JPH05311307A - Far infrared radiation emitter and its production - Google Patents

Far infrared radiation emitter and its production

Info

Publication number
JPH05311307A
JPH05311307A JP14108492A JP14108492A JPH05311307A JP H05311307 A JPH05311307 A JP H05311307A JP 14108492 A JP14108492 A JP 14108492A JP 14108492 A JP14108492 A JP 14108492A JP H05311307 A JPH05311307 A JP H05311307A
Authority
JP
Japan
Prior art keywords
amount
content
far
less
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14108492A
Other languages
Japanese (ja)
Other versions
JP3048086B2 (en
Inventor
Mamoru Matsuo
守 松尾
Seiju Maejima
正受 前嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Sky Aluminium Co Ltd
Original Assignee
Fujikura Ltd
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Sky Aluminium Co Ltd filed Critical Fujikura Ltd
Priority to JP4141084A priority Critical patent/JP3048086B2/en
Publication of JPH05311307A publication Critical patent/JPH05311307A/en
Application granted granted Critical
Publication of JP3048086B2 publication Critical patent/JP3048086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PURPOSE:To produce a far infrared radiation emitter excellent in far infrared radiation characteristics, substantially free from cracking even at high temp., capable of being formed into complicated shapes by various manufacturing methods, and prepared by using an aluminum alloy as a base material. CONSTITUTION:This far infrared radiation emitter is prepared by forming a black anodic oxidation film of >=10mum thickness on the surface of a base material composed of an Al-Si alloy essentially containing 1-<3wt.% Si. The state of Si precipitation is controlled so that, particularly, >=80% of precipitated Si grains have >=0.05mum grain size and the relation in [residual content of solid-solution Si] (wt.%)<=[Si content] (wt.%)-0.5 is satisfied when Si content is less than 1.5wt.% and also the relation in [residual content of solid-solution Si]<=1 is satisfied when Si content is 1.5wt.% or above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、暖房、調理、乾燥、
材料の熱処理、その他各種の輻射加熱のために遠赤外線
を放射する部材に関するものであり、特に基材としてア
ルミニウム合金を用いて陽極酸化皮膜を形成した遠赤外
線放射体およびその製造方法に関するものである。
This invention relates to heating, cooking, drying,
The present invention relates to a member that radiates far infrared rays for heat treatment of materials and various other types of radiant heating, and more particularly to a far infrared radiator having an anodized film formed using an aluminum alloy as a base material and a method for manufacturing the same. ..

【0002】[0002]

【従来の技術】一般に遠赤外線を利用したヒーター類に
おいては、放射体の遠赤外線放射率が高く、しかも10
0℃以上の比較的低い表面温度で可視領域の放射が少な
い反面、遠赤外線領域の放射の多いものが要求される。
このような要求を満たす放射体としては、従来はアルミ
ナ、グラファイト、ジルコニア等の各種セラミック材料
で構成したものが実用化されている。そしてこれらの材
料のうちでも、遠赤外線放射特性の面ではアルミナが他
のセラミック材料と比較して優れた性能を有することが
知られている。
2. Description of the Related Art Generally, in heaters using far infrared rays, the far infrared ray emissivity of the radiator is high, and
At a relatively low surface temperature of 0 ° C. or higher, the amount of radiation in the visible region is small, but the amount of radiation in the far infrared region is large.
As a radiator satisfying such requirements, those made of various ceramic materials such as alumina, graphite and zirconia have been put into practical use. Among these materials, it is known that alumina has excellent performance in terms of far infrared radiation characteristics as compared with other ceramic materials.

【0003】しかしながら従来のセラミック材料からな
る遠赤外線放射体は、その重量が大きく、また割れ易
く、さらには薄いものを作成することが困難であり、ま
た熱伝導性が劣るため、放射体の加熱効率が悪い等の問
題があった。
However, conventional far-infrared radiators made of ceramic materials have a large weight, are easily broken, and it is difficult to make thin ones, and the thermal conductivity is poor, so that the radiator is heated. There was a problem such as inefficiency.

【0004】そこで金属基材の表面にセラミックを溶射
した放射体も実用化されているが、この場合は製造に高
コストを要し、また薄板や複雑形状の放射体を得ること
が困難である等の問題がある。
Therefore, a radiator in which ceramics are sprayed on the surface of a metal substrate has been put into practical use, but in this case, the manufacturing cost is high and it is difficult to obtain a thin plate or a radiator having a complicated shape. There is a problem such as.

【0005】ところでセラミック材料のうちでもアルミ
ナについては、アルミニウムの表面を陽極酸化処理して
アルマイト皮膜(陽極酸化皮膜)を生成することによ
り、アルミニウム基材表面にアルミナからなる層を容易
に生成することができる。この場合は、基材がアルミニ
ウムであるため熱伝導性が良好となり、しかも表面の陽
極酸化皮膜はアルミナであるため遠赤外線放射特性も良
好であり、したがって熱伝導性と遠赤外線放射特性との
両者を満たすことができる。そこで最近では上述のよう
にアルミニウム基材の表面を陽極酸化処理した遠赤外線
放射体が試みられている。
By the way, regarding alumina among ceramic materials, it is possible to easily form a layer made of alumina on the surface of an aluminum substrate by anodizing the surface of aluminum to form an alumite film (anodic oxide film). You can In this case, since the base material is aluminum, the thermal conductivity is good, and since the anodic oxide film on the surface is alumina, the far-infrared radiation characteristics are also good, and therefore both the thermal conductivity and the far-infrared radiation characteristics are good. Can meet. Therefore, recently, a far-infrared radiator in which the surface of the aluminum base material is anodized as described above has been tried.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
アルミニウム基材の表面に陽極酸化処理を施した放射体
は、次の(1)〜(3)に示すような欠点を有するため
に、限られた用途にしか適用できないという問題があっ
た。 (1)200℃以上ではアルマイト皮膜にクラックが生
じやすく、そのため放射率が不安定になるとともに耐食
性も悪くなる。 (2)3〜7μmの波長域における放射率が低い。 (3)鋳造や各種塑性加工などによって複雑な形状の部
材を得ることが困難である。
However, the conventional radiator having an anodizing treatment on the surface of the aluminum base material is limited due to the following drawbacks (1) to (3). There is a problem that it can be applied only to the intended use. (1) At 200 ° C. or higher, cracks are likely to occur in the alumite coating, resulting in unstable emissivity and poor corrosion resistance. (2) Emissivity is low in the wavelength range of 3 to 7 μm. (3) It is difficult to obtain a member having a complicated shape by casting or various plastic workings.

【0007】以上のような問題のうち(1)について
は、200℃以上の高温でもクラックが生じにくい陽極
酸化皮膜を生成し得るアルミニウム合金を用いれば、問
題は解決することができるが、このようなアルミニウム
合金は遠赤外線放射体としては現在のところ知られてい
ない。
Regarding the above problem (1), the problem can be solved by using an aluminum alloy capable of forming an anodized film which is unlikely to cause cracks even at a high temperature of 200 ° C. or higher. Aluminum alloys are not currently known as far infrared radiators.

【0008】また前記(2)に記載の問題については、
赤外線放射体におけるアルミニウム基材表面の陽極酸化
皮膜を染料で着色することにより、前記波長域における
放射率を改善できることが知られている。ところがこれ
らの方法では、着色工程が増えて高コスト化を招き、さ
らには200℃以上の高温では染料等が分解したり皮膜
にクラックが生じたりして、その波長帯における放射率
が不安定となり、放射特性が低下してしまう問題があ
る。
Regarding the problem described in (2) above,
It is known that the emissivity in the above wavelength range can be improved by coloring the anodic oxide film on the surface of the aluminum substrate in the infrared radiator with a dye. However, in these methods, the number of coloring steps is increased and the cost is increased, and further, at a high temperature of 200 ° C. or higher, the dye or the like is decomposed or the film is cracked, and the emissivity in that wavelength band becomes unstable. However, there is a problem that the radiation characteristic is deteriorated.

【0009】さらに前記(3)の問題については鋳造や
各種塑性加工が可能なアルミニウム合金を用いれば問題
を解決できるが、鋳造や押出し、鍛造等の塑性加工が可
能でしかも陽極酸化処理によって安定して黒色となって
良好な遠赤外線放射特性を得ることができるアルミニウ
ム合金は、現在までのところ知られていなかったのが実
情である。
Regarding the above-mentioned problem (3), the problem can be solved by using an aluminum alloy which can be cast and various plastic workings, but it is possible to carry out plastic workings such as casting, extrusion and forging, and moreover, stable by anodizing treatment. The reality is that an aluminum alloy that can turn black and obtain good far infrared radiation characteristics has not been known so far.

【0010】この発明は以上の事情を背景としてなされ
たもので、200℃以上の高温においても熱歪によるク
ラックが陽極酸化皮膜に生じにくいとともに、遠赤外線
放射特性に優れ、しかも鋳造や鍛造、押出し等の種々の
加工法での製造を可能にして複雑な形状の部材が得られ
るようにした、アルミニウム合金を基材とする遠赤外線
放射体を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and cracks due to thermal strain are unlikely to occur in an anodized film even at a high temperature of 200 ° C. or higher, and far-infrared radiation characteristics are excellent, and casting, forging and extrusion are performed. It is an object of the present invention to provide a far-infrared radiator having an aluminum alloy as a base material, which can be manufactured by various processing methods such as to obtain a member having a complicated shape.

