JPH05311010A - High-permittivity composite substrate - Google Patents

High-permittivity composite substrate

Info

Publication number
JPH05311010A
JPH05311010A JP11387992A JP11387992A JPH05311010A JP H05311010 A JPH05311010 A JP H05311010A JP 11387992 A JP11387992 A JP 11387992A JP 11387992 A JP11387992 A JP 11387992A JP H05311010 A JPH05311010 A JP H05311010A
Authority
JP
Japan
Prior art keywords
substrate
tio
tan
polyolefin
mhz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11387992A
Other languages
Japanese (ja)
Inventor
Ryoji Ose
良治 小瀬
Kentaro Matsuyama
謙太郎 松山
Tadamitsu Nakayama
忠光 中山
Kenji Watanabe
健二 渡辺
Kozaburo Nakamura
孔三郎 中村
Mikio Takeshima
幹夫 竹島
Fumio Yamamoto
二三男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP11387992A priority Critical patent/JPH05311010A/en
Publication of JPH05311010A publication Critical patent/JPH05311010A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the high-permittivity substrate which is small and excellent in dielectric characteristics and moldability and is useful for an electronic apparatus, an information apparatus, etc., by mixing a polyolefin with a ceramic deriv. powder and molding the resulting mixture. CONSTITUTION:The substrate is produced by mixing a polyolefin (pref. a thermoplastic resin having an epsilonr of 2.2/10<6>Hz-3.0/10<6>Hz and a tan delta lower than 10<-2>/10<6>Hz) with a ceramic deriv. powder (pref. one having an epsilonr higher than 30 and a tan delta lower than 1X10<-2> in the frequency range of 10<6>-10<9>MHz) and molding the resulting mixture. Since the substrate exhibits desired dielectric characteristic without detriment to the excellent dimensional accuracy and moldability inherent in the mixture, it can be made small with a high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子機器、情報機器等に
用いられる複合高誘電率基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite high dielectric constant substrate used in electronic equipment, information equipment and the like.

【0002】[0002]

【従来の技術】近年、高度情報化社会への移行による通
信情報量の急増に伴い、電子機器や通信機器の分野にお
いて使用される周波数帯域はますます高周波領域に移行
している。特に携帯電話、自動車電話等の移動体通信、
衛星放送、衛星通信などはメガヘルツからギガヘルツ帯
のUHF帯の高周波のものが使用されている。一方、上
記機器の代表例としての携帯電話機は、数年前には容量
が400ml、重量が600gであったが、最近では15
0ml、230gへと急激に小型化される傾向にある。こ
のような高周波領域での電子回路の小型化に対応するた
めに、送受信機に使用される基板は優れた高周波伝送特
性と高誘電率とを兼ね備えた材料でなければならない。
即ち、回路内では誘電損失と云われる伝送のエネルギー
損失が必ず生ずる。その誘電損失は周波数と基板の誘電
正接(以下、tanδと記載する)の積に比例する。また、
tanδはUHFのような高周波領域では周波数の増加に
従って増大する傾向が強い。以上のことから誘電損失を
少しでも小さくするためにはtanδを少しでも小さく
(低く)する必要がある。一方、基板内では高周波の波
長(λ)は元の波長(λ0)に対して(1)式のように基
板の誘電率(以下、εrと記載する)に逆比例して短縮
され、基板の寸法はεrが大きいほど小型化が可能であ
ることがわかる。 λ=λ0/√εr…………(1) 上記したように高周波領域で使用される目的の小型機器
用の基板としてはεが大きく(高く)、tanδが小
さい(低い)材料が必要である。これに対する高誘電率
基板(以下、基板と略す)としては、無機材料からなる
基板(以下、無機基板と略す)と有機材料からなる基板
(以下、有機基板と略す)とがある。無機基板としては
酸化物系、ペロブスカイト系等の誘電体セラミックス基
板が知られており、有機基板としてはシアノエチルセル
ローズ系樹脂基板等がある。
2. Description of the Related Art In recent years, the frequency band used in the field of electronic devices and communication devices is shifting to a higher frequency region with the rapid increase in the amount of communication information due to the shift to an advanced information society. Especially mobile communication such as mobile phones and car phones,
For satellite broadcasting and satellite communication, high frequency signals in the UHF band from the megahertz to the gigahertz band are used. On the other hand, a mobile phone, which is a typical example of the above-mentioned device, had a capacity of 400 ml and a weight of 600 g several years ago, but has recently been 15
The size tends to be drastically reduced to 0 ml and 230 g. In order to respond to the miniaturization of electronic circuits in such a high frequency region, the substrate used for the transceiver must be a material having both excellent high frequency transmission characteristics and high dielectric constant.
That is, transmission energy loss called dielectric loss is inevitably generated in the circuit. The dielectric loss is proportional to the product of the frequency and the dielectric loss tangent of the substrate (hereinafter referred to as tan δ). Also,
In the high frequency region such as UHF, tan δ has a strong tendency to increase as the frequency increases. From the above, in order to make the dielectric loss as small as possible, it is necessary to make tanδ as small as possible (low). On the other hand, in the substrate, the high frequency wavelength (λ) is shortened in inverse proportion to the dielectric constant of the substrate (hereinafter referred to as ε r ) as shown in equation (1) with respect to the original wavelength (λ 0 ), It can be seen that the larger the ε r of the substrate, the smaller the size can be. λ = λ 0 / √ε r (1) As mentioned above, as a substrate for small equipment intended to be used in a high frequency region, a material having a large ε r (high) and a small tan δ (low) is used. is necessary. On the other hand, high dielectric constant substrates (hereinafter abbreviated as substrates) include substrates made of inorganic materials (hereinafter abbreviated as inorganic substrates) and substrates made of organic materials (hereinafter abbreviated as organic substrates). Dielectric ceramic substrates such as oxide-based and perovskite-based substrates are known as inorganic substrates, and cyanoethyl cellulose-based resin substrates and the like as organic substrates.

