)ガスなどを少量ずつ流しながら計測
するが、計測が必ずしも必要でないとき(例えば転炉の
吹錬初期)、あるいは羽口前面に固形物が付着して計測
に支障が生ずるおそれがあるときは、5aに少量のO2ガス
を混合させることにより羽口内管3aの先端に視野欠けを
発生させる固形物の形成を防止し、また、計測を必要と
する事前のタイミングで固形物を除去して内管前面の視
野を確保しておかなければならない。
Normally, when measuring, 5a shown in FIG.
5b N 2 (Ar can be used) is measured while flowing a small amount of gas, etc., but when measurement is not always necessary (for example, in the initial stage of blowing of the converter), or solid matter adheres to the front of the tuyere to interfere with the measurement. When there is a possibility that a small amount of O 2 gas is mixed with 5a to prevent the formation of solid matter that causes a visual field loss at the tip of the tuyere inner tube 3a, and also the advance timing that requires measurement. The solids must be removed with to secure the field of view in front of the inner tube.

【0026】人工的なマッシュルームの作用効果は、次
のとおりである。
The effects of the artificial mushroom are as follows.

【0027】周知のように、金属精錬用のいわゆる底吹
き羽口では、吹込ガスの冷却効果と刻々変化上昇して行
く溶鋼温度、羽口周辺の耐火煉瓦の温度との微妙なバラ
ンスにより、羽口周辺に自然に形成されるマッシュルー
ムを頼りとして、羽口の先端部および周辺煉瓦の保護を
行う。しかし、この自然に形成されるマッシュルームが
最初に形成を開始する場所、大きさ、成長速度等は、か
ならずしも一様ではないこともまた周知である。しか
も、その形状やガス通過の方向は、吹込みガスのジェッ
トに起因するいわゆるバックアタックや溶鋼の流動現象
の影響も大きく受け、場合によっては、一旦形成された
ものが再び剥離して消失してしまうこともあるほど、不
安定なものである。
As is well known, in so-called bottom-blown tuyeres for metal refining, the blades are delicately balanced by the cooling effect of the blown gas, the temperature of the molten steel that increases and rises momentarily, and the temperature of the refractory bricks around the tuyeres. Protect the tip of the tuyere and surrounding bricks by relying on the mushrooms that naturally form around the mouth. However, it is also well known that the location, size, growth rate, etc. at which this naturally formed mushroom first starts forming is not always uniform. Moreover, the shape and the direction of gas passage are greatly affected by so-called back attack caused by the jet of the blown gas and the flow phenomenon of molten steel, and in some cases, what is once formed is separated and disappears again. It is so unstable that it may get lost.

【0028】このような不安定さを解消するために、自
然のマッシュルームに近い、しかも羽口内管と接続する
貫通孔を有する安定した形状の、溶鋼成分と類似した成
分の人工的なマッシュルームを予め羽口前面の先端部に
装着しておくのである。この方法により、マッシュルー
ムの形状および光の直進路が安定的に得られるので、安
定かつ連続的に、しかも精度よく金属浴の温度および成
分元素を計測することが可能になる。前記の瞬間的な視
野欠けが発生しているような現象が認められる事態に至
った場合に、内管冷却ガス中の酸素比率を増加させて
も、貫通孔内面部のみの好都合な溶損に留まるので、マ
ッシュルームの安定性が即座に損なわれることはない。
したがって、この計測用羽口周囲の耐火煉瓦の損耗もほ
とんどなく安定的な精錬と的中率の向上も可能である。
In order to eliminate such instability, an artificial mushroom having a composition similar to that of molten steel and having a stable shape close to that of natural mushroom and having a through hole connecting to the tuyere tube is previously prepared. It is attached to the tip of the front of the tuyere. By this method, the shape of the mushroom and the straight path of the light can be stably obtained, so that it becomes possible to measure the temperature and the constituent elements of the metal bath in a stable and continuous manner and with high accuracy. In the event that a phenomenon in which the above-mentioned momentary visual field loss has occurred is recognized, even if the oxygen ratio in the inner pipe cooling gas is increased, it is possible to obtain favorable melting loss only on the inner surface of the through hole. It remains so that mushroom stability is not immediately compromised.
Therefore, the refractory bricks around the tuyere for measurement are hardly worn, and stable refining and improvement of hit rate are possible.