【0011】[0011]

【課題を解決するための手段】本発明者等は前述の課題
を解決するべく鋭意実験・検討を重ねた結果、基材のア
ルミニウム合金を、少量のSiを含有する成分系とし、
さらには析出Si粒子の分散状態を適切に調整すること
によって、前述の課題を解決し得ることを見出し、この
発明をなすに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies and studies to solve the above-mentioned problems, and as a result, made an aluminum alloy as a base material a component system containing a small amount of Si,
Furthermore, they have found that the aforementioned problems can be solved by appropriately adjusting the dispersed state of precipitated Si particles, and have completed the present invention.

【0012】具体的には、請求項1に記載の発明の遠赤
外線放射体は、Si1wt%以上3wt%未満を含有し、残
部がAlおよび不可避的不純物よりなる合金を基材と
し、その基材の表面に膜厚10μm以上の黒色の陽極酸
化皮膜が形成されていることを特徴とするものである。
Specifically, the far-infrared radiator of the present invention according to claim 1 uses as an base material an alloy containing Si of 1 wt% or more and less than 3 wt%, and the balance of Al and unavoidable impurities. Is characterized in that a black anodic oxide film having a film thickness of 10 μm or more is formed on its surface.

【0013】また請求項2に記載の発明の遠赤外線放射
体は、Si1wt%以上3wt%未満を含有し、かつFe
0.05〜1.5wt%、Mg0.05〜1.0wt%、C
u0.05〜1.0wt%、Mn0.05〜1.0wt%、
Ni0.05〜1.0wt%、Cr0.05〜0.5wt
%、V0.05〜0.5wt%、Zr0.05〜0.5wt
%、Ti0.005〜0.2wt%のうちの1種または2
種以上を含有し、残部がAlおよび不可避的不純物より
なる合金を基材とし、その基材の表面に膜厚10μm以
上の黒色の陽極酸化皮膜が形成されていることを特徴と
するものである。
The far infrared radiator according to the second aspect of the present invention contains Si in an amount of 1 wt% or more and less than 3 wt%, and Fe.
0.05-1.5 wt%, Mg 0.05-1.0 wt%, C
u 0.05-1.0 wt%, Mn 0.05-1.0 wt%,
Ni0.05-1.0wt%, Cr0.05-0.5wt
%, V0.05-0.5wt%, Zr0.05-0.5wt
%, Ti 0.005 to 0.2 wt%, one or two
An alloy containing at least one species and the balance being Al and inevitable impurities is used as a base material, and a black anodic oxide film having a thickness of 10 μm or more is formed on the surface of the base material. ..

【0014】さらに請求項3に記載の発明の遠赤外線放
射体は、請求項1もしくは請求項2の遠赤外線放射体に
おける基材として、その基材における全析出Si粒子の
うち、個数にして80%以上の析出Si粒子のサイズが
0.05μm以上であり、しかも残留固溶Si量がSi
含有量に応じて、Si含有量が1wt%以上1.5wt%未
満の場合は 残留固溶Si量(wt%)≦Si含有量(wt%)−0.5 を満たし、またSi含有量が1.5wt%以上3wt%未満
の場合は 残留固溶Si量(wt%)≦1 を満たしていることを特徴とするものである。
Furthermore, the far-infrared radiator of the invention described in claim 3 is used as a base material in the far-infrared radiator of claim 1 or 2, and the total number of deposited Si particles in the base material is 80. % Or more of the precipitated Si particles is 0.05 μm or more, and the amount of residual solid solution Si is Si.
Depending on the content, when the Si content is 1 wt% or more and less than 1.5 wt%, the residual solid solution Si amount (wt%) ≦ Si content (wt%) − 0.5 is satisfied, and the Si content is When the content is 1.5 wt% or more and less than 3 wt%, the residual solid solution Si amount (wt%) ≦ 1 is satisfied.

【0015】そしてまた請求項4に記載の発明の遠赤外
線放射体の製造方法は、Si1wt%以上3wt%未満を含
有し、さらに必要に応じてFe0.05〜1.5wt%、
Mg0.05〜1.0wt%、Cu0.05〜1.0wt
%、Mn0.05〜1.0wt%、Ni0.05〜1.0
wt%、Cr0.05〜0.5wt%、V0.05〜0.5
wt%、Zr0.05〜0.5wt%、Ti0.005〜
0.2wt%のうちの1種または2種以上を含有し、残部
がAlおよび不可避的不純物よりなる合金を鋳造し、さ
らに必要に応じて熱間加工および/または冷間加工を施
して所定の寸法の基材を得、その後陽極酸化処理を施し
て表面に10μm以上の陽極酸化皮膜を形成するにあた
り、前記鋳造の後、もしくは熱間加工の後、または冷間
加工の中途もしくは後に、250〜550℃の範囲内の
温度に加熱することによって、Siを、全析出Si粒子
のうち個数にして80%以上の析出Si粒子が0.05
μm以上であってしかも残留固溶Si量がSi含有量に
応じて、そのSi含有量が1wt%以上1.5wt%未満の
場合には 残留固溶Si量(wt%)≦Si含有量(wt%)−0.5 を満たすように、またSi含有量が1.5wt%以上3wt
%未満の場合には 残留固溶Si量(wt%)≦1 を満たすように、析出させることを特徴とするものであ
る。
Further, the method for producing a far-infrared radiator according to a fourth aspect of the present invention contains Si in an amount of 1 wt% or more and less than 3 wt%, and if necessary, Fe 0.05 to 1.5 wt%,
Mg0.05-1.0wt%, Cu0.05-1.0wt
%, Mn 0.05 to 1.0 wt%, Ni 0.05 to 1.0
wt%, Cr 0.05 to 0.5 wt%, V 0.05 to 0.5
wt%, Zr 0.05-0.5 wt%, Ti 0.005-
An alloy containing one or more of 0.2 wt% and the balance consisting of Al and unavoidable impurities is cast, and if necessary, hot working and / or cold working is performed to obtain a predetermined alloy. When a base material having a size is obtained and then anodized to form an anodized film of 10 μm or more on the surface, after the casting, or after hot working, or during or after cold working, 250 to By heating to a temperature in the range of 550 ° C., the Si content in the total number of precipitated Si particles is 80% or more and the precipitated Si particles are 0.05% or more.
If the residual solid solution Si content is 1 μm or more and less than 1.5 wt% depending on the Si content, the residual solid solution Si content (wt%) ≦ Si content ( wt%)-0.5 and the Si content is 1.5 wt% or more and 3 wt
When it is less than%, it is characterized in that precipitation is performed so as to satisfy the residual solid solution Si amount (wt%) ≦ 1.

【0016】[0016]

【作用】この発明の遠赤外線放射体は、基本的には1wt
%以上3wt%未満のSiを含有するAl−Si系のアル
ミニウム合金を基材とし、その表面に黒色の陽極酸化皮
膜を生成したものである。
The far-infrared radiator of the present invention is basically 1 wt.
% -Less than 3 wt% Si is used as a base material, and a black anodic oxide film is formed on the surface of the base material.

【0017】このように1wt%以上3wt%未満のSiを
含有するアルミニウム合金では、後に改めて説明するよ
うに適切な熱処理を施すことによって金属Si粒子がそ
の組織中に分散析出し、その基材表面を陽極酸化処理さ
せれば、陽極酸化皮膜中にも析出Si粒子が金属Si粒
子のまま取込まれる。そして陽極酸化皮膜中に金属Si
粒子が分散しているため、入射光が散乱吸収されて、遠
赤外線の放射特性が向上する。また可視光線も吸収され
るため、目視の色調も黒くなる。さらに、陽極酸化処理
時において陽極酸化皮膜(多孔質層)が成長する過程で
は、ポアは金属Si粒子を避けるようにして成長するこ
とから、皮膜中のポアは枝分かれした構造となり、この
ような枝分かれポア構造によって入射光に対する陽極酸
化皮膜内での散乱吸収が良好となり、遠赤外線の放射特
性が一層向上する。
In such an aluminum alloy containing Si in an amount of 1 wt% or more and less than 3 wt%, metal Si particles are dispersed and precipitated in the structure by an appropriate heat treatment as will be described later, and the surface of the base material is Is anodized, the precipitated Si particles are incorporated into the anodized film as metal Si particles. And metal Si is contained in the anodized film.
Since the particles are dispersed, the incident light is scattered and absorbed, and the radiation characteristic of far infrared rays is improved. Further, since visible light is also absorbed, the visual color tone becomes black. Further, in the process of growing the anodized film (porous layer) during the anodizing treatment, the pores grow while avoiding the metallic Si particles, so that the pores in the film have a branched structure, and such branching occurs. Due to the pore structure, scattering absorption of incident light in the anodic oxide film is improved, and the far infrared radiation characteristics are further improved.

【0018】さらに、陽極酸化皮膜中に分散して存在す
る金属Si粒子は応力の緩和点としても機能し、また前
述のようなポアの枝分かれ構造は歪の吸収能力が高く、
そのためクラックが生じにくいとともに、仮にクラック
が発生してもその伝播が阻止される。
Furthermore, the metallic Si particles dispersedly present in the anodized film also function as a stress relaxation point, and the branched structure of pores as described above has a high strain absorbing ability,
Therefore, cracks are unlikely to occur, and even if cracks occur, their propagation is blocked.