【0003】[0003]

【発明が解決しようとする課題】高誘電率セラミックス
基板の特性は大体、εr=〜100/1MHz、〜100
/1GHz、tanδ=10-2〜10-4であり、優れた特性
を示す。製造は未焼成シート(グリーンシート)を焼成し
て行われる。しかし焼成後は硬いために、基板として重
要な孔開け、切削、切断加工が困難である。そこでグリ
ーンシートの段階でプレス孔開け、切断がなされるが、
焼成工程で大きく寸法収縮を起すために、高周波回路基
板で不可欠な寸法精度を±5%以内にすることが困難で
あり、高精度でかつ高密度の回路の要求には十分には対
応出来ない。更に比重が大きい、脆いという欠点を有し
ている。これに対してεrの値が大きな有機物として、
例えばシアノエチルレジン系統の材料は、εr=15〜
20/106Hzであるが、tanδ>10-2/106Hzで
あり、低tanδ基板を得るのが困難である。また、基板
の製造は低粘度の溶液から出発する必要があるため、1
mm以上の厚い基板を製造するのに手間がかかるという欠
点も有している。これに対して最近特開平1−245053号
公報に見られるようにポリフエニレンオキサイド系樹脂
基板が提案されている。この基板はポリフエニレンオキ
サイド、三次元架橋性モノマー及びセラミックス粉末を
含有するものである。この基板は、製造工程の制約上溶
液系から出発しかつ架橋を伴うため、高誘電率セラミッ
クス基板を製造する場合に似た成形性の難点を有してい
る。
The characteristics of high dielectric constant ceramics substrates are generally ε r = ~ 100/1 MHz, ~ 100.
/ GHZ, tan δ = 10 -2 to 10 -4 , showing excellent characteristics. The production is performed by firing an unfired sheet (green sheet). However, since it is hard after firing, it is difficult to make holes, cuts, and cuts, which are important as a substrate. Therefore, press holes are punched and cut at the green sheet stage,
It is difficult to keep the dimensional accuracy, which is indispensable for high-frequency circuit boards, within ± 5% due to the large dimensional shrinkage in the firing process, and it is not possible to sufficiently meet the demand for high-precision and high-density circuits. .. Furthermore, it has the disadvantages of high specific gravity and brittleness. On the other hand, as an organic substance with a large value of ε r ,
For example, cyanoethyl resin-based materials have ε r = 15-
20/10 6 Hz, but tan δ> 10 −2 / 10 6 Hz, and it is difficult to obtain a low tan δ substrate. Also, because the manufacturing of the substrate must start with a low viscosity solution,
It also has a drawback that it takes time to manufacture a substrate having a thickness of mm or more. On the other hand, recently, a polyphenylene oxide resin substrate has been proposed as seen in Japanese Patent Laid-Open No. 1-245053. This substrate contains polyphenylene oxide, a three-dimensional crosslinkable monomer and ceramic powder. Since this substrate starts from a solution system and is accompanied by cross-linking due to the limitation of the manufacturing process, it has a problem of moldability similar to the case of manufacturing a high dielectric constant ceramics substrate.

【0004】上記したように、従来の技術になる高誘電
率基板は各々何らかの欠点を有していたため、小形機器
に対応し成形し易い新たな高誘電率基板の開発が強く望
まれていた。本発明は、上記した従来の問題点を解決す
るものであり、所望の高いεrと低いtanδとを有し、し
かも小形機器への対応及び成形が容易な樹脂組成物を用
いた高誘電率基板を提供することを目的とするものであ
る。
As described above, since the conventional high dielectric constant substrates each have some drawbacks, it has been strongly desired to develop a new high dielectric constant substrate which is suitable for small equipment and is easy to mold. The present invention is to solve the above-mentioned conventional problems, and has a desired high ε r and low tan δ, and also has a high dielectric constant using a resin composition that is easy to handle and mold in small equipment. It is intended to provide a substrate.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記の事
情に鑑みて鋭意研究を重ねた結果、ポリオレフィン系ポ
リマーとセラミックス誘電体粉末とを用いることによっ
て前記目的を達成し得ることを見い出し、本発明を完成
するに到った。即ち、本発明は、tanδの小さなポリオ
レフィン系ポリマーとεrの大きなセラミックス誘電体
粉末とを混合、成形してなる複合高誘電率基板に関す
る。
As a result of intensive studies in view of the above circumstances, the inventors of the present invention have found that the above object can be achieved by using a polyolefin polymer and a ceramic dielectric powder. The present invention has been completed. That is, the present invention relates to a composite high dielectric constant substrate formed by mixing and molding a polyolefin polymer having a small tan δ and a ceramics dielectric powder having a large ε r .

