JPH053100A - Betatron vibration measuring device of ring-form accelerator - Google Patents

Betatron vibration measuring device of ring-form accelerator

Info

Publication number
JPH053100A
JPH053100A JP18028891A JP18028891A JPH053100A JP H053100 A JPH053100 A JP H053100A JP 18028891 A JP18028891 A JP 18028891A JP 18028891 A JP18028891 A JP 18028891A JP H053100 A JPH053100 A JP H053100A
Authority
JP
Japan
Prior art keywords
frequency
electrodes
betatron
vertical
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18028891A
Other languages
Japanese (ja)
Inventor
Takafumi Ogawa
孝文 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP18028891A priority Critical patent/JPH053100A/en
Publication of JPH053100A publication Critical patent/JPH053100A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure betatron vibrations in the vertical direction and in the horizontal direction simultaneously in a ring-form accelerator of an electron synchrotron or the like. CONSTITUTION:A normal phase of high-frequency wave is applied to the electrodes 14 and 15, of electrodes 14 to 17 for knockout driving; and an opposite phase of high-frequency wave is applied to the electrodes 16 and 17, so as to give a knocking force of the oblique direction including the vertical and the horizontal components to the electron beams 10. The position fluctuation in the vertical and the horizontal directions of the electron beams 10 by the kicking force is found by calculating the detecting signals of electrodes 21 to 24 for detecting by an operation means 29. By sweeping the frequency of the high-frequency signal from the low frequency in order, the peak values are shown on a spectrum analyzer 40 respectively at the places corresponding to the betatron vibration frequencies in the vertical direction and in the horizontal direction. Consequently, the betatron vibrations in the vertical direction and in the horizontal direction can be measured simultaneously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、シンクロトロン等の
リング状粒子加速器においてベータトロン振動を計測す
るための装置に関し、水平方向の振動と垂直方向の振動
を同時に計測できるようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring betatron vibrations in a ring-shaped particle accelerator such as a synchrotron, which is capable of simultaneously measuring horizontal vibrations and vertical vibrations. ..

【0002】[0002]

【従来の技術】電子シンクロトロンにおいて、電子ビー
ムはビームダクト内の閉軌道上を振動しながら周回して
いる。これをベータトロン振動といい、電子ビームを安
定に周回させる重要な要素である。すなわち、電子ビー
ムの周回が不安定になるベータトロン振動数があり、こ
の振動数を避けて運転する必要がある。このため、ベー
タトロン振動数を計測して、この不安定な振動数に至ら
ないように制御が行なわれる。
2. Description of the Related Art In an electron synchrotron, an electron beam orbits while oscillating on a closed orbit in a beam duct. This is called betatron oscillation, which is an important factor for stably orbiting the electron beam. That is, there are betatron frequencies at which the orbit of the electron beam becomes unstable, and it is necessary to avoid this frequency for operation. Therefore, the betatron frequency is measured, and control is performed so as not to reach this unstable frequency.

【0003】ベータトロン振動数を計測する方法として
RFノックアウト法がある。これは、ビームダクト内の
電極に高周波電圧を印加して電場を生じさせ、これで電
子ビームを蹴ったときの振幅を検出するもので、ベータ
トロン振動と共振した時に振幅が増加するのを利用し
て、その時の印加周波数よりベータトロン振動数を求め
るものである。
An RF knockout method is a method for measuring the betatron frequency. This is to detect the amplitude when the electron beam is kicked by applying a high frequency voltage to the electrode in the beam duct to generate an electric field, and the amplitude increases when it resonates with the betatron oscillation. Then, the betatron frequency is obtained from the applied frequency at that time.

【0004】従来のRFノックアウト法を用いたベータ
トロン振動数測定装置(チューンモニタ)を図2に示
す。電子ビーム10が周回しているリング状ビームダク
ト12内には、4本のノックアウト励振用電極14〜1
7が、電極14,15が上側左右に、電極16,17が
下側左右にそれぞれ配設されている。これら励振用電極
14〜17には高周波発生手段18から励振用高周波信
号が印加される。この高周波信号の周波数は様々に可変
される。
A conventional betatron frequency measuring device (tune monitor) using the RF knockout method is shown in FIG. In the ring-shaped beam duct 12 around which the electron beam 10 circulates, four knockout excitation electrodes 14 to 1 are provided.
7, the electrodes 14 and 15 are arranged on the upper left and right sides, and the electrodes 16 and 17 are arranged on the lower left and right sides, respectively. A high frequency signal for excitation is applied to the excitation electrodes 14 to 17 from the high frequency generation means 18. The frequency of this high-frequency signal can be variously changed.