【0019】ここで、この発明の遠赤外線放射体の基材
アルミニウム合金における成分組成の限定理由について
述べる。
Here, the reasons for limiting the component composition in the base aluminum alloy of the far infrared radiator of the present invention will be described.

【0020】Si:Siはこの発明において基本的に重
要な合金成分である。Siは鋳造時にその添加量に応じ
て固溶し、その固溶Siは熱処理によって金属Siとし
て析出する。この析出Si粒子は、前述のように陽極酸
化処理時に金属Si粒子として陽極酸化皮膜中に取込ま
れ、入射光に対する散乱、吸収を通じて遠赤外線放射特
性の向上に寄与するとともに、クラックの発生防止に寄
与する。さらに金属Si粒子は、前述のように皮膜内の
ポアを枝分かれ構造とすることに寄与するとともに、応
力緩和物質として機能し、これによっても遠赤外線放射
特性の向上とクラック発生防止に寄与する。基材アルミ
ニウム合金のSi量が1wt%未満では、陽極酸化皮膜中
の金属Si粒子の体積率が少なく、遠赤外線の放射特性
が不充分となる。一方Si量が3wt%以上となれば、鋳
造時の共晶Si粒子の数が多くなり、陽極酸化皮膜の耐
食性が低下してしまう。したがってSi量は1wt%以
上、3wt%未満の範囲内とした。
Si: Si is a fundamentally important alloying component in the present invention. Si is solid-dissolved at the time of casting depending on the amount added, and the solid-solution Si is precipitated as metal Si by heat treatment. As described above, the precipitated Si particles are taken into the anodized film as metal Si particles during the anodizing treatment, contribute to the improvement of far infrared radiation characteristics through scattering and absorption of incident light, and prevent cracks from occurring. Contribute. Further, the metal Si particles contribute to the formation of a branched structure in the pores of the film as described above, and also function as a stress relaxation material, which also contributes to the improvement of far infrared radiation characteristics and the prevention of cracks. If the amount of Si in the base aluminum alloy is less than 1 wt%, the volume ratio of metal Si particles in the anodized film is small, and the radiation characteristics of far infrared rays are insufficient. On the other hand, when the amount of Si is 3 wt% or more, the number of eutectic Si particles during casting increases, and the corrosion resistance of the anodized film decreases. Therefore, the amount of Si is set to be in the range of 1 wt% or more and less than 3 wt%.

【0021】基材のアルミニウム合金の成分元素として
は、上記のSiのほかは、基本的にはAlおよび不可避
的不純物とすれば良い。すなわち、Al,Si以外の元
素は不可避的不純物扱いとして、請求項2で規定する下
限値未満としても、この発明の所期の目的は達成するこ
とができる。
As the constituent element of the aluminum alloy as the base material, basically, in addition to the above Si, Al and inevitable impurities may be used. That is, even if the elements other than Al and Si are treated as unavoidable impurities and the amount is less than the lower limit value defined in claim 2, the intended object of the present invention can be achieved.

【0022】但し、請求項2で規定しているように、強
度向上のためにFe,Mg,Cu,Mn,Ni,Cr,
V,Zr,Tiのうちの1種または2種以上を含有して
いても良い。これらの添加理由は次の通りである。
However, as defined in claim 2, in order to improve the strength, Fe, Mg, Cu, Mn, Ni, Cr,
You may contain 1 type, or 2 or more types of V, Zr, and Ti. The reason for adding these is as follows.

【0023】Fe:Feは強度向上および結晶粒微細化
のために有効である。Fe量が0.05wt%未満ではそ
の効果が得られず、1.5wt%を越えれば陽極酸化皮膜
の強度と耐食性が低下する。またFe量が1.5wt%を
越えれば、SiがFeと化合してAl−Fe−Si系の
金属間化合物の量が増加し、遠赤外線放射特性が低下す
る。したがってFeを添加する場合のFe量は0.05
〜1.5wt%の範囲とする。
Fe: Fe is effective for improving strength and refining crystal grains. If the Fe content is less than 0.05 wt%, the effect cannot be obtained, and if it exceeds 1.5 wt%, the strength and corrosion resistance of the anodic oxide film are deteriorated. On the other hand, if the amount of Fe exceeds 1.5 wt%, Si combines with Fe to increase the amount of Al—Fe—Si based intermetallic compounds, which deteriorates the far infrared radiation characteristics. Therefore, the amount of Fe when adding Fe is 0.05
˜1.5 wt%.

【0024】Mg:Mgも強度向上に寄与する。Mg量
が0.05wt%未満ではその効果が得られず、一方1.
0wt%を越えればMgとSiとが結合してMg2 Siの
生成量が増加し、遠赤外線放射特性が低下する。したが
ってMgを添加する場合のMg量は0.05〜1.0wt
%の範囲内とする。
Mg: Mg also contributes to the strength improvement. If the amount of Mg is less than 0.05 wt%, the effect cannot be obtained, while 1.
If it exceeds 0 wt%, Mg and Si are combined to increase the amount of Mg 2 Si produced and the far infrared radiation characteristics deteriorate. Therefore, when adding Mg, the amount of Mg should be 0.05 to 1.0 wt.
Within the range of%.

【0025】Cu:Cuの添加も強度向上に寄与する。
Cu量が0.05wt%未満ではその効果が得られず、一
方1.0wt%を越えれば鋳造性、耐食性、塑性加工性が
低下する。したがってCuを添加する場合のCu量は
0.05〜1.0wt%の範囲内とした。
Cu: The addition of Cu also contributes to the improvement of strength.
If the Cu content is less than 0.05 wt%, the effect cannot be obtained, while if it exceeds 1.0 wt%, the castability, corrosion resistance, and plastic workability deteriorate. Therefore, when Cu is added, the amount of Cu is set within the range of 0.05 to 1.0 wt%.

【0026】Mn:Mnは強度向上に寄与するととも
に、結晶粒微細化、耐熱性向上に寄与する。Mn量が
0.05wt%未満ではこれらの効果が得られず、一方
1.0wt%を越えればMnがSiと結合してAl−Mn
−Si系の金属間化合物の生成量が増加し、遠赤外線放
射特性が低下する。したがってMnを添加する場合のM
n量は0.05〜1.0wt%の範囲内とした。
Mn: Mn contributes not only to the improvement of strength but also to the refinement of crystal grains and the improvement of heat resistance. If the amount of Mn is less than 0.05 wt%, these effects cannot be obtained. On the other hand, if the amount of Mn exceeds 1.0 wt%, Mn is combined with Si to form Al-Mn.
The amount of -Si-based intermetallic compound produced increases, and the far infrared radiation characteristics deteriorate. Therefore, M when adding Mn
The amount of n was set in the range of 0.05 to 1.0 wt%.

【0027】Ni:Niも強度向上に寄与するととも
に、耐熱性向上に寄与する。Ni量が0.05wt%未満
ではこれらの効果が得られず、一方1.0wt%を越えれ
ば耐食性が低下する。したがってNiを添加する場合の
Ni量は0.05〜1.0wt%の範囲内とした。
Ni: Ni contributes not only to improving strength but also to improving heat resistance. If the amount of Ni is less than 0.05 wt%, these effects cannot be obtained, while if it exceeds 1.0 wt%, the corrosion resistance decreases. Therefore, when Ni is added, the amount of Ni is set within the range of 0.05 to 1.0 wt%.

【0028】Cr,Zr,V:これらの元素は、強度向
上に寄与するとともに、結晶粒微細化に寄与する。いず
れも0.05wt%未満ではその効果が得られず、一方
0.5wt%を越えれば粗大な金属間化合物が生成されて
かえって強度を低下させる。したがってCr,Zr,V
の1種または2種以上を添加する場合の添加量は、いず
れも単独量で0.05〜0.5wt%の範囲内とする。な
おスラブ、ビレットなどの圧延や押出、あるいは鍛造を
適用する場合は、これらの元素の単独添加量が0.3wt
%を越えれば塑性加工性が低下して製造が困難となるか
ら、単独添加量で0.3wt%以下とすることが好まし
い。
Cr, Zr, V: These elements contribute to the improvement of strength and also to the refinement of crystal grains. If the content is less than 0.05% by weight, the effect cannot be obtained. On the other hand, if the content exceeds 0.5% by weight, a coarse intermetallic compound is produced and the strength is rather lowered. Therefore, Cr, Zr, V
In the case of adding one kind or two kinds or more, the addition amount is in the range of 0.05 to 0.5 wt% as a single amount. When rolling, extrusion, or forging of slabs, billets, etc. is applied, the addition amount of these elements is 0.3 wt.
If it exceeds 0.1%, the plastic workability is deteriorated and the production becomes difficult.