【0029】人工的なマッシュルームでは、図2、図3
に示すように、その断面形状を初めから半円球状にする
ことができ、かつ全体が多孔質体であるので、冷却ガス
は均一に放射状に分布して流れる。したがって、一定量
に近い冷却ガス量でもマッシュルームの安定性を保つこ
とができる。また、貫通孔を有し、最初から光の直進路
が確保されているので、視野欠け防止または視野確保の
ために使用するO2ガス量の変動幅も小さくすることがで
きる。
In the artificial mushroom, FIG. 2 and FIG.
As shown in, the cross-sectional shape can be made hemispherical from the beginning, and since the whole is a porous body, the cooling gas flows evenly and radially. Therefore, it is possible to maintain the stability of the mushroom even when the cooling gas amount is close to a certain amount. Further, since the through-hole is provided and the straight path of the light is secured from the beginning, the fluctuation range of the amount of O 2 gas used for preventing the visual field loss or securing the visual field can be reduced.

【0030】このように、使用するガス量の変動幅が小
さくなると、計測点の温度変動も当然抑制されるので、
温度計測精度も向上するという効果をもたらすのであ
る。
As described above, when the fluctuation range of the amount of gas used is reduced, the temperature fluctuation at the measurement point is naturally suppressed,
This has the effect of improving the temperature measurement accuracy.

【0031】本発明の装置で用いる保護部材を構成する
多孔質体は、金属製とし、これに機械的に小さな孔を多
数開けてもよいが、粉末冶金法による焼結体、さらには
発泡金属のようなものがより好ましい。また、繊維の中
に気孔を有するセラミックス繊維の集合体、すなわちセ
ラミックスフォームを鋳型の中に入れ、その上に金属を
鋳込むと比較的容易に多孔質体を製造することができ、
安価にこのような保護部材を作製することが可能であ
る。
The porous body constituting the protective member used in the apparatus of the present invention may be made of metal, and a large number of mechanically small holes may be formed therein. Are more preferable. Further, an aggregate of ceramic fibers having pores in the fibers, that is, a ceramic foam is put in a mold, and a metal can be cast thereon to relatively easily produce a porous body,
It is possible to manufacture such a protection member at low cost.

【0032】また、金属成分としては自然のマッシュル
ームと同じく、溶銑より低い炭素濃度 0.5〜2%の鋳鉄
鋼が望ましく、その他は精錬に悪影響を及ぼさない成分
であればよい。Ni、Ni−Cr合金鋼またはステンレス鋼の
ような耐熱鋼でもよい。気孔率としては、気孔密度10〜
100 個/cm2、気孔径2.0mm 未満が好ましい。
As the metallic component, cast iron steel having a carbon concentration of 0.5 to 2%, which is lower than that of the hot metal, is desirable as in the case of natural mushrooms, and other components may be used as long as they do not adversely affect refining. It may be a heat resistant steel such as Ni, Ni-Cr alloy steel or stainless steel. The porosity is 10 to 10
100 / cm 2 and a pore size of less than 2.0 mm are preferable.

【0033】[0033]

【実施例】図1に示す金属精錬用の上底吹き転炉を用
い、この転炉側壁に溶鋼の温度を計測するための羽口と
溶鋼の成分を計測するための羽口を別々に設け、それぞ
れ図2に示すガス通気性多孔質体を取り付けて試験を実
施した。比較例は、ガス通気性多孔質体を取り付けずに
計測した従来の方法の場合である。
EXAMPLE A top-bottom blowing converter for metal refining shown in FIG. 1 was used, and tuyeres for measuring the temperature of the molten steel and tuyere for measuring the components of the molten steel were separately provided on the side wall of the converter. The tests were carried out by attaching the gas-permeable porous bodies shown in FIG. 2, respectively. The comparative example is a case of the conventional method measured without attaching the gas-permeable porous body.