【0006】本発明に用いるポリオレフィン系ポリマー
とは、オレフィン系炭化水素を主体とするポリマーであ
る。即ち、モノマーとしてエチレン、プロピレン、1−
ブテン、4−メチルペンテン等の単体からなるか、又は
このようなモノマーを主体とするポリマーである。この
ようなポリマーとしてはポリエチレン、ポリプロピレ
ン、ポリ1−ブテン、ポリ4−メチルペンテン、エチレ
ン−酢酸ビニルコポリマー、エチレン−プロピレンコポ
リマー、エチレン−1−ブテンコポリマー、エチレン−
アクリル酸コポリマー、エチレン−アクリル酸エチルコ
ポリマー、ポリエチレン系アイオノマー、エチレン−酢
酸ビニルコポリマー部分加水分解物、他エチレン−多元
モノマー系(2元系以上)コポリマー等が挙げられる。
このようなポリマーを1種又は2種以上混合して使用し
ても良い。このようなポリマーの特性はεr=2.2〜
3.0/106Hzである。一方、tanδ<10-2/106
Hzの範囲にあることが好ましく、かつ熱可塑性樹脂で
ある。
The polyolefin polymer used in the present invention is a polymer mainly composed of olefin hydrocarbons. That is, ethylene, propylene, 1-
It is a polymer consisting of a simple substance such as butene or 4-methylpentene, or a polymer mainly containing such a monomer. Such polymers include polyethylene, polypropylene, poly 1-butene, poly 4-methylpentene, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, ethylene-1-butene copolymer, ethylene-
Examples thereof include acrylic acid copolymers, ethylene-ethyl acrylate copolymers, polyethylene ionomers, ethylene-vinyl acetate copolymer partial hydrolysates, and other ethylene-multi-component monomer (binary or higher) copolymers.
You may use such a polymer 1 type or in mixture of 2 or more types. The properties of such polymers are ε r = 2.2-
It is 3.0 / 10 6 Hz. On the other hand, tan δ <10 -2 / 10 6
It is preferably in the range of Hz and is a thermoplastic resin.

【0007】このようなポリマーを用いる理由につい
て、他の材料と比較しながら特長を挙げて述べる。先
ず、このようなポリマーは熱可塑性樹脂であるために、
熱硬化性樹脂と異なり無溶剤でかつ加熱するだけで溶融
するために、作業性が良好でかつ加工性も優れ、硬化反
応という面倒な作業も不要である。熱可塑性樹脂の中で
みると低極性であるために耐湿性が優れていると共に、
このようなポリマーを他の材料と混合する場合にも、混
合相手材料への濡れ性、ひいては混練性が優れている。
また、他の低極性ポリマー例えばゴム等と比較してもク
リープによる変形が発生し難く、他の所謂エンジニアリ
ングプラスチックと比較しても一般に低価格であるとい
う種々の利点がある。
The reason why such a polymer is used will be described with its features compared with other materials. First, since such a polymer is a thermoplastic resin,
Unlike thermosetting resins, it melts without a solvent and only by heating, so workability is excellent and workability is excellent, and the troublesome work of a curing reaction is unnecessary. Looking at the thermoplastic resin, it has low polarity, so it has excellent moisture resistance,
Even when such a polymer is mixed with another material, the wettability to the material to be mixed, and thus the kneading property is excellent.
Further, there are various advantages that deformation due to creep is less likely to occur even when compared with other low-polarity polymers such as rubber, and that the price is generally low compared to other so-called engineering plastics.