【0029】Ti:Tiは鋳塊結晶粒の微細化を通じて
組織の微細化に寄与する。Ti量が0.005wt%未満
ではその効果が得られず、一方0.2wt%を越えれば粗
大な金属間化合物が生成されて好ましくない。したがっ
てTiを添加する場合のTi量は0.005〜0.2wt
%の範囲内とした。なお鋳塊結晶粒微細化のためには、
TiとともにBを共存させることが効果的である。この
場合B量が1ppm 未満ではその効果が得られず、一方1
00ppm を越えればその効果が飽和するから、Tiと併
せてBを添加する場合のB量は1〜100ppm の範囲内
とすることが好ましい。
Ti: Ti contributes to refinement of the structure through refinement of ingot crystal grains. If the Ti content is less than 0.005 wt%, the effect cannot be obtained, while if it exceeds 0.2 wt%, a coarse intermetallic compound is formed, which is not preferable. Therefore, the amount of Ti when Ti is added is 0.005 to 0.2 wt.
Within the range of%. In addition, in order to refine the ingot crystal grains,
It is effective to make B coexist with Ti. In this case, if the amount of B is less than 1 ppm, the effect cannot be obtained.
Since the effect is saturated if it exceeds 00 ppm, the amount of B when B is added together with Ti is preferably in the range of 1 to 100 ppm.

【0030】以上の各元素のほか、溶解時の酸化防止の
ためにBeを1〜100ppm 程度添加することは特に支
障はない。またZnは原材料にスクラップを使用した場
合に必然的に混入する元素であり、この発明の場合Zn
を積極的に添加する必要はないが、1.0wt%程度以下
であれば、特に遠赤外線放射特性等の特性に悪影響を与
えることはない。さらにその他の元素も、合計で1wt%
以下程度の微量であれば特に遠赤外線放射特性に悪影響
を及ぼすことはない。
In addition to the above elements, it is not particularly problematic to add Be in an amount of about 1 to 100 ppm for preventing oxidation during dissolution. Further, Zn is an element that is inevitably mixed in when scrap is used as a raw material.
However, if the content is about 1.0 wt% or less, the characteristics such as far-infrared radiation characteristics are not adversely affected. In addition, other elements are 1wt% in total
Far-infrared radiation characteristics are not adversely affected as long as the trace amount is below.

【0031】次にこの発明の遠赤外線放射体の基材アル
ミニウム合金の組織状態、特に金属Si粒子の分散状態
について説明する。
Next, the structure of the base aluminum alloy of the far-infrared radiator of the present invention, in particular, the dispersed state of metal Si particles will be described.

【0032】既に述べたように、1wt%以上3wt%未満
のSiを含有する系のアルミニウム合金では、鋳造時に
その添加量に応じてSiが固溶する。そして鋳造後に熱
処理された場合に、その固溶SiがAlマトリックス中
から金属Siとして析出する。この析出Si粒子は、陽
極酸化処理後においてもそのまま金属Si粒子として皮
膜中に残存する。そしてこの陽極酸化皮膜中の金属Si
粒子は、赤外線放射特性や陽極酸化皮膜の耐クラック性
に大きな影響を与える。
As already described, in a system aluminum alloy containing 1 wt% or more and less than 3 wt% Si, Si is solid-dissolved during casting depending on the amount added. Then, when heat treated after casting, the solid solution Si is precipitated as metallic Si from the Al matrix. The precipitated Si particles remain in the coating as metal Si particles as they are even after the anodizing treatment. And the metallic Si in this anodized film
The particles have a great influence on the infrared radiation characteristics and the crack resistance of the anodized film.

【0033】すなわち、陽極酸化皮膜中に金属Si粒子
が分散するため、入射光が散乱、吸収されて、遠赤外線
の放射特性が向上し、また可視光線も吸収されるため、
目視の色調も黒くなる。さらに陽極酸化処理時における
ポアの成長過程で、ポアが金属Si粒子を避けるように
して成長するため、ポアが枝分かれ構造となり、そのた
め入射光に対する陽極酸化皮膜中での散乱、吸収が助長
され、遠赤外線放射特性が一層向上する。
That is, since the metallic Si particles are dispersed in the anodized film, incident light is scattered and absorbed, the radiation characteristics of far infrared rays are improved, and visible rays are also absorbed.
The visual color also becomes black. Furthermore, during the process of growing the pores during the anodizing process, the pores grow while avoiding the metallic Si particles, so that the pores have a branched structure, which promotes scattering and absorption of incident light in the anodized film, and The infrared radiation characteristics are further improved.

【0034】一方、陽極酸化皮膜中の金属Si粒子は応
力の緩和点としても機能し、またポアの枝分かれ構造は
歪の吸収能が高く、したがってクラックが生じにくくな
るとともに、仮にクラックが発生してもその伝播が阻止
される。
On the other hand, the metal Si particles in the anodic oxide film also function as stress relaxation points, and the branched structure of the pores has a high strain absorbing ability, and thus cracks are less likely to occur, and if cracks occur, Its transmission is blocked.

【0035】ここで、良好な遠赤外線の放射特性を得る
ためには、析出した金属Si粒子のサイズ(粒径)とそ
の析出量が重要である。すなわち、先ず全析出Si粒子
のうち、個数にして80%以上のものが0.05μm以
上の粒径を有することが必要である。析出Si粒子の径
が0.05μm未満の場合には、可視光線、遠赤外線の
散乱吸収が不充分であって、良好な放射特性が得られ
ず、また目視的にも黄味が強くなって黒色とは言えなく
なる。また0.05μm以上の析出Si粒子が存在して
も、その個数割合が80%より少なければ、前記同様な
問題が生じる。したがってこの発明の所期の目的を達成
するためには、粒径が0.05μm以上の析出Si粒子
が全析出Si粒子の個数の80%以上を占めることが必
須である。
Here, in order to obtain good far-infrared radiation characteristics, the size (particle size) of the deposited metal Si particles and the deposition amount thereof are important. That is, first, it is necessary that 80% or more of all the precipitated Si particles have a particle size of 0.05 μm or more. When the diameter of the precipitated Si particles is less than 0.05 μm, the scattering absorption of visible rays and far infrared rays is insufficient, good radiation characteristics cannot be obtained, and the yellowishness becomes strong visually. It cannot be called black. Even if precipitated Si particles of 0.05 μm or more exist, the same problem as described above occurs if the number ratio is less than 80%. Therefore, in order to achieve the intended object of the present invention, it is essential that the precipitated Si particles having a particle size of 0.05 μm or more account for 80% or more of the total number of precipitated Si particles.

【0036】さらに析出Si粒子の粒径のみならず、そ
の析出量も重要である。Al−Si系の合金では、Si
は一般に鋳造の段階で生成される晶出Siの形態と、そ
の後の熱処理で析出される析出Siの形態と、固溶Si
の形態で存在する。鋳造時の段階では晶出Siと固溶S
iの状態で存在するが、このうち固溶Siからは、その
後の熱処理によって金属Siが析出する。鋳造時に固溶
するSiの量は、ほぼ0.5wt%以上である。一方本発
明者等の研究によれば、遠赤外線を有効に放射するため
に必要な析出Siの量はほぼ0.5wt%であることが確
認されている。したがって析出金属Si粒子の量が合金
全重量に対し0.5wt%以上となるように定めれば良
い。しかしながら、実際の合金においては、析出Si粒
子の量を直接調べることは困難である。すなわち、合金
中の金属Siの総量は図1に示すような塩酸不溶性のS
i分析によって可能であるが、この場合の金属Siに
は、析出Siのみならず、鋳造時の大きな晶出Siも含
まれ、この大きな晶出Siは遠赤外線放射特性の向上に
寄与しないから、金属Siのうち晶出Siは対象外とす
る必要がある。そこで先ず鋳造のままで金属Siを分析
して晶出Si量を求め、その後、Si析出のための熱処
理を行なってから、改めて金属Siの分析を行なえば、
その差を求めることによって析出Siの量を求めること
も可能であると考えられる。しかしながら、一般には鋳
造後の段階と熱処理後の段階とで同一箇所での分析を行
なうことは困難であり、そのため上述のようにして求め
た析出Si量を直接遠赤外線放射特性の目安にすること
はできない。そこで本発明者等は、Si析出後の残留固
溶Si量によって析出Si量を推定することを試みた。
その結果、全含有Si量に応じて残留固溶Si量がある
関係を満たす場合に、析出Si量がほぼ0.5wt%以上
となり、充分に優れた遠赤外線放射特性が得られること
を見出した。
Further, not only the particle size of the precipitated Si particles but also the amount of precipitation thereof is important. In Al-Si alloys, Si
Is generally the morphology of crystallized Si produced in the casting stage, the morphology of precipitated Si deposited in the subsequent heat treatment, and the solid solution Si.
Exists in the form of. At the stage of casting, crystallized Si and solid solution S
Although existing in the state of i, metallic Si is precipitated from the solid solution Si by the subsequent heat treatment. The amount of Si that forms a solid solution during casting is approximately 0.5 wt% or more. On the other hand, according to the research conducted by the present inventors, it has been confirmed that the amount of precipitated Si required to effectively radiate far infrared rays is approximately 0.5 wt%. Therefore, the amount of precipitated metal Si particles may be set to 0.5 wt% or more with respect to the total weight of the alloy. However, in an actual alloy, it is difficult to directly investigate the amount of precipitated Si particles. That is, the total amount of metallic Si in the alloy is S insoluble in hydrochloric acid as shown in FIG.
Although it is possible by i analysis, the metal Si in this case includes not only precipitated Si but also large crystallized Si at the time of casting, and since this large crystallized Si does not contribute to the improvement of far infrared radiation characteristics, It is necessary to exclude crystallized Si out of metallic Si. Therefore, first, the metal Si is analyzed in the as-cast state to obtain the amount of crystallized Si, after which the heat treatment for Si precipitation is performed, and then the metal Si is analyzed again,
It is considered possible to obtain the amount of precipitated Si by obtaining the difference. However, in general, it is difficult to perform the analysis at the same location after the casting and after the heat treatment. Therefore, the amount of precipitated Si obtained as described above should be used as a guide for the far-infrared radiation characteristics. I can't. Therefore, the present inventors tried to estimate the amount of precipitated Si by the amount of residual solid solution Si after Si precipitation.
As a result, it was found that when the amount of residual solid solution Si depends on the total amount of Si contained, the amount of precipitated Si becomes about 0.5 wt% or more, and sufficiently excellent far infrared radiation characteristics can be obtained. ..