【0034】表1に示す精錬条件で溶銑を溶鋼にしたと
きの、吹錬中の温度と成分を計測し、従来の方法と比較
した。このときのガス通気性多孔質体の仕様および羽口
の形状を表2に示す。その結果を図4および図5に示
す。表3は、吹き止め段階の結果のみを比較したもので
ある。
The temperature and components during blowing when molten iron was made into molten steel under the refining conditions shown in Table 1 were measured and compared with the conventional method. Table 2 shows the specifications of the gas-permeable porous body and the tuyere shape at this time. The results are shown in FIGS. 4 and 5. Table 3 compares only the results of the blowout stage.

【0035】図4は22分の吹錬時間内で本発明法による
光ファイバー温度計で連続測温した場合の結果の一例
を、サブランスによる計測結果と比較してプロットした
ものであるが、全吹錬期間中安定して精度よく計測でき
ていることが確かめられた。
FIG. 4 is a plot of an example of the results obtained by continuously measuring the temperature with an optical fiber thermometer according to the method of the present invention within a blowing time of 22 minutes. It was confirmed that stable and accurate measurement was possible during the smelting period.

【0036】図5は同様に、22分の吹錬時間内で本発明
法によるレーザ発光分光計で連続的に、C、Mn、P の各
成分について計測した場合の結果の一例を、サブランス
による計測結果と比較してプロットしたものであるが、
全吹錬期間中安定して精度よく計測できていることが確
かめられた。
Similarly, FIG. 5 shows an example of the result when the C, Mn and P components were continuously measured by the laser emission spectrometer according to the method of the present invention within the blowing time of 22 minutes by the sublance. It is a plot compared with the measurement result,
It was confirmed that stable and accurate measurement was possible during the entire blowing period.

【0037】表3に示すように、本発明の装置による光
ファイバー温度計で溶鋼温度を計測した場合、計測孔の
視野確保が安定的に維持できたため、計測成功率が大幅
に向上した。また、吹止め直前にテスト的に実施したサ
ンプリング測温と比較しても平均15℃の差に留まり、比
較例の場合の同30℃の差より小さく、またバラツキも少
ない。これは、溶鋼からの光の視野面積が充分に確保さ
れ、低温の固形物が視野領域に存在する確率が充分に低
く抑えられた効果、および表1に示すように計測孔羽口
に流すガス量の変動幅が小さくなった効果により、計測
精度が向上したことを示すものである。
As shown in Table 3, when the molten steel temperature was measured by the optical fiber thermometer by the device of the present invention, the field of view of the measurement hole could be stably maintained, and the measurement success rate was greatly improved. Further, even when compared with the sampling temperature measurement that was carried out as a test just before blowing off, the difference was only 15 ° C on average, which was smaller than the difference of 30 ° C in the comparative example, and there was little variation. This is because the field of view of the light from the molten steel is sufficiently secured, and the probability that low-temperature solid matter is present in the field of view is sufficiently low, and as shown in Table 1, the gas flown to the tuyere of the measurement hole. This shows that the measurement accuracy is improved due to the effect that the fluctuation range of the amount is reduced.

【0038】レーザー発光分光計で溶鋼成分を連続計測
した場合も、計測孔の視野が充分に確保できたために、
表3に示すように計測成功率と分析精度がともに向上
し、さらに、計測孔羽口の損耗速度もガス通気性多孔体
による均一な安定冷却により半減した。
Even when the molten steel component was continuously measured by the laser emission spectrometer, the field of view of the measurement hole was sufficiently secured,
As shown in Table 3, both the measurement success rate and the analysis accuracy were improved, and the wear rate of the measurement hole tuyere was halved by the uniform and stable cooling by the gas-permeable porous body.