【0008】ポリオレフィン系ポリマーと混合する誘電
体粉末を形成するセラミックス材料としては、106
109MHzの周波数領域でεr>30、tanδ<1×10
-2の値を示す材料が好ましい。このようなセラミックス
材料としては、次のようなものが挙げられる。 LiO-SrO-NbO2-TiO2系{例:SrTiO3-Sr(Li
1/4Nb3/4)O3}、MgO-CaO-La23-TiO2
{例:(MgCa)TiO3-La2Ti27}、MgO-BaO-N
bO2系{例:Ba(Mg1/3Nb2/3)O3}、MgO-SrO-N
bO2系{例:Sr(Mg1/3Nb2/3)O3}、CaO-TiO2
{例:CaTiO3}、CaO-SrO-TiO2系{例:CaT
iO3-SrTiO3}、CaO-La23-TiO2系{例:Ca
TiO3-La23-TiO2}、CaO-Bi23-La23-Ti
2系{例:CaTiO3-La23-Bi23-TiO2}、Mn
2-BaO-NbO2系{例:Ba(Mn1/3Nb2/3)O3}、Z
nO2-SrO-NbO2系{例:Sr(Zn1/3Nb2/3)O3}、
ZnO2-BaO-NbO2系{例:Ba(Zn1/3Nb2/3)
3}、SrO-TiO2系{例:SrTiO3}、SrO-Ba
O-La23-TiO2系{例:BaTiO3-SrTiO3-La2
3-TiO2}、SrO-SnO2系{例:SrSnO3}、Zr
2-TiO2系{例:ZrTiO4}、ZrO2-SnO2-TiO
2系{例:(ZrSn)TiO4}、SnO2-TiO2系{例:Sn
2-TiO2}、BaO-TiO2系{例:Ba2Ti920}、Ba
O-ZrO2-TiO2系{例:Ba(ZrTi)O3}、BaO-N
d23-TiO2系{例:BaTiO3-Nd23-TiO2}、B
aO-Nd23-PbO-TiO2系{例:BaO-PbO-Nd2
3-TiO2}、BaO-Sm23-TiO2系{例:BaO-Sm2
3-TiO2、BaO-Sm23-5TiO2}BaO-Nd23-B
i23-TiO2系、BaO-Nd23-Sm23-Bi23-Ti
2系、La23-TiO2系{例:La23-2TiO2}、
Nd23-TiO2系{例:Nd2Ti27}、Bi23-TiO
2系{例:Bi23-2TiO2}、TiO2 更に、このような材料は単独で又は2種以上を混合して
用いることができる。上記したセラミックス誘電体粉末
の粒径は平均で100μm以下が好ましく、特に好まし
くは平均で0.5〜20μmである。平均粒径が大きい
と基板にしたときに表面が荒れて高精度の回路を形成し
難く、逆に小さいと誘電体特性が低下したり、ポリオレ
フィン系ポリマーとの混練作業性も低下する。また、こ
のようなセラミックス誘電体は完全焼成でも不完全焼成
でもよいが、好ましくは完全焼成である。更に粉末は焼
成後粉砕して作成してもよいが、粒径を調整するような
焼成法を用いて作成してもよい。
As a ceramic material for forming a dielectric powder mixed with a polyolefin-based polymer, 10 6 to
Ε r > 30, tan δ <1 × 10 in the frequency range of 10 9 MHz
Materials showing a value of -2 are preferred. Examples of such ceramic materials include the following. LiO-SrO-NbO 2 -TiO 2 system {Example: SrTiO 3 -Sr (Li
1 / 4Nb3 / 4) O 3 }, MgO-CaO-La 2 O 3 -TiO 2 system {Example: (MgCa) TiO 3 -La 2 Ti 2 O 7}, MgO-BaO-N
bO 2 system {Example: Ba (Mg1 / 3Nb2 / 3) O 3 }, MgO-SrO-N
bO 2 system {example: Sr (Mg1 / 3Nb2 / 3) O 3 }, CaO-TiO 2 system {example: CaTiO 3 }, CaO-SrO-TiO 2 system {example: CaT
iO 3 -SrTiO 3 }, CaO-La 2 O 3 -TiO 2 system {Example: Ca
TiO 3 -La 2 O 3 -TiO 2 }, CaO-Bi 2 O 3 -La 2 O 3 -Ti
O 2 system {Example: CaTiO 3 -La 2 O 3 -Bi 2 O 3 -TiO 2 }, Mn
O 2 -BaO-NbO 2 system {Example: Ba (Mn1 / 3Nb2 / 3) O 3 }, Z
nO 2 -SrO-NbO 2 system {Example: Sr (Zn1 / 3Nb2 / 3) O 3 },
ZnO 2 -BaO-NbO 2 system {Example: Ba (Zn1 / 3Nb2 / 3)
O 3 }, SrO-TiO 2 system {Example: SrTiO 3 }, SrO-Ba
O-La 2 O 3 -TiO 2 system {Example: BaTiO 3 -SrTiO 3 -La 2
O 3 -TiO 2 }, SrO-SnO 2 system {Example: SrSnO 3 }, Zr
O 2 -TiO 2 system {Example: ZrTiO 4 }, ZrO 2 -SnO 2 -TiO
2 system {Example: (ZrSn) TiO 4 }, SnO 2 -TiO 2 system {Example: Sn
O 2 -TiO 2 }, BaO-TiO 2 system {Example: Ba 2 Ti 9 O 20 }, Ba
O-ZrO 2 -TiO 2 system {Example: Ba (ZrTi) O 3 }, BaO-N
d 2 O 3 -TiO 2 system {Example: BaTiO 3 -Nd 2 O 3 -TiO 2 }, B
aO-Nd 2 O 3 -PbO- TiO 2 system {Example: BaO-PbO-Nd 2 O
3 -TiO 2 }, BaO-Sm 2 O 3 -TiO 2 system {Example: BaO-Sm 2
O 3 -TiO 2 , BaO-Sm 2 O 3 -5TiO 2 } BaO-Nd 2 O 3 -B
i 2 O 3 -TiO 2 system, BaO-Nd 2 O 3 -Sm 2 O 3 -Bi 2 O 3 -Ti
O 2 system, La 2 O 3 -TiO 2 system {Example: La 2 O 3 -2TiO 2 },
Nd 2 O 3 -TiO 2 system {Example: Nd 2 Ti 2 O 7 }, Bi 2 O 3 -TiO
2 type {Example: Bi 2 O 3 -2TiO 2 }, TiO 2 Furthermore, such materials can be used alone or in admixture of two or more. The average particle diameter of the above-mentioned ceramic dielectric powder is preferably 100 μm or less, and particularly preferably 0.5 to 20 μm on average. If the average particle size is large, the surface becomes rough when formed into a substrate, and it is difficult to form a high-precision circuit. On the contrary, if the average particle size is small, the dielectric properties are deteriorated and the kneading workability with a polyolefin polymer is also deteriorated. Further, such a ceramic dielectric may be completely fired or incompletely fired, but is preferably completely fired. Further, the powder may be prepared by crushing after calcination, or may be prepared by a calcination method for adjusting the particle size.