【0037】すなわち、Al−Si系の合金において
は、Si量がほぼ1.5wt%以上で共晶Siが晶出する
ことに着目し、Si量1.5wt%を境界として添加Si
量(全Si含有量)と、残留固溶Si量と、析出Si量
との関係を研究した。なおここで、残留固溶Si量は、
全Si含有量(Si添加量)から、金属Si量(例えば
図1に示す方法による)と、総金属間化合物中のSi量
(例えば図2に示す方法による)とを差引いて求めた。
これは、Siは金属Siとして晶出、析出するほか、F
e,Mn,Mg等と化合物を生成するのが通常であり、
したがって全Si含有量から金属Si量を差引いた値と
残留固溶Si量との間には総金属間化合物中のSi量に
相当する分だけ誤差が生じるからである。
That is, in the Al-Si type alloy, paying attention to the fact that the eutectic Si crystallizes out when the Si amount is about 1.5 wt% or more, and the added Si is added with the Si amount of 1.5 wt% as the boundary.
The relationship between the amount (total Si content), the amount of residual solid solution Si, and the amount of precipitated Si was studied. Here, the residual solid solution Si amount is
It was determined by subtracting the metallic Si amount (for example, by the method shown in FIG. 1) and the Si amount in the total intermetallic compound (for example, by the method shown in FIG. 2) from the total Si content (Si added amount).
This is because Si crystallizes and precipitates as metallic Si, and F
It is common to form compounds with e, Mn, Mg, etc.,
Therefore, an error occurs between the value obtained by subtracting the metallic Si amount from the total Si content and the residual solid solution Si amount by the amount corresponding to the Si amount in the total intermetallic compound.

【0038】このようにして残留固溶Si量と全Si含
有量との関係を調べた結果、先ずSi含有量が1wt%以
上、1.5wt%未満の場合には、 残留固溶Si量(wt%)≦全含有Si量(wt%)−0.
5 を満たし、またSi含有量が1.5wt%以上、3.0wt
%未満の場合には、 残留固溶Si量(wt%)≦1.0 を満たしていれば、析出Siの総量が0.5wt%以上と
なり、優れた遠赤外線放射特性が得られることを見出し
た。すなわち、これらの関係を満たさない場合には、析
出Si量が0.5wt%より少なくなり、たとえ析出Si
粒子のサイズが0.05μm以上であっても遠赤外線放
射特性が不充分となってしまうのである。
As a result of examining the relationship between the residual solid solution Si amount and the total Si content in this way, first, when the Si content is 1 wt% or more and less than 1.5 wt%, the residual solid solution Si amount ( wt%) ≤total Si content (wt%)-0.
5 and the Si content is 1.5 wt% or more, 3.0 wt.
%, If the amount of residual solid solution Si (wt%) ≦ 1.0 is satisfied, the total amount of precipitated Si is 0.5 wt% or more, and excellent far infrared radiation characteristics can be obtained. It was That is, when these relationships are not satisfied, the amount of precipitated Si becomes less than 0.5 wt%, and
Even if the size of the particles is 0.05 μm or more, the far-infrared radiation characteristics will be insufficient.

【0039】前述のような析出Si粒子の析出状態を得
るためには、鋳造後、あるいはそれよりさらに後の段階
で、析出処理を行なう必要がある。すなわち、この発明
の遠赤外線放射体の製造方法では、基材は、前述のよう
な成分組成の合金を鋳造し、あるいはさらに鋳造後に必
要に応じて熱間鍛造、熱間押出、熱間圧延等の熱間加工
および/または冷間圧延等の冷間加工を行なって得るこ
とができるが、その基材の製造過程における鋳造後の段
階に析出処理を施したり、また鋳造後に熱間加工および
/または冷間加工を行なう場合には、熱間加工の後、も
しくは冷間加工の中途、あるいは冷間加工の後に析出処
理を行なえば良い。
In order to obtain the above-mentioned precipitation state of the precipitated Si particles, it is necessary to carry out the precipitation treatment after casting or at a later stage. That is, in the method for producing a far infrared radiator of the present invention, the base material is cast from an alloy having the above-described composition, or after casting, if necessary, hot forging, hot extrusion, hot rolling, etc. It can be obtained by performing hot working and / or cold working such as cold rolling. However, a precipitation treatment may be performed at a stage after casting in the manufacturing process of the base material, or hot working and / or post casting may be performed. Alternatively, when cold working is performed, the precipitation treatment may be performed after hot working, in the middle of cold working, or after cold working.

【0040】この析出処理は、250〜550℃の範囲
内の温度に0.5〜24時間加熱すれば良い。析出処理
の温度が250℃未満では、析出Si粒子のサイズが小
さくなって0.05μm未満となりやすく、一方550
℃を越えれば一旦析出したSiの再固溶が生じて、Si
析出量の絶対量が不足する。また析出処理の時間が0.
5時間未満では固溶Siから金属Siを充分に析出させ
ることが困難となり、一方24時間を越えても経済的に
無駄となるだけである。なおこのような析出処理は、独
立して行なっても、あるいは他の熱処理と兼ねて行なっ
ても良い。すなわち鋳造後に熱間加工を行なう場合に
は、その熱間加工の前の鋳塊加熱と兼ねて析出処理を行
なうこともでき、あるいは熱間加工と冷間加工との間や
冷間加工の中途において中間焼鈍を行なう場合にはその
中間焼鈍と兼ねて析出処理を行なうことができ、さらに
冷間加工の後に最終焼鈍を行なう場合は、その最終焼鈍
と兼ねて析出処理を行なうこともでき、要は前述のよう
な析出Si粒子の析出状態が得られるような条件で熱処
理が行なわれれば良い。
This precipitation treatment may be performed by heating to a temperature in the range of 250 to 550 ° C. for 0.5 to 24 hours. If the temperature of the precipitation treatment is less than 250 ° C., the size of the precipitated Si particles becomes small and the particle size tends to be less than 0.05 μm.
If the temperature exceeds ℃, re-dissolution of once-precipitated Si occurs,
The absolute amount of precipitation is insufficient. In addition, the time for the precipitation treatment is 0.
If it is less than 5 hours, it becomes difficult to sufficiently deposit metallic Si from the solid solution Si, while if it exceeds 24 hours, it is economically wasteful. Such precipitation treatment may be carried out independently or in combination with other heat treatment. That is, when hot working is performed after casting, the precipitation treatment can also be performed in combination with ingot heating before the hot working, or between hot working and cold working or during cold working. In the case of performing the intermediate annealing in, the precipitation treatment can be performed in combination with the intermediate annealing, and in the case of performing the final annealing after the cold working, the precipitation treatment can be performed in combination with the final annealing. The heat treatment may be performed under the condition that the above-described precipitation state of precipitated Si particles is obtained.

【0041】次にアルミニウム合金基材に施す陽極酸化
処理について説明する。
Next, the anodizing treatment applied to the aluminum alloy substrate will be described.

【0042】前述のような化学成分と金属組織を有する
アルミニウム合金基材に陽極酸化処理を施せば、黒色の
陽極酸化皮膜が生成され、優れた遠赤外線放射特性を示
す。すなわち陽極酸化処理時には、金属Si粒子が皮膜
中にそのまま残存した状態で陽極酸化皮膜が成長する。
そのため皮膜中のポアの成長が金属Si粒子により妨げ
られ、枝分れした微細なポアを有する多孔質の皮膜が生
成される。さらに陽極酸化皮膜中にそのまま存在する金
属Si粒子と前述の枝分れした微細なポアが入射光を散
乱吸収し、その結果目視での色調が黒色となり、かつ遠
赤外線の放射特性も良好となる。そしてまた前述の枝分
れした微細なポア構造と皮膜中の金属Si粒子が熱応力
の緩和点として機能し、そのため皮膜にクラックが生じ
にくくなり、500℃程度の高温に至るまでクラックが
生じることがなく使用可能となる。
When an anodizing treatment is applied to the aluminum alloy substrate having the above-mentioned chemical composition and metal structure, a black anodic oxide film is formed and excellent far infrared radiation characteristics are exhibited. That is, during the anodizing treatment, the anodized film grows with the metallic Si particles remaining in the film as they are.
Therefore, the growth of pores in the film is hindered by the metal Si particles, and a porous film having branched fine pores is produced. Further, the metallic Si particles existing as they are in the anodized film and the fine pores branched as described above scatter and absorb the incident light, and as a result, the visual color tone becomes black and the far-infrared radiation characteristics become good. .. Further, the fine branch structure and the metal Si particles in the coating function as a relaxation point for thermal stress, so that the coating is less likely to crack and cracks occur up to temperatures as high as 500 ° C. There is no need to use it.