【0039】ここでいう、計測成功率とは、温度の場
合、サブランス法による測温値との差が 100℃以内なら
対応がとれ、すなわち成功とみなしたときのチャージ数
の全チャージ数に対する比率である。成分分析の場合、
サブランス法によるサンプルの分析値の±20%以内の範
囲に入っておれば成功とみなしたときのチャージ数の全
チャージ数に対する比率である。
As used herein, the measurement success rate means that in the case of temperature, if the difference from the temperature measured by the Sublance method is within 100 ° C., it can be dealt with, that is, the ratio of the number of charges to the total number of charges when it is regarded as successful. Is. For component analysis,
It is the ratio of the number of charges to the total number of charges when it is regarded as successful if it is within ± 20% of the analysis value of the sample by the Sublance method.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【発明の効果】本発明の温度および成分の連続計測装置
によれば、計測孔羽口のマッシュルームの形状および光
の直進路が安定的に得られるので、安定かつ連続的に、
しかも精度よく金属浴の温度および成分元素を計測する
ことが可能である。また、この計測孔羽口周囲の耐火煉
瓦の損耗もほとんどなく、さらに安定的な精錬と終点温
度や成分の的中率の向上も可能であるので、精錬コスト
の低減にも寄与する。
According to the continuous temperature and component measuring apparatus of the present invention, since the shape of the mushroom at the measuring hole tuyere and the straight path of light can be stably obtained, it is possible to stably and continuously
Moreover, it is possible to accurately measure the temperature of the metal bath and the constituent elements. Further, the refractory bricks around the tuyere of the measurement hole are hardly worn, and more stable refining and improvement of the end point temperature and the accuracy of the components are possible, which contributes to the reduction of refining cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置を用いる精錬炉とその装置の取付
け位置の例を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of a refining furnace using the apparatus of the present invention and an attachment position of the apparatus.

【図2】本発明の装置における、ガス通気性多孔質体の
形状および羽口との取付け状態の例を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing an example of the shape of a gas-permeable porous body and the state of attachment to tuyere in the device of the present invention.

【図3】本発明の装置の、金属浴の温度を連続的に計測
する場合の構成を説明する概略断面図である。
FIG. 3 is a schematic cross-sectional view illustrating the configuration of the device of the present invention when the temperature of the metal bath is continuously measured.

【図4】図3に示す本発明の装置により、溶鋼の温度を
吹錬時間中、連続計測した結果の一例を示す図である。
FIG. 4 is a diagram showing an example of the result of continuous measurement of the temperature of molten steel during the blowing time by the apparatus of the present invention shown in FIG.

【図5】溶鋼の成分を吹錬時間中、連続計測した結果の
一例を示す図である。
FIG. 5 is a diagram showing an example of a result of continuous measurement of molten steel components during a blowing time.

【図6】ガス通気性多孔質体を用いない場合の、自然に
形成されたマッシュルームの状況の例を説明する概略断
面図である。
FIG. 6 is a schematic cross-sectional view illustrating an example of the situation of a mushroom formed naturally when a gas-permeable porous body is not used.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】非接触温度計と、羽口と、中心部に貫通孔
を備えたガス通気性多孔質体から構成される溶湯の連続
測温装置であって、前記非接触温度計は羽口基端部に設
置され、前記ガス通気性多孔質体は貫通孔が羽口中心口
と連なるように羽口前面に突出して取り付けられている
ことを特徴とする溶湯の連続測温装置。
1. A continuous temperature measuring device for a molten metal, comprising a non-contact thermometer, a tuyere, and a gas-permeable porous body having a through hole in the center thereof, wherein the non-contact thermometer is a wing. A continuous temperature measuring device for molten metal, which is installed at a base end portion of a mouth, and wherein the gas-permeable porous body is attached so as to project to a front surface of a tuyere so that a through hole is continuous with a tuyere center opening.
【請求項2】光学的分析計と、羽口と、中心部に貫通孔
を備えたガス通気性多孔質体から構成される溶湯の連続
成分分析装置であって、前記光学的分析計は羽口基端部
に設置され、前記ガス通気性多孔質体は貫通孔が羽口中
心口と連なるように羽口前面に突出して取り付けられて
いることを特徴とする溶湯の連続成分分析装置。
2. A continuous component analyzer for a molten metal, comprising an optical analyzer, a tuyere, and a gas-permeable porous body having a through hole in the center thereof, wherein the optical analyzer is a wing. An apparatus for analyzing a continuous component of a molten metal, which is installed at a base end of a mouth, and wherein the gas-permeable porous body is attached so as to project to a front surface of a tuyere so that a through hole is continuous with a central mouth of the tuyere.
JP4117105A 1992-05-11 1992-05-11 Continuous temperature measuring apparatus and component analyzing apparatus for molten metal Pending JPH05312651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4117105A JPH05312651A (en) 1992-05-11 1992-05-11 Continuous temperature measuring apparatus and component analyzing apparatus for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4117105A JPH05312651A (en) 1992-05-11 1992-05-11 Continuous temperature measuring apparatus and component analyzing apparatus for molten metal