【0009】基板を作成するときの前記ポリオレフィン
系ポリマーとセラミックス誘電体粉末との重量配合比は
70:30〜5:95が好ましい。セラミックス誘電体
粉末の配合量が少ないと、基板としての寸法安定性に欠
けたり、誘電体特性が発揮されないことがある。逆に多
いと成形加工性が低下する。また作業性を向上する目的
で前記ポリオレフィン系ポリマーに、このようなポリマ
ーと比較して分子量の小さな例えばアモルファス−ポリ
プロピレン、ポリプロピレンワックス、ポリエチレンワ
ックスその他の各種ワックス類を適宜加えてもよい。基
板の作成方法としては、例えば加熱2本ロールを用いて
溶融又は軟化したポリオレフィン系ポリマーへセラミッ
クス誘電体粉末を少量ずつ投入しながら混練した後、加
熱プレスによりスペーサを用いて板状に成形する方法が
採用される。混練は押出し混練機を用いてもよい。また
基板の作成に際して、基板上で回路を形成する金属によ
るポリオレフィン系ポリマーの劣化を防ぐための金属不
活性化剤(回路が銅の場合には銅害防止剤とも云う)を
必要に応じて混練の際に混合しても良い。このような金
属不活性化剤の配合量はポリオレフィン系ポリマー10
0重量部に対して5重量部以下とされる。また、混練の
際にセラミックス誘電体粉末の分散性を上げるために、
チタネート系やシランカップリング剤等の分散剤を配合
してもよい。このような分散剤の配合量はセラミックス
誘電体粉末100重量部に対して5重量部以下とされ
る。
The weight compounding ratio of the polyolefin-based polymer and the ceramics dielectric powder when forming the substrate is preferably 70:30 to 5:95. When the compounding amount of the ceramics dielectric powder is small, the dimensional stability as a substrate may be lacked or the dielectric properties may not be exhibited. On the other hand, if the amount is large, the moldability will deteriorate. Further, for the purpose of improving workability, various waxes such as amorphous polypropylene, polypropylene wax, polyethylene wax and other waxes having a smaller molecular weight than such polymers may be appropriately added to the polyolefin-based polymer. As a method for producing a substrate, for example, a method is used in which a ceramic dielectric powder is kneaded into a melted or softened polyolefin-based polymer little by little by using a heating two-roll, and then is kneaded into a plate shape using a spacer by a heating press. Is adopted. An extrusion kneader may be used for kneading. In addition, when creating a board, a metal deactivator (also called a copper damage inhibitor when the circuit is copper) to prevent deterioration of the polyolefin polymer due to the metal forming the circuit on the board is kneaded as necessary. You may mix at the time of. The blending amount of such a metal deactivator is 10
5 parts by weight or less with respect to 0 parts by weight. In order to improve the dispersibility of the ceramic dielectric powder during kneading,
A dispersant such as a titanate type or a silane coupling agent may be blended. The compounding amount of such a dispersant is 5 parts by weight or less with respect to 100 parts by weight of the ceramic dielectric powder.

【0010】更に、本発明になる基板の表面に回路を形
成する方法としては、サブトラクティブ法でもアディテ
ィブ法でもよく、また、このような回路となる金属層を
基盤に付着させる方法は無電解めっき又は無電解めっき
と電解めっきを組合せてもよく、特に表面平滑性の良い
金属箔の場合は高誘電率、低損失の接着剤等で接着する
方法でも良い。更に本基板が熱可塑性であるという特長
を生かして、別の仮基板上に形成した金属回路パターン
を本基板に圧着、転写する所謂転写法によって表面回路
を形成することも可能である。
Further, the method of forming a circuit on the surface of the substrate according to the present invention may be a subtractive method or an additive method, and a method of adhering a metal layer to be such a circuit to a substrate is electroless plating. Alternatively, electroless plating and electrolytic plating may be combined, and particularly in the case of a metal foil having good surface smoothness, a method of bonding with a high dielectric constant, low loss adhesive or the like may be used. Further, it is possible to form a surface circuit by a so-called transfer method in which a metal circuit pattern formed on another temporary substrate is pressure-bonded and transferred onto the main substrate by taking advantage of the fact that the main substrate is thermoplastic.

【0011】[0011]

【作用】本発明の基板は、ポリオレフィン系ポリマーと
セラミックス誘電体粉末との混合物が有する優れた寸法
精度、成形性を保持しつつ所望の誘電特性を呈する。従
って、本発明の基板は高精度で小形形態に製造できる。
The substrate of the present invention exhibits desired dielectric properties while maintaining the excellent dimensional accuracy and moldability of the mixture of polyolefin polymer and ceramic dielectric powder. Therefore, the substrate of the present invention can be manufactured in a small form with high accuracy.

【0012】[0012]

【実施例】次に本発明の実施例を説明する。なお表示の
配合部数はすべて重量部を示す。 実施例1 ポリオレフィン系ポリマーとして市販のポリプロピレン
{MFR≒60、εr=2.3、tanδ=3×10-4/1
MHz、これを(A)とする}50部を180℃の2本ロ
ールにかけて溶融させた状態としたところへ、セラミッ
クス誘電体粉末として焼成TiO2{平均粒径1μm、ε
r=100、tanδ=3×10-4/1MHz、これを(B)
とする}50部を少量ずつ添加しながら混練して、(A)
+(B)の混合物を作成した。更に、5mm厚さのスペーサ
兼用枠内に(A)+(B)の混合物を入れて2枚の鏡板で両
面から挾み、50tプレスを使用して210℃でプレス
成形して、5mm厚さの基板及び10×10×10mmの成
形品を作成した。
EXAMPLES Next, examples of the present invention will be described. In addition, all the compounding parts of a display show a weight part. Example 1 Commercially available polypropylene as a polyolefin-based polymer {MFR≈60, ε r = 2.3, tan δ = 3 × 10 −4 / 1
MHz, designated as (A)} 50 parts by weight were placed on a two-roll roll at 180 ° C. and melted, and sintered TiO 2 as a ceramic dielectric powder {average particle size 1 μm, ε
r = 100, tan δ = 3 × 10 -4 / 1 MHz, which is (B)
Kneading while adding 50 parts little by little, (A)
A mixture of + (B) was made. Furthermore, the mixture of (A) + (B) is put in a 5mm-thick frame that also serves as a spacer, sandwiched from both sides with two end plates, and press-molded at 210 ° C using a 50t press to give a 5mm-thickness. A substrate and a molded product of 10 × 10 × 10 mm were prepared.

【0013】実施例2 実施例1と同様にして(A)を20部、(B)を80部とし
て(A)+(B)の混合物からなる基板及び成形品を作成し
た。
Example 2 In the same manner as in Example 1, 20 parts of (A) and 80 parts of (B) were used to prepare a substrate and a molded article made of a mixture of (A) + (B).

【0014】比較例1 実施例1と同様にして(A)を2部、(B)を98部として
(A)+(B)の混合物からなる基板の作成を試みたが、成
形不可能であつた。
Comparative Example 1 In the same manner as in Example 1, (A) was 2 parts and (B) was 98 parts.
An attempt was made to prepare a substrate composed of a mixture of (A) + (B), but it could not be molded.

【0015】比較例2 実施例1と同様にして(A)を80部、(B)を20部とし
て(A)+(B)の混合物からなる基板及び成形品を作成し
た。
Comparative Example 2 A substrate and a molded article made of a mixture of (A) + (B) with 80 parts of (A) and 20 parts of (B) were prepared in the same manner as in Example 1.

【0016】比較例3 実施例1と同様にして(A)を20部を溶融状態にしたと
ころへセラミックス誘電体粉末として焼成TiO2{平均
粒径0.3μm、εr=100、tanδ=3×10-4/1
MHz、これを(B-2)とする}80部を少量ずつ添加し
ながら混練を試みたが、充分な混練が不可能であった。
Comparative Example 3 In the same manner as in Example 1, 20 parts of (A) was melted and fired as a ceramic dielectric powder TiO 2 {average particle size 0.3 μm, ε r = 100, tan δ = 3. × 10 -4 / 1
The kneading was tried while adding 80 parts by mass of MHz, which is (B-2)}, but sufficient kneading was impossible.

【0017】比較例4 実施例1と同様にして(A)を50部を溶融状態にしたと
ころへセラミックス誘電体粉末として焼成TiO2{平均
粒径120μm、εr=100、tanδ=3×10-4/1
MHz、これを(B-3)とする}50部を少量ずつ添加し
つつ混練し、(A)+(B-3)の混合物を作成した後、基
板及び成形品を作成した。しかしながら加熱プレス後室
温に戻されると共に、ポリマー部分がセラミックス誘電
体粉末と比較して収縮が大きく、表面が凹凸になって粗
さが目立ち、基板の特性を測定するための銅箔層形成が
難く、切削加工も困難を極めた。
Comparative Example 4 In the same manner as in Example 1, 50 parts of (A) was melted and fired as a ceramic dielectric powder TiO 2 {average particle size 120 μm, ε r = 100, tan δ = 3 × 10. -4 / 1
MHz, which is (B-3)}, was kneaded while adding 50 parts little by little to prepare a mixture of (A) + (B-3), and then a substrate and a molded product were prepared. However, after heating and returning to room temperature, the polymer part shrinks more than the ceramic dielectric powder, the surface becomes uneven and the roughness is conspicuous, and it is difficult to form a copper foil layer for measuring the characteristics of the substrate. The cutting process was extremely difficult.

【0018】実施例3 ポリオレフィン系ポリマーとして市販のポリエチレン系
アイオノマー{三井デュポン・ポリケミカル社製ハイミ
ラン1652、εr=2.4、tanδ=1.0×10-3
1MHz、これを(C)とする}20部、セラミックス誘
電体粉末として(B)の80部を実施例1と同様の方法を
用いて、(C)+(B)の混合物からなる基板及び成形品を
作成した。
Example 3 Polyethylene ionomer commercially available as a polyolefin polymer {Himilan 1652 manufactured by Mitsui DuPont Polychemical Co., ε r = 2.4, tan δ = 1.0 × 10 -3 /
Using the same method as in Example 1, 20 MHz of 1 MHz, which is (C)}, and 80 parts of (B) as the ceramic dielectric powder are formed into a substrate made of a mixture of (C) + (B) and molded. I created a product.