【0043】ここで陽極酸化皮膜の膜厚は10μm以上
が必要である。すなわちマンセル値で明度4.5以下の
黒色度を示すためには膜厚を10μm以上とする必要が
ある。またこのように膜厚が10μm以上であれば、安
定した高い黒色度が得られるから、広い波長域で安定し
た遠赤外線放射特性が得られる。
Here, the film thickness of the anodized film must be 10 μm or more. That is, in order to show a blackness with a Munsell value of 4.5 or less, the film thickness needs to be 10 μm or more. Further, when the film thickness is 10 μm or more, stable high blackness can be obtained, and thus stable far infrared radiation characteristics can be obtained in a wide wavelength range.

【0044】なお陽極酸化処理の条件は特に限定される
ものではなく、硫酸、シュウ酸などの無機酸、あるいは
有機酸、さらにはこれらの混合酸などの電解浴を用い、
直流、交流、あるいは交直併用、交直重畳波形など、任
意の波形を用いて陽極酸化処理を行なえば良い。但し、
経済性や作業効率の観点からは、硫酸浴で直流電流を用
いることが好ましい。また陽極酸化処理の前には脱脂、
苛性エッチング等の前処理を行なうのが一般的であり、
苛性エッチングを行なった場合には引続いて硝酸等の酸
でデスマット処理を施すのが一般的である。そのほか必
要に応じて、切削加工、酸洗浄、化学研磨処理、ヘアラ
イン加工、シヨットブラスト等の機械的前処理などを実
施しても良いことはもちろんである。
The conditions of the anodizing treatment are not particularly limited, and an inorganic acid such as sulfuric acid or oxalic acid, an organic acid, or an electrolytic bath of a mixed acid thereof is used.
The anodic oxidation treatment may be performed using an arbitrary waveform such as direct current, alternating current, alternating / direct combination, or alternating / superimposed waveform. However,
From the viewpoint of economy and work efficiency, it is preferable to use a direct current in a sulfuric acid bath. Also, degreasing before anodizing,
It is common to perform pretreatment such as caustic etching,
When caustic etching is performed, it is common to subsequently perform desmutting treatment with an acid such as nitric acid. In addition, it is needless to say that mechanical pretreatment such as cutting, acid cleaning, chemical polishing, hairline processing, and sailboat blasting may be carried out if necessary.

【0045】[0045]

【実施例】【Example】

実施例1 表1の合金番号1〜3に示す成分組成の合金について2
0mm×200mm×200mmの形状に砂型鋳造した。なお
鋳造に先立って、予め脱ガス処理を施した。得られた鋳
物のうち、一部は鋳造のままの材料とし、残りのものに
ついては400℃もしくは150℃で5時間の加熱処理
を施した後、10℃/hrの冷却速度で徐冷した。
Example 1 Alloys having compositional compositions shown in alloy numbers 1 to 3 in Table 1 2
A sand mold was cast into a shape of 0 mm × 200 mm × 200 mm. Prior to casting, degassing treatment was performed in advance. A part of the obtained casting was used as it was, and the rest was heat-treated at 400 ° C. or 150 ° C. for 5 hours, and then gradually cooled at a cooling rate of 10 ° C./hr.

【0046】各材料について表面を機械的に切削した
後、10%苛性ソーダで60℃×5分間エッチングし、
水洗後30%硝酸を用いてデスマット処理した。その
後、15%濃度の硫酸浴を用い、電流密度1.5A/dm
2 、電解温度20℃で陽極酸化処理を施した。
After mechanically cutting the surface of each material, etching was performed with 10% caustic soda at 60 ° C. for 5 minutes,
After washing with water, desmutting was performed using 30% nitric acid. Then, using a 15% sulfuric acid bath, the current density is 1.5 A / dm
2. Anodizing treatment was performed at an electrolysis temperature of 20 ° C.

【0047】陽極酸化処理後の各材料についてマンセル
明度を測定するとともに、300℃での分光放射率を測
定した。ここで、従来の一般的な陽極酸化皮膜の遠赤外
線放射特性としては、通常3〜7μmの波長での分光放
射率が劣っているところから、その範囲内の代表的な波
長6μmでの分光放射率を測定した。また各材料のSi
析出物サイズおよび固溶Si量を調べた。Si析出物サ
イズは先ず光学顕微鏡を用いて、さらに光学顕微鏡では
判定し難い0.05μmに近い析出物が析出していると
思われる場合には、透過電子顕微鏡を用いて判別した。
また固溶Si量は、材料中の金属Si量を図1に示す方
法によって分析し、また全金属間化合物中のSi量を図
2に示すフェノール残渣法で分析し、全Si含有量(S
i添加量)から前者の金属Si量と後者の金属間化合物
中のSi量とを差引いて求めた。これらの結果を表2中
に示す。なおここで、マンセル明度としてはその値が
4.5以下である場合に充分な黒色を有していると判定
できる。また波長6μmでの分光放射率が0.7以上の
値となっている場合に良好な遠赤外線放射特性を有して
いると判定できる。
The Munsell brightness was measured for each material after the anodizing treatment, and the spectral emissivity at 300 ° C. was measured. Here, as the far-infrared radiation characteristic of a conventional general anodic oxide film, since the spectral emissivity at a wavelength of 3 to 7 μm is usually inferior, the spectral radiation at a typical wavelength of 6 μm within that range is obtained. The rate was measured. In addition, Si of each material
The precipitate size and the amount of solid solution Si were examined. The Si precipitate size was first determined using an optical microscope, and further, when it was considered that a precipitate near 0.05 μm, which was difficult to determine by an optical microscope, was deposited, it was determined using a transmission electron microscope.
For the amount of solid solution Si, the amount of metallic Si in the material is analyzed by the method shown in FIG. 1, and the amount of Si in the total intermetallic compound is analyzed by the phenol residue method shown in FIG.
It was determined by subtracting the former amount of metallic Si and the latter amount of Si in the intermetallic compound from (i addition amount). The results are shown in Table 2. Here, when the value of the Munsell lightness is 4.5 or less, it can be determined that the Munsell lightness has a sufficient black color. Further, when the spectral emissivity at a wavelength of 6 μm is 0.7 or more, it can be determined that the far-infrared radiation characteristic is good.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】実施例1において、合金番号1,2の40
0℃加熱材はSiに関する条件がこの発明で規定する条
件範囲を満たしており、このうち陽極酸化皮膜厚が10
μmを越える29μmの場合は、マンセル明度、分光放
射率が所定の値を満たすこと、すなわち目視の色調が充
分に黒色でかつ遠赤外線放射特性が優れていることが判
る。また、合金番号1,2の400℃加熱材のうち陽極
酸化皮膜厚が10μmを越える材料は、陽極酸化処理後
500℃に加熱した後表面を目視で観察しても、クラッ
クは観察されなかった。
In Example 1, 40 of alloy numbers 1 and 2
The 0 ° C. heating material satisfies the condition range defined by the present invention regarding Si, and the anodic oxide film thickness is 10
In the case of 29 μm which exceeds μm, it can be seen that the Munsell brightness and the spectral emissivity satisfy the predetermined values, that is, the visual color tone is sufficiently black and the far infrared radiation characteristic is excellent. Further, among the alloy Nos. 1 and 2 heated at 400 ° C., the material having an anodized film thickness of more than 10 μm did not show any cracks when the surface was visually observed after heating at 500 ° C. after anodizing treatment. ..

【0051】しかしながら、合金番号1,2の鋳造のま
まの材料、合金番号1の400℃加熱材のうち陽極酸化
皮膜厚が10μm未満の7μmの材料、および合金番号
3の各材料は、陽極酸化処理後に500℃に加熱した後
表面を観察すれば、目視でも多数のクラックが認められ
た。また合金番号1の400℃加熱材のうち、陽極酸化
皮膜厚が7μmの材料では、Siに関する条件はこの発
明で規定する条件を満たしているが、遠赤外線放射特性
は劣っていた。なお合金番号1,2,3の150℃加熱
材は、陽極酸化処理後の目視では、鋳造のままの材料に
比べて、色調がやや濃色化しているが、光学顕微鏡で観
察する限りでは、デンドライトの部分に析出Siは認め
られなかった。そこで、電子顕微鏡によりこの部分の観
察を行なったところ、0.01〜0.03μmもしくは
0.01〜0.02μmの微細な析出Si粒子の存在が
認められた。これらの微細な析出Si粒子は、たとえ析
出していても、遠赤外線の吸収点として働かないため、
遠赤外線放射特性は向上していない。
However, the as-cast alloy No. 1 and No. 2 alloys, the alloy No. 1 400.degree. C. heating material with an anodized film thickness of 7 .mu.m less than 10 .mu.m, and the alloy No. 3 materials were anodized. When the surface was observed after heating to 500 ° C. after the treatment, many cracks were visually observed. Further, among the 400 ° C. heating materials of Alloy No. 1, the material having an anodized film thickness of 7 μm satisfied the conditions concerning Si satisfying the conditions specified in the present invention, but the far infrared radiation characteristics were inferior. Note that the alloys 1, 2, and 3 heated at 150 ° C. have a slightly darker color tone than the as-cast material after visual inspection after anodizing treatment, but as long as observed with an optical microscope, No precipitated Si was found in the dendrite portion. Then, when this portion was observed with an electron microscope, the presence of fine precipitated Si particles of 0.01 to 0.03 μm or 0.01 to 0.02 μm was recognized. Even if they are precipitated, these fine precipitated Si particles do not work as an absorption point for far infrared rays.
Far-infrared radiation characteristics are not improved.