Publications (1)

Publication Number Publication Date
JPH05312651A true JPH05312651A (en) 1993-11-22

Family

ID=14703529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4117105A Pending JPH05312651A (en) 1992-05-11 1992-05-11 Continuous temperature measuring apparatus and component analyzing apparatus for molten metal

Country Status (1)

Country Link
JP (1) JPH05312651A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323377A (en) * 2001-04-25 2002-11-08 Nippon Crucible Co Ltd In-furnace temperature measuring device
JP2003021560A (en) * 2001-07-06 2003-01-24 Nippon Steel Corp Continuous temperature measuring device of molten steel
WO2003010501A1 (en) * 2001-07-27 2003-02-06 Nippon Steel Corporation Molten metal temperature measuring instrument and method
JP2004037163A (en) * 2002-07-01 2004-02-05 Nippon Steel Corp Temperature measuring apparatus in molten metal
WO2020168683A1 (en) * 2019-02-18 2020-08-27 中国华能集团清洁能源技术研究院有限公司 Internal inspection monitoring system applicable to high-temperature high-pressure environment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323377A (en) * 2001-04-25 2002-11-08 Nippon Crucible Co Ltd In-furnace temperature measuring device
JP2003021560A (en) * 2001-07-06 2003-01-24 Nippon Steel Corp Continuous temperature measuring device of molten steel
WO2003010501A1 (en) * 2001-07-27 2003-02-06 Nippon Steel Corporation Molten metal temperature measuring instrument and method
US6923573B2 (en) 2001-07-27 2005-08-02 Nippon Steel Corporation Apparatus and method for measuring temperature of molten metal
JP2004037163A (en) * 2002-07-01 2004-02-05 Nippon Steel Corp Temperature measuring apparatus in molten metal
WO2020168683A1 (en) * 2019-02-18 2020-08-27 中国华能集团清洁能源技术研究院有限公司 Internal inspection monitoring system applicable to high-temperature high-pressure environment

Similar Documents

Publication Publication Date Title
US8479579B2 (en) Measuring probes for measuring and taking samples with a metal melt
TW562866B (en) Temperature measuring apparatus and method for molten metal
ES2373360T3 (en) METHOD AND DEVICE FOR THE DETERMINATION WITHOUT CONTACT OF A TEMPERATURE T OF A Fused METAL BATH.
US20050145071A1 (en) System for optically analyzing a molten metal bath
US20140053647A1 (en) Measuring probe for sampling melted metals
JPH11326061A (en) Temperature measuring method and device for molten bath in furnace
JPH05312651A (en) Continuous temperature measuring apparatus and component analyzing apparatus for molten metal
US4229412A (en) Apparatus for the determination of bond forms of gases
US5830407A (en) Pressurized port for viewing and measuring properties of a molten metal bath
SE508842C2 (en) Method and apparatus for measuring the temperature of a melt in a sample vessel and using optical pyrometry
US4002069A (en) Measuring lance for molten metal such as steel
US4749171A (en) Method and apparatus for measuring slag-foam conditions within a converter
JP4399927B2 (en) Apparatus and method for measuring oxygen partial pressure in slag
CN114838830A (en) Method, device and system for detecting temperature of iron-donating process section
JPH10176954A (en) Apparatus for measuring temperature of molten metal
KR20040014599A (en) Method for decarbonization refining of chromium-containing molten steel
JPS62132135A (en) Continuous measurement of molten metal temperature
JPS62226025A (en) Measuring method for fire point temperature of steel making furnace
EP1291444A1 (en) Method for observing inside of molten iron refining furnace and tuyere for observing inside of furnace
JP4788089B2 (en) Molten metal component measuring device
Williams Sensors for the Process Control and Analysis of Liquid Steel
JPS62228423A (en) Method for collecting information on refining
JPS6252423A (en) Method and apparatus for continuously measuring temperature of molten metal
SU877428A1 (en) Device for determination of carbon content in liquid metal and its temperature
JPH06235015A (en) Method for predicting slopping in refining vessel and instrument therefor