【0019】実施例4 ポリオレフィン系ポリマーとして市販のポリ4−メチル
ペンテン{三井石油化学社製TPX、εr=2.2、tan
δ=5×10-3/1MHz、これを(D)とする}20
部、セラミックス誘電体粉末として(B)の80部を実施
例1と同様の方法を用いて、(D)+(B)の混合物からな
る基板及び成形品を作成した。
Example 4 Commercially available poly-4-methylpentene as a polyolefin-based polymer {TPX manufactured by Mitsui Petrochemical Co., ε r = 2.2, tan
δ = 5 × 10 −3 / 1 MHz, which is (D)} 20
And 80 parts of (B) as the ceramic dielectric powder were processed in the same manner as in Example 1 to prepare a substrate and a molded product made of a mixture of (D) + (B).

【0020】実施例5 ポリオレフィン系ポリマーとして(A)を20部、セラミ
ックス誘電体粉末として市販のBaO-Nd23-Bi23-
TiO2系焼成物{平均粒径5μm、εr=105、tanδ
=3×10-4/1MHz、これを(E)とする}80部を
実施例1と同様の方法を用いて、(E)+(B)の混合物か
らなる基板及び成形品を作成した。
Example 5 20 parts of (A) as a polyolefin polymer and commercially available BaO-Nd 2 O 3 -Bi 2 O 3 -as a ceramic dielectric powder.
TiO 2 -based fired product {average particle size 5 μm, ε r = 105, tan δ
= 3 × 10 -4 / 1 MHz, which is (E)} By using the same method as in Example 1 for 80 parts, a substrate and a molded product made of a mixture of (E) + (B) were prepared.

【0021】以上の実施例1〜5で作成した基板及び成
形品を基にして、周波数1MHz及び800MHzでεr
とtanδを測定するため、図1及び図2に示す試験用試
料を作成した。図1は直径56mm、厚さ5mmの円板状の
基板2に銅箔層1を形成したもの、図2は外径7mm、内
径3mm、高さ10mmの円筒状の基板3である。なお図1
は1MHz、図2は800MHzでの測定試験用試料であ
る。また、図1における銅箔層1は無電解めっきで12
μm厚さに仕上げた。更に1MHzでの測定は横河ヒュ
ーレットパッカード(YHP)社製LCRメータを用い
て行ない、800MHzでの測定はYHP社製ベクトル
ネットワークアナライザーを用いて行った。測定結果を
表1に示す。なお、加工性については図2に示す試料作
成時の切削加工性により評価を行った。また、表1には
比較の意味で市販の高周波基板の測定結果を示した。表
1において、〇印は成形性及び加工性が良好、△印はや
や良好、×印は不良、─印は測定しないことを示す。本
市販品はポリフェニレンオキサイドを主材料とする架橋
系の複合高周波基板である。以上、本発明の実施例を説
明したが、本発明の主旨を逸脱しなければ、これらに限
定されるものではない。
Based on the substrates and molded products prepared in Examples 1 to 5 above, ε r at frequencies of 1 MHz and 800 MHz.
And tan δ were measured, test samples shown in FIGS. 1 and 2 were prepared. FIG. 1 shows a disk-shaped substrate 2 having a diameter of 56 mm and a thickness of 5 mm and a copper foil layer 1 formed on it. FIG. 2 shows a cylindrical substrate 3 having an outer diameter of 7 mm, an inner diameter of 3 mm and a height of 10 mm. Figure 1
Is a sample for measurement test at 1 MHz, and FIG. 2 is a sample for measurement test at 800 MHz. Moreover, the copper foil layer 1 in FIG.
Finished to a thickness of μm. Further, the measurement at 1 MHz was performed using an LCR meter manufactured by Yokogawa Hewlett-Packard (YHP), and the measurement at 800 MHz was performed using a vector network analyzer manufactured by YHP. The measurement results are shown in Table 1. The machinability was evaluated by the machinability during the preparation of the sample shown in FIG. In addition, Table 1 shows the measurement results of commercially available high frequency substrates for comparison. In Table 1, ∘ indicates that the moldability and workability are good, Δ indicates a little good, x indicates a defect, and ─ indicates that the measurement is not performed. This commercially available product is a cross-linked composite high frequency substrate whose main material is polyphenylene oxide. The embodiments of the present invention have been described above, but the present invention is not limited to these without departing from the gist of the present invention.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明の複合高誘電率基板は、tanδの
小さなポリオレフィン系ポリマーとεrの大きなセラミ
ックス誘電体粉末とを混合、成形したので、優れた誘電
特性を有し、成形性にも優れる。従って、高周波領域で
使用される電子機器、通信機器等の小形情報機器への適
用が可能であり、その社会的寄与は極めて大きい。
Industrial Applicability The composite high dielectric constant substrate of the present invention has excellent dielectric properties because it is formed by mixing and molding a polyolefin polymer having a small tan δ and a ceramics dielectric powder having a large ε r. Excel. Therefore, it can be applied to small information devices such as electronic devices and communication devices used in a high frequency region, and its social contribution is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】誘電特性測定の試験用試料を示す図で、(a)
は斜視図ある。(b)は正面断面図である。
FIG. 1 is a diagram showing a test sample for dielectric property measurement, (a)
Is a perspective view. (B) is a front sectional view.

【図2】誘電特性測定の試験用試料を示す斜視図であ
る。
FIG. 2 is a perspective view showing a test sample for dielectric property measurement.

【符号の説明】[Explanation of symbols]

1…銅箔層、2…基板、3…基板 1 ... Copper foil layer, 2 ... Substrate, 3 ... Substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 忠光 東京都新宿区西新宿2丁目1番1号 日立 化成工業株式会社内 (72)発明者 渡辺 健二 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社五所宮工場内 (72)発明者 中村 孔三郎 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 竹島 幹夫 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 山本 二三男 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadamitsu Nakayama 2-1-1 Nishishinjuku, Shinjuku-ku, Tokyo Within Hitachi Chemical Co., Ltd. (72) Kenji Watanabe 1150 Goshomiya, Shimodate City, Ibaraki Prefecture Hitachika Seigo Co., Ltd. Goshomiya Plant (72) Inventor Kozaburo Nakamura 1-1-6 Uchiyuki-cho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Inventor Mikio Takeshima 1-1-1 Uchisai-cho, Chiyoda-ku, Tokyo No. 6 Nihon Telegraph and Telephone Corporation (72) Inventor Fumio Yamamoto 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン系ポリマーとセラミック
ス誘電体粉末とを混合、成形してなる複合高誘電率基
板。
1. A composite high dielectric constant substrate obtained by mixing and molding a polyolefin polymer and a ceramics dielectric powder.
JP11387992A 1992-05-07 1992-05-07 High-permittivity composite substrate Pending JPH05311010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11387992A JPH05311010A (en) 1992-05-07 1992-05-07 High-permittivity composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11387992A JPH05311010A (en) 1992-05-07 1992-05-07 High-permittivity composite substrate

Publications (1)

Publication Number Publication Date
JPH05311010A true JPH05311010A (en) 1993-11-22

Family

ID=14623412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11387992A Pending JPH05311010A (en) 1992-05-07 1992-05-07 High-permittivity composite substrate

Country Status (1)

Country Link
JP (1) JPH05311010A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844523A (en) * 1996-02-29 1998-12-01 Minnesota Mining And Manufacturing Company Electrical and electromagnetic apparatuses using laminated structures having thermoplastic elastomeric and conductive layers
US5962122A (en) * 1995-11-28 1999-10-05 Hoechst Celanese Corporation Liquid crystalline polymer composites having high dielectric constant
WO2005071697A1 (en) * 2004-01-27 2005-08-04 Mitsubishi Materials Corporation Dielectric article having high dielectric constant and antenna using said dielectric article
JP2022515134A (en) * 2018-12-20 2022-02-17 エイブイエックス コーポレイション High frequency multilayer filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962122A (en) * 1995-11-28 1999-10-05 Hoechst Celanese Corporation Liquid crystalline polymer composites having high dielectric constant
US5844523A (en) * 1996-02-29 1998-12-01 Minnesota Mining And Manufacturing Company Electrical and electromagnetic apparatuses using laminated structures having thermoplastic elastomeric and conductive layers
WO2005071697A1 (en) * 2004-01-27 2005-08-04 Mitsubishi Materials Corporation Dielectric article having high dielectric constant and antenna using said dielectric article
JP2022515134A (en) * 2018-12-20 2022-02-17 エイブイエックス コーポレイション High frequency multilayer filter

Similar Documents

Publication Publication Date Title
US5739193A (en) Polymeric compositions having a temperature-stable dielectric constant
KR100689352B1 (en) Dielectric ceramic, resin-ceramics composite, and electric parts and antenna and method for their manufacture
JPH03179805A (en) Composite material for dielectric lens antenna
US5089070A (en) Poly(propylene carbonate)-containing ceramic tape formulations and the green tapes resulting therefrom
JP2005015652A (en) Resin composition having high dielectric constant and electronic component
WO1997020324A1 (en) Poly(phenylene sulfide) composites having a high dielectric constant
JPH05311010A (en) High-permittivity composite substrate
JPH0869712A (en) Resin-ceramic composite material and wiring board for electronic parts using the composite material
US4929575A (en) Melt processable, green, ceramic precursor powder
JPH0594717A (en) Composite dielectric
JP2802172B2 (en) Composite dielectric and printed circuit board
JP2740357B2 (en) Printed circuit board
JPH08231274A (en) Resin-ceramic composite material and electronic circuit board using the same
KR100616512B1 (en) Ceramic Composition for Green Sheet Having Superior Strength, Preparing Method of Green Sheet And Green Sheet Prepared Thereby
WO1998026431A1 (en) Cyclic olefin polymer composites having a high dielectric constant
JP2004335364A (en) Highly dielectric powder, highly dielectric resin composite, and electronic component
CN113831672B (en) Blended thermoplastic composite material, antenna support and terminal
JPS58166608A (en) Composite dielectric
JPH0660719A (en) Composite dielectric
JP2665104B2 (en) Composite dielectric and printed circuit board
JPS58166609A (en) Composite dielectric
JPS58166605A (en) Composite dielectric
JPH0583018A (en) Material for dielectric lens antenna
JPS58166607A (en) Composite dielectric
JP2001184948A (en) Composite dielectric