【0052】実施例2 表1の合金番号4に示される成分組成の合金について、
400mm×1000mm×3500mmの圧延用鋳塊(スラ
ブ)をDC鋳造した。得られたスラブを面削した後、4
00℃に2時間加熱してから熱間圧延した。熱間圧延を
4mm厚まで行なった後、冷間圧延にて1mm厚まで圧延
し、これを350℃×2時間焼鈍した後、実施例1と同
様にして陽極酸化処理を施した。
Example 2 With respect to the alloy having the composition shown in alloy No. 4 in Table 1,
A 400 mm x 1000 mm x 3500 mm rolling ingot (slab) was DC cast. After chamfering the obtained slab, 4
It was heated to 00 ° C. for 2 hours and then hot rolled. After hot rolling to a thickness of 4 mm, it was cold rolled to a thickness of 1 mm, annealed at 350 ° C. for 2 hours, and then anodized in the same manner as in Example 1.

【0053】陽極酸化処理後の材料について、実施例1
と同様な測定、組織観察を行なった。その結果を表2中
に示す。
Regarding the material after anodizing treatment, Example 1
The same measurement and structure observation were performed. The results are shown in Table 2.

【0054】表2に示すように、実施例2の場合はスラ
ブ加熱および熱間圧延・冷間圧延後の焼鈍を経た圧延板
であり、製造工程中の熱処理(スラブ加熱もしくは焼
鈍)の条件を適正化することによってこれらの熱処理を
析出処理と兼ねさせて、適正なSi析出状態を得ること
ができた。そしてこの場合も遠赤外線放射特性が優れて
おり、また陽極酸化処理後に500℃に加熱した後、表
面を目視で観察してもクラックは観察されなかった。
As shown in Table 2, in the case of Example 2, the rolled plate was annealed after slab heating and hot rolling / cold rolling, and the conditions of heat treatment (slab heating or annealing) during the manufacturing process were changed. By optimizing these heat treatments, these heat treatments could also serve as precipitation treatments, and a proper Si precipitation state could be obtained. Also in this case, far-infrared radiation characteristics were excellent, and no crack was observed even when the surface was visually observed after heating to 500 ° C. after the anodizing treatment.

【0055】実施例3 表1の合金番号5に示される成分組成の合金を水冷ロー
ル間に給湯し、厚さ7mm×幅900mmの薄板連続鋳造圧
延コイルを鋳造した。このコイルを引続き2mm厚まで冷
間圧延し、最終焼鈍として390℃×2時間加熱した。
得られた材料について実施例1と同様にして陽極酸化処
理を施した。陽極酸化処理後の各材料について、実施例
1と同様にして測定、組織観察を行なった。その結果を
表2中に示す。
Example 3 An alloy having the composition shown in alloy No. 5 in Table 1 was fed between water-cooled rolls to cast a thin plate continuous casting and rolling coil having a thickness of 7 mm and a width of 900 mm. This coil was subsequently cold-rolled to a thickness of 2 mm and heated at 390 ° C. for 2 hours as final annealing.
The obtained material was anodized in the same manner as in Example 1. For each material after the anodizing treatment, measurement and structure observation were performed in the same manner as in Example 1. The results are shown in Table 2.

【0056】この実施例3の場合は、冷間圧延後の最終
焼鈍が析出処理を兼ねており、これによって適切なSi
析出状態が得られた。そして陽極酸化処理後に500℃
に加熱した後、表面を目視で観察しても、クラックは観
察されなかった。またこの場合について、図3に3〜2
5μmまでの波長の分光放射率曲線も示す。図3から明
らかなように、全波長域にわたり良好な分光放射率が得
られており、通常の陽極酸化皮膜に特有の3〜7μmの
波長域での放射率の低下が認められなかった。
In the case of this Example 3, the final annealing after cold rolling also serves as a precipitation treatment, whereby an appropriate Si is obtained.
A precipitated state was obtained. And after anodizing treatment at 500 ℃
No crack was observed even when the surface was visually observed after heating to 0. Further, in this case, FIG.
Spectral emissivity curves for wavelengths up to 5 μm are also shown. As is clear from FIG. 3, a good spectral emissivity was obtained over the entire wavelength range, and no decrease in emissivity was observed in the wavelength range of 3 to 7 μm, which is typical of ordinary anodic oxide coatings.

【0057】以上のような各実施例から、この発明で規
定している成分組成範囲内の合金について、前述のよう
なSi析出条件を満たしていれば、優れた遠赤外線放射
特性を示すばかりでなく、500℃に加熱しても陽極酸
化皮膜にクラックが生じず、したがって500℃程度ま
での高温での遠赤外線放射体として有効であることが明
らかである。そしてまた、鋳造、鍛造、圧延、押出し等
の任意の製造手段で、優れた遠赤外線放射特性を有する
材料の製造が可能であることも明らかである。
From the above examples, the alloys within the compositional range defined by the present invention will not only show excellent far infrared radiation characteristics if they satisfy the above Si precipitation conditions. It is clear that the anodic oxide film does not crack even when heated to 500 ° C., and is therefore effective as a far-infrared radiator at high temperatures up to about 500 ° C. It is also clear that it is possible to manufacture a material having excellent far-infrared radiation characteristics by any manufacturing means such as casting, forging, rolling and extrusion.

【0058】[0058]

【発明の効果】この発明の遠赤外線放射体によれば、優
れた遠赤外線放射特性が得られ、特に従来のアルミニウ
ムの陽極酸化皮膜では劣るとされていた3〜7μmの波
長域における放射特性も優れており、しかも500℃程
度の高温まで熱歪によるクラックが陽極酸化皮膜に生じ
ることがなく、そのため耐熱性が良好であって500℃
程度までの高温での遠赤外線放射体として有効であり、
さらには陽極酸化皮膜中の析出Si粒子の適切な分散に
よって優れた遠赤外線放射特性を与えているため、経時
的に遠赤外線放射特性が低下するおそれもない。そして
またこの発明の遠赤外線放射体は、鋳造、鍛造、圧延、
押出し等の任意の製造手段で製造することができ、した
がって用途や使用箇所に応じて任意の形状の遠赤外線放
射体を得ることができるとともに、複雑な形状の放射体
も容易に得ることができる。以上のようにこの発明の遠
赤外線放射体は、各種の優れた長所を有しており、した
がって基材アルミニウム合金が軽量であることによる軽
量性の利点と合せて、極めて広範囲で遠赤外線放射体を
実用に供することが可能となる。
According to the far-infrared radiator of the present invention, excellent far-infrared radiation characteristics are obtained, and in particular, radiation characteristics in a wavelength range of 3 to 7 μm, which are considered to be inferior to conventional aluminum anodic oxide coatings. It is excellent, and cracks due to thermal strain do not occur in the anodized film up to a high temperature of about 500 ° C.
It is effective as a far-infrared radiator at high temperatures up to about
Furthermore, since the far-infrared radiation characteristics are excellent by appropriately dispersing the precipitated Si particles in the anodic oxide film, there is no fear that the far-infrared radiation characteristics deteriorate with time. And the far-infrared radiator of the present invention also includes casting, forging, rolling,
It can be manufactured by any manufacturing means such as extrusion, so that a far-infrared radiator having an arbitrary shape can be obtained according to the application and place of use, and a radiator having a complicated shape can also be easily obtained. . As described above, the far-infrared radiator of the present invention has various excellent merits, and therefore, the far-infrared radiator has an extremely wide range in combination with the advantage of lightness due to the light weight of the base aluminum alloy. Can be put to practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】アルミニウム合金における金属Si量を分析す
るための方法の一例を示すフローチャートである。
FIG. 1 is a flowchart showing an example of a method for analyzing the amount of metallic Si in an aluminum alloy.

【図2】アルミニウム合金における全金属間化合物中の
Si量を分析する方法の一例を示すフローチャートであ
る。
FIG. 2 is a flowchart showing an example of a method for analyzing the amount of Si in all intermetallic compounds in an aluminum alloy.