【0005】励振用電極14〜17とは別に、ビーム位
置検出用電極21〜24が上下左右位置にそれぞれ配設
されている。演算手段20は、電子ビーム10の通過に
より各検出用電極21〜24に発生する信号を検出し、
これにもとづいて電子ビーム10の位置を計測する。
In addition to the excitation electrodes 14 to 17, beam position detection electrodes 21 to 24 are arranged at upper, lower, left and right positions, respectively. The calculation means 20 detects the signal generated in each of the detection electrodes 21 to 24 by the passage of the electron beam 10,
The position of the electron beam 10 is measured based on this.

【0006】このチェーンモニタは、水平方向のベータ
トロン振動数と垂直方向のベータトロン振動数の測定を
別々に行なう。すなわち、垂直方向の振動を測定する場
合は、図3(a)のように上側の電極14,15に正相
の高周波を印加し、下側の電極16,17に逆相の高周
波を印加して、上下方向の電界26を生じさせて電子ビ
ーム10を上下方向にキックする。この動作を高周波の
周波数を低い周波数から高い周波数にスイープさせなが
ら繰り返し行なう。また水平方向の振動を測定する場合
は、図3(b)のように左側の電極14,17に正相の
高周波を印加し、右側の電極15,16に逆相の高周波
を印加して、水平方向の電界26を生じさせて電子ビー
ム10を水平方向にキックする。この動作を高周波の周
波数を低い周波数から高い周波数にスイープさせながら
繰り返し行なう。そして、図2の演算手段20は上下方
向キック時および水平方向のキック時の各検出電極21
〜24の検出信号から、電子ビーム位置の変動が最も大
きい高周波の周波数を求めて垂直方向および水平方向の
ベータトロン振動数をそれぞれ求める。
This chain monitor separately measures the betatron frequency in the horizontal direction and the betatron frequency in the vertical direction. That is, when measuring the vibration in the vertical direction, a positive phase high frequency wave is applied to the upper electrodes 14 and 15, and a negative phase high frequency wave is applied to the lower electrodes 16 and 17, as shown in FIG. Then, an electric field 26 in the vertical direction is generated to kick the electron beam 10 in the vertical direction. This operation is repeated while sweeping the frequency of the high frequency from the low frequency to the high frequency. When measuring horizontal vibration, a positive phase high frequency is applied to the left electrodes 14 and 17, and a negative phase high frequency is applied to the right electrodes 15 and 16 as shown in FIG. 3B. A horizontal electric field 26 is generated to kick the electron beam 10 in the horizontal direction. This operation is repeated while sweeping the frequency of the high frequency from the low frequency to the high frequency. The calculating means 20 of FIG. 2 detects each of the detection electrodes 21 at the time of vertical kick and horizontal kick.
From the detection signals of .about.24, the frequency of the high frequency in which the fluctuation of the electron beam position is the largest is obtained, and the betatron frequencies in the vertical direction and the horizontal direction are obtained.

【0007】[0007]

【発明が解決しようとする課題】前記従来のチューンモ
ニタでは、垂直方向と水平方向のベータトロン振動数を
同時に計測することができず、計測に時間がかかってい
た。この発明は、前記従来の技術における欠点を解決し
て、垂直方向および水平方向のベータトロン振動を同時
に計測することができるリング状加速器のベータトロン
振動計測装置を提供しようとするものである。
However, the conventional tune monitor cannot measure the betatron frequency in the vertical direction and the frequency in the horizontal direction at the same time, and the measurement takes a long time. SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned drawbacks of the prior art and provide a betatron vibration measuring device for a ring-shaped accelerator capable of simultaneously measuring vertical and horizontal betatron vibrations.

【0008】[0008]

【課題を解決するための手段】この発明は、ビームダク
ト内を周回している粒子ビームに対し、水平、垂直両成
分を含むキック力を与えるように配設された励振用電極
と、この電極とは別の位置で前記粒子ビームの垂直およ
び水平方向の位置を検出するように配設された検出用電
極と、前記励振用電極に様々な周波数の高周波を印加す
る高周波発生手段と、前記検出用電極の検出出力から前
記粒子ビームの垂直および水平方向のそれぞれの位置の
変化の大きさを求める演算手段とを具備してなるもので
ある。
SUMMARY OF THE INVENTION The present invention provides an excitation electrode arranged to give a kicking force including both horizontal and vertical components to a particle beam circulating in a beam duct, and this electrode. A detection electrode arranged to detect the vertical and horizontal positions of the particle beam at a position different from the above; a high-frequency generator for applying high frequencies of various frequencies to the excitation electrode; Arithmetic means for determining the magnitude of change in each of the vertical and horizontal positions of the particle beam from the detection output of the working electrode.

【0009】[0009]

【作用】この発明によれば、粒子ビームに対し垂直およ
び水平両成分を含むキック力でキックするようにしたの
で、高周波周波数を変化させて、その時検出用電極から
得られる検出信号を演算することにより、垂直方向およ
び水平方向のベータトロン振動を同時に計測することが
できる。
According to the present invention, since the kick is performed by the kick force including both vertical and horizontal components with respect to the particle beam, the high frequency frequency is changed and the detection signal obtained from the detection electrode at that time is calculated. Thus, it is possible to simultaneously measure vertical and horizontal betatron vibrations.

【0010】[0010]

【実施例】この発明の一実施例を図1に示す。電子ビー
ム10が周回しているリング状ビームダクト12内に
は、4本ノックアウト励振用電極14〜17が、上下左
右にそれぞれ配設されている。これら励振用電極14〜
17には高周波発生手段18から励振用高周波信号が印
加される。この高周波信号の周波数は様々に可変され
る。
FIG. 1 shows an embodiment of the present invention. In the ring-shaped beam duct 12 around which the electron beam 10 circulates, four knock-out excitation electrodes 14 to 17 are arranged vertically and horizontally. These excitation electrodes 14 to
An excitation high-frequency signal is applied to the high-frequency generator 17 from the high-frequency generator 18. The frequency of this high-frequency signal can be variously changed.

【0011】高周波信号は図4に示すように、電極1
4,15には正相が、電極16,17には逆相が印加さ
れる。これにより、斜め方向の電界26が発生し、電子
ビーム10は斜め方向にキックされる。
The high frequency signal is transmitted to the electrode 1 as shown in FIG.
A positive phase is applied to the electrodes 4 and 15, and a negative phase is applied to the electrodes 16 and 17. As a result, an oblique electric field 26 is generated, and the electron beam 10 is kicked obliquely.

【0012】図1において、ビームダクト12内の励振
用電極14〜17とは別の位置にビーム位置検出用電極
21〜24が上下左右位置にそれぞれ配設されている。
In FIG. 1, beam position detection electrodes 21 to 24 are arranged at positions different from the excitation electrodes 14 to 17 in the beam duct 12 at upper, lower, left and right positions, respectively.

【0013】各検出用電極21〜24には、電子ビーム
10の通過により信号が発生する。上下方向の検出用電
極21,23の検出信号は演算手段29の180°パワ
ーコンバイナ30に入力され、180°位相をずらして
加算(すなわち引算)されて、電子ビーム10の中心軌
道からの上下方向へのずれ量に応じた出力が得られる。
左右方向の検出用電極22,24の検出信号は演算手段
29の180°パワーコンバイナ32に入力され、18
0°位相をずらして加算(すなわち引算)されて、電子
ビーム10の中心軌道からの左右方向へのずれ量に応じ
た出力が得られる。
A signal is generated in each of the detection electrodes 21 to 24 by the passage of the electron beam 10. The detection signals of the detection electrodes 21 and 23 in the vertical direction are input to the 180 ° power combiner 30 of the calculation means 29, and are added (that is, subtracted) by shifting the phase by 180 °, so that the vertical movement from the central orbit of the electron beam 10 is performed. An output corresponding to the amount of deviation in the direction can be obtained.
The detection signals of the left and right detection electrodes 22 and 24 are input to the 180 ° power combiner 32 of the calculation means 29,
The phases are shifted by 0 ° and added (that is, subtracted) to obtain an output according to the amount of deviation of the electron beam 10 from the central trajectory in the left-right direction.

【0014】180°パワーコンバイナ30,32の出
力は可変アッテネータ34,36をそれぞれ介して、パ
ワーコンバイナ38で加算されて、スペクトラムアナラ
イザ40に入力されて、周波数ごとの出力レベルが表示
される。
The outputs of the 180 ° power combiners 30 and 32 are added by the power combiner 38 via the variable attenuators 34 and 36, respectively, and input to the spectrum analyzer 40 to display the output level for each frequency.

【0015】図1のチューンモニタを使用する場合は、
高周波発生手段18から発生する高周波を低い周波数か
ら高い周波数に向けて順次スイーブさせていく。これに
より、ビームダクト12を周回している電子ビーム10
は斜め方向にキック力を受ける。そして、高周波が垂直
方向のベータトロン振動数、水平方向のベータトロン振
動数に対応したところでキック力は最大となる。したが
って、高周波を一度スイープさせると図5のように各方
向のベータトロン振動数に対応したところでピークが生
じるので、これにより両方向のベータトロン振動数が同
時に計測される。なお、2つのピークがいずれの方向に
対応したものかがわからない場合は、可変アッテネータ
34,36のいずれかを変化させてそれによりスペクト
ラムアナライザ40上のピークのいずれが動くかを見る
ことにより判別することができる。
When using the tune monitor of FIG.
The high frequency generated by the high frequency generator 18 is sequentially swept from a low frequency to a high frequency. As a result, the electron beam 10 circulating in the beam duct 12
Receives a kick force diagonally. Then, the kick force becomes maximum when the high frequency corresponds to the betatron frequency in the vertical direction and the betatron frequency in the horizontal direction. Therefore, when the high frequency wave is swept once, a peak occurs at a position corresponding to the betatron frequency in each direction as shown in FIG. 5, so that the betatron frequency in both directions is simultaneously measured. If it is not known in which direction the two peaks correspond, it is determined by changing either one of the variable attenuators 34 and 36 to see which one of the peaks on the spectrum analyzer 40 moves. be able to.

【0016】[0016]

【変更例】励振用電極は、上記実施例で示したものに限
らず、例えば図6のように2本の励振用電極14,15
を斜めに配して、一方に正相、他方に逆相の高周波を印
加するように構成することもできる。
[Modification] The excitation electrodes are not limited to those shown in the above embodiment, and for example, two excitation electrodes 14 and 15 as shown in FIG.
Can be arranged diagonally and a high-frequency wave of a positive phase can be applied to one side and a high frequency wave of a reverse phase to the other side.

【0017】また、この発明は電子シンクロトロンに限
らず、各種のリング状加速器に適用することができる。
The present invention can be applied not only to the electron synchrotron but also to various ring-shaped accelerators.

【0018】[0018]

【発明の効果】以上説明したように、この発明によれ
ば、粒子ビームに対し垂直および水平両成分を含むキッ
ク力でキックするようにしたので、高周波周波数を変化
させて、その時検出用電極から得られる検出信号を演算
することにより、垂直方向および水平方向のベータトロ
ン振動を同時に計測することができる。
As described above, according to the present invention, the kicking force including both the vertical and horizontal components with respect to the particle beam is used. By calculating the obtained detection signal, the betatron oscillations in the vertical direction and the horizontal direction can be simultaneously measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】従来装置を示すブロック図である。FIG. 2 is a block diagram showing a conventional device.

【図3】図2の装置における励振用電極の高周波印加方
法を示す正面図である。
3 is a front view showing a method of applying a high frequency to an excitation electrode in the apparatus of FIG.

【図4】図1の装置における励振用電極の高周波印加方
法を示す正面図である。
4 is a front view showing a method of applying a high frequency to an excitation electrode in the apparatus of FIG.

【図5】図1のスペクトラムアナライザ40上の表示例
を示す図である。
5 is a diagram showing a display example on the spectrum analyzer 40 of FIG.

【図6】この発明における励振用電極の他の配置例を示
す正面図である。
FIG. 6 is a front view showing another arrangement example of the excitation electrodes according to the present invention.

【符号の説明】[Explanation of symbols]

10 電子ビーム 12 リング状ビームタクト 14〜17 励振用電極 18 高周波発生手段 21〜24 検出用電極 29 演算手段 10 Electron Beam 12 Ring Beam Tact 14 to 17 Excitation Electrode 18 High Frequency Generation Means 21 to 24 Detection Electrode 29 Computing Means

Claims (1)

【特許請求の範囲】 【請求項1】 ビームダクト内を周回している粒子ビー
ムに対し、水平、垂直両成分を含むキック力を与えるよ
うに配設された励振用電極と、この電極とは別の位置で
前記粒子ビームの垂直および水平方向の位置を検出する
ように配設された検出用電極と、前記励振用電極に様々
な周波数の高周波を印加する高周波発生手段と、前記検
出用電極の検出出力から前記粒子ビームの垂直および水
平方向のそれぞれの位置の変化の大きさを求める演算手
段とを具備してなるリング状加速器のベータトロン振動
計測装置。
Claim: What is claimed is: 1. An excitation electrode arranged to give a kick force including both horizontal and vertical components to a particle beam circulating in a beam duct, and this electrode. Detection electrodes arranged to detect vertical and horizontal positions of the particle beam at different positions, high-frequency generation means for applying high frequencies of various frequencies to the excitation electrodes, and the detection electrodes And a calculation means for obtaining the magnitude of changes in the vertical and horizontal positions of the particle beam from the detection output of the betatron vibration measuring device for a ring-shaped accelerator.
JP18028891A 1991-06-25 1991-06-25 Betatron vibration measuring device of ring-form accelerator Pending JPH053100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18028891A JPH053100A (en) 1991-06-25 1991-06-25 Betatron vibration measuring device of ring-form accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18028891A JPH053100A (en) 1991-06-25 1991-06-25 Betatron vibration measuring device of ring-form accelerator

Publications (1)

Publication Number Publication Date
JPH053100A true JPH053100A (en) 1993-01-08

Family

ID=16080595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18028891A Pending JPH053100A (en) 1991-06-25 1991-06-25 Betatron vibration measuring device of ring-form accelerator

Country Status (1)

Country Link
JP (1) JPH053100A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56500570A (en) * 1979-04-23 1981-04-30
US5783914A (en) * 1994-03-17 1998-07-21 Hitachi, Ltd. Particle beam accelerator, and a method of operation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56500570A (en) * 1979-04-23 1981-04-30
US5783914A (en) * 1994-03-17 1998-07-21 Hitachi, Ltd. Particle beam accelerator, and a method of operation

Similar Documents

Publication Publication Date Title
Kuang et al. Resonance tracking and vibration stablilization for high power ultrasonic transducers
US7702702B2 (en) Signal processing device for computing phase difference between alternating current signals
JP3470671B2 (en) Broadband signal generation method in ion trap type mass spectrometer
JP2003090869A (en) Impedance measuring device
JPH053100A (en) Betatron vibration measuring device of ring-form accelerator
JPS6348447A (en) Method of removing noxious charged particle from measuring cell for icr spectrometer
JP2002175774A (en) Mass filter driving system
RU96121141A (en) METHOD FOR DETERMINING A SPATIAL ANGULAR ORIENTATION OF A MOBILE OBJECT AND A LASER MEASURING BLOCK
JP7429621B2 (en) sensor
JPH05175000A (en) Betatron vibration mesuring device for ring-shaped accelerator
JPH08288098A (en) Particle accelerator
JP3209111B2 (en) Method and apparatus for measuring ripeness of fruits and vegetables
JP3135630B2 (en) Laser-based measuring instrument using Doppler effect
SU1133490A1 (en) Multifunctional device for structure vibration-testing
SU817610A1 (en) Device for measuring resistor non-linearity
JPS6243131B2 (en)
JP2002217000A (en) Beam position monitor and synchrotron using this
JPH06313762A (en) Multiple frequency type eddy current flaw detector
JP3052707B2 (en) Vibration control device
SU723622A1 (en) Information display
JPH06310298A (en) Beam position measuring device
JPS5914860B2 (en) Mass spectrometry tube pulse or AC modulation automatic correction method
SU1354137A1 (en) Analyser of stability of dynamic systems with feedback
JPS5839302B2 (en) power measurement device
JPS62282443A (en) Stroboscopic electron beam device