【図3】実施例3の合金番号5の材料についての分光放
射率曲線を示すグラフである。
FIG. 3 is a graph showing a spectral emissivity curve for a material of Alloy No. 5 of Example 3.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Si1wt%以上3wt%未満を含有し、残
部がAlおよび不可避的不純物よりなる合金を基材と
し、その基材の表面に膜厚10μm以上の黒色の陽極酸
化皮膜が形成されていることを特徴とする遠赤外線放射
体。
1. An alloy containing Si in an amount of 1 wt% or more and less than 3 wt% and the balance of Al and inevitable impurities is used as a base material, and a black anodic oxide film having a thickness of 10 μm or more is formed on the surface of the base material. Far infrared radiator characterized by being present.
【請求項2】 Si1wt%以上3wt%未満を含有し、か
つFe0.05〜1.5wt%、Mg0.05〜1.0wt
%、Cu0.05〜1.0wt%、Mn0.05〜1.0
wt%、Ni0.05〜1.0wt%、Cr0.05〜0.
5wt%、V0.05〜0.5wt%、Zr0.05〜0.
5wt%、Ti0.005〜0.2wt%のうちの1種また
は2種以上を含有し、残部がAlおよび不可避的不純物
よりなる合金を基材とし、その基材の表面に膜厚10μ
m以上の黒色の陽極酸化皮膜が形成されていることを特
徴とする遠赤外線放射体。
2. Si 1 wt% or more and less than 3 wt%, Fe0.05-1.5 wt%, Mg0.05-1.0 wt
%, Cu 0.05 to 1.0 wt%, Mn 0.05 to 1.0
wt%, Ni0.05-1.0 wt%, Cr0.05-0.
5 wt%, V0.05-0.5 wt%, Zr0.05-0.
5 wt%, 0.005 to 0.2 wt% of Ti 0.005 to 0.2 wt%, containing 1 or 2 or more, the balance is Al and unavoidable impurities as the base material, and the film thickness 10μ on the surface of the base material.
A far-infrared radiator having a black anodic oxide coating of m or more formed.
【請求項3】 前記基材における全析出Si粒子のう
ち、個数にして80%以上の析出Si粒子のサイズが
0.05μm以上であり、しかも残留固溶Si量がSi
含有量に応じて、Si含有量が1wt%以上1.5wt%未
満の場合は 残留固溶Si量(wt%)≦Si含有量(wt%)−0.5 を満たし、またSi含有量が1.5wt%以上3wt%未満
の場合は 残留固溶Si量(wt%)≦1 を満たしていることを特徴とする請求項1もしくは請求
項2に記載の遠赤外線放射体。
3. Of the total precipitated Si particles in the substrate, 80% or more of the precipitated Si particles have a size of 0.05 μm or more, and the amount of residual solid solution Si is Si.
Depending on the content, when the Si content is 1 wt% or more and less than 1.5 wt%, the residual solid solution Si amount (wt%) ≦ Si content (wt%) − 0.5 is satisfied, and the Si content is The far-infrared radiator according to claim 1 or 2, wherein the content of residual solid solution Si (wt%) ≤ 1 is satisfied when the content is 1.5 wt% or more and less than 3 wt%.
【請求項4】 Si1wt%以上3wt%未満を含有し、さ
らに必要に応じてFe0.05〜1.5wt%、Mg0.
05〜1.0wt%、Cu0.05〜1.0wt%、Mn
0.05〜1.0wt%、Ni0.05〜1.0wt%、C
r0.05〜0.5wt%、V0.05〜0.5wt%、Z
r0.05〜0.5wt%、Ti0.005〜0.2wt%
のうちの1種または2種以上を含有し、残部がAlおよ
び不可避的不純物よりなる合金を鋳造し、さらに必要に
応じて熱間加工および/または冷間加工を施して所定の
寸法の基材を得、その後陽極酸化処理を施して表面に1
0μm以上の陽極酸化皮膜を形成するにあたり、前記鋳
造の後、もしくは熱間加工の後、または冷間加工の中途
もしくは後に、250〜550℃の範囲内の温度に加熱
することによって、Siを、全析出Si粒子のうち個数
にして80%以上の析出Si粒子が0.05μm以上で
あってしかも残留固溶Si量がSi含有量に応じて、そ
のSi含有量が1wt%以上1.5wt%未満の場合には 残留固溶Si量(wt%)≦Si含有量(wt%)−0.5 を満たすように、またSi含有量が1.5wt%以上3wt
%未満の場合には 残留固溶Si量(wt%)≦1 を満たすように、析出させることを特徴とする遠赤外線
放射体の製造方法。
4. Si is contained in an amount of 1 wt% or more and less than 3 wt%, and if necessary, Fe 0.05 to 1.5 wt%, Mg 0.
05-1.0 wt%, Cu 0.05-1.0 wt%, Mn
0.05-1.0 wt%, Ni 0.05-1.0 wt%, C
r0.05-0.5wt%, V0.05-0.5wt%, Z
r0.05-0.5wt%, Ti0.005-0.2wt%
A base material having a predetermined size, which is obtained by casting an alloy containing one or two or more of the above, with the balance being Al and inevitable impurities, and further subjecting it to hot working and / or cold working as necessary. , And then anodize the surface to give 1
Upon forming the anodized film having a thickness of 0 μm or more, Si is heated to a temperature in the range of 250 to 550 ° C. after the casting, or after the hot working, or during or after the cold working, 80% or more of the total precipitated Si particles are 0.05 μm or more, and the amount of residual solid solution Si is 1 wt% or more and 1.5 wt% or more depending on the Si content. When the amount is less than 1, the residual solid solution Si content (wt%) ≤ Si content (wt%)-0.5 is satisfied, and the Si content is 1.5 wt% or more and 3 wt%.
When it is less than%, the far-infrared radiator is produced by depositing so as to satisfy the residual solid solution Si amount (wt%) ≦ 1.
JP4141084A 1992-05-07 1992-05-07 Far-infrared radiator and manufacturing method Expired - Fee Related JP3048086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4141084A JP3048086B2 (en) 1992-05-07 1992-05-07 Far-infrared radiator and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4141084A JP3048086B2 (en) 1992-05-07 1992-05-07 Far-infrared radiator and manufacturing method

Publications (2)

Publication Number Publication Date
JPH05311307A true JPH05311307A (en) 1993-11-22
JP3048086B2 JP3048086B2 (en) 2000-06-05

Family

ID=15283840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4141084A Expired - Fee Related JP3048086B2 (en) 1992-05-07 1992-05-07 Far-infrared radiator and manufacturing method

Country Status (1)

Country Link
JP (1) JP3048086B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187163A (en) * 2013-03-22 2014-10-02 Mitsubishi Materials Corp Aluminum heat exchanger, heat sink-equipped power module board, and method for manufacturing aluminum heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199610A (en) * 1975-02-28 1976-09-02 Nippon Light Metal Co KINSEINATANKAISHOKUHIMAKUOJUSURU ALLSIGOKINNO SEIZOHOHO
JPS5413028A (en) * 1977-06-29 1979-01-31 Hitachi Heating Appliance Co Ltd Far infrared heater
JPH01180937A (en) * 1988-01-11 1989-07-18 Kobe Steel Ltd Al alloy excellent in self-color characteristic in welding construction zone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5199610A (en) * 1975-02-28 1976-09-02 Nippon Light Metal Co KINSEINATANKAISHOKUHIMAKUOJUSURU ALLSIGOKINNO SEIZOHOHO
JPS5413028A (en) * 1977-06-29 1979-01-31 Hitachi Heating Appliance Co Ltd Far infrared heater
JPH01180937A (en) * 1988-01-11 1989-07-18 Kobe Steel Ltd Al alloy excellent in self-color characteristic in welding construction zone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187163A (en) * 2013-03-22 2014-10-02 Mitsubishi Materials Corp Aluminum heat exchanger, heat sink-equipped power module board, and method for manufacturing aluminum heat exchanger

Also Published As

Publication number Publication date
JP3048086B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
JP5640399B2 (en) Aluminum alloy plate with anodized film and method for producing the same
KR101624116B1 (en) High-strength aluminum alloy and method for producing same
EP0479429B1 (en) Infrared radiation element and process of producing the same
JP6119937B1 (en) Aluminum alloy extruded material having anodized film with excellent appearance quality and method for producing the same
CN106555086A (en) A kind of high strength anti-corrosion Al-Zn-Mg- (Cu) line aluminium alloy bar and preparation method thereof
JP2019512607A (en) Aluminum alloy with high strength and aesthetic appeal
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JPS6115148B2 (en)
JPH06207262A (en) Far infrared ray radiation member and manufacture thereof
JPH076022B2 (en) Aluminum alloy for glitter disk wheels
WO2017006816A1 (en) Aluminum alloy extruded material having positive electrode oxide film and excellent external appearance quality and production method therefor
JP6249435B2 (en) Aluminum-zinc alloy extruded material and method for producing the same
JP4040787B2 (en) Aluminum alloy rolled plate with stable gray color after anodization and method for producing the same
JP2965219B2 (en) Far infrared radiator
JP3048086B2 (en) Far-infrared radiator and manufacturing method
CA2958132C (en) Superplastic-forming aluminum alloy plate and production method therefor
JP2858068B2 (en) Light-colored thick aluminum alloy rolled sheet for building materials with stable color tone after anodizing and method for producing the same
TW201814088A (en) Aluminum alloy sheet and anodized aluminum alloy sheet capable of suppressing a decrease in glossiness after performing an anodizing treatment, and exerting an excellent workability
JPH06200397A (en) Far-infrared ray radiator
JP3195020B2 (en) Far infrared radiator
JPH06200398A (en) Far-infrared ray radiator and its manufacture
JP2552967B2 (en) Roll bond panel
JP3355058B2 (en) Aluminum alloy plate for lighting reflector and method of manufacturing the same
JP2678419B2 (en) Far infrared radiation member
JP2004183025A (en) Aluminum alloy sheet for forming, and its manufacturing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees