JPH0530999B2 - - Google Patents

Info

Publication number
JPH0530999B2
JPH0530999B2 JP12940886A JP12940886A JPH0530999B2 JP H0530999 B2 JPH0530999 B2 JP H0530999B2 JP 12940886 A JP12940886 A JP 12940886A JP 12940886 A JP12940886 A JP 12940886A JP H0530999 B2 JPH0530999 B2 JP H0530999B2
Authority
JP
Japan
Prior art keywords
pressure
circulating fluid
fluid chamber
chamber
mechanical seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12940886A
Other languages
Japanese (ja)
Other versions
JPS62288777A (en
Inventor
Osamu Kato
Noboru Takahashi
Hisashi Misato
Takahide Uchiumi
Yoshinaga Aso
Shoji Baba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Electric Mfg Co Ltd
Original Assignee
Teikoku Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Electric Mfg Co Ltd filed Critical Teikoku Electric Mfg Co Ltd
Priority to JP12940886A priority Critical patent/JPS62288777A/en
Publication of JPS62288777A publication Critical patent/JPS62288777A/en
Publication of JPH0530999B2 publication Critical patent/JPH0530999B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Mechanical Sealing (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は高圧流体機械の軸封装置に係り、例え
ば多段キヤンドモータブロワなどにおいて、取扱
流体が充満された取扱流体室を軸封するメカニカ
ルシールの前後の圧力差を前記取扱流体の圧力変
化に追従させて常に設定範囲内に保持する軸封装
置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a shaft sealing device for high-pressure fluid machinery, such as a handling fluid chamber filled with handling fluid in a multi-stage canned motor blower. The present invention relates to a shaft sealing device that always maintains the pressure difference before and after a mechanical seal that seals the shaft within a set range by following the pressure change of the handled fluid.

(従来の技術) 外部への漏洩が嫌われる流体を取扱う流体機械
および高圧流体を取扱う流体機械の軸封手段とし
ては、一般にメカニカルシールが使用されてい
る。
(Prior Art) Mechanical seals are generally used as shaft sealing means for fluid machines that handle fluids that do not want to leak to the outside and fluid machines that handle high-pressure fluids.

このメカニカルシールは数100Kgf/cm2の高圧
用であつても、メカニカルシールの前後の圧力
差、すなわちメカニカルシールを介して隣接する
取扱流体が充満された取扱流体室とメカニカルシ
ール循環液が封入された循環液室との圧力差とし
て許容されるのはせいぜい数100Kgf/cm2程度で
あるため、取扱流体が高圧の場合にはそれ以上に
循環液を加圧する必要がある。
Even if this mechanical seal is used for high pressures of several 100 Kgf/ cm2 , the difference in pressure between the front and rear of the mechanical seal, that is, the handling fluid chamber filled with the adjacent handling fluid via the mechanical seal, and the mechanical seal circulating fluid are sealed. The permissible pressure difference with the circulating fluid chamber is at most several 100 Kgf/cm 2 , so if the fluid to be handled has a high pressure, it is necessary to pressurize the circulating fluid to a higher level.

その場合、循環液用ポンプとしてはギヤポンプ
やプランジヤーポンプなどの高圧ポンプが採用さ
れるが、メカニカルシールが大径の場合や高温取
扱流体の熱影響を受ける場合、およびキヤンドモ
ータやウエツトタイプモータの駆動源またはマグ
ネツトカツプリングの伝動装置を採用したシール
レス流体機械においてその駆動源や伝動装置部の
潤滑および冷却用の循環液をメカニカルシール循
環液と兼用する場合などには、相当の流量の循環
液を必要とし、すなわち大型の高吐出圧ポンプが
必要となる。
In that case, a high-pressure pump such as a gear pump or plunger pump is used as the circulating fluid pump, but it is used when the mechanical seal has a large diameter or is affected by the heat of high-temperature handling fluid, or when driving a canned motor or wet type motor. In a seal-less fluid machine that uses a power source or a magnetic coupling transmission device, when the circulating fluid for lubricating and cooling the drive source or transmission device is also used as the mechanical seal circulating fluid, it is necessary to circulate at a considerable flow rate. liquid is required, which means that a large, high discharge pressure pump is required.

(発明が解決しようとする問題点) しかし、大型で高吐出圧のギヤポンプは汎用性
に極めて乏しく高価につくとともに騒音が高い欠
点があり、プランジヤーポンプはさらに高価につ
き、またいずれにしても運転コストが高くつく。
(Problem to be solved by the invention) However, large, high-discharge-pressure gear pumps have extremely poor versatility, are expensive, and have the drawback of high noise, while plunger pumps are even more expensive, and in any case, they cannot be operated. The cost is high.

加えて、第7図に示すように駆動源1と連結す
るために回転軸2が外部へ露出している流体機械
3においては、取扱流体室4と循環液室5とを軸
封するメカニカルシール6の他に循環液室5と外
部とを軸封するメカニカルシール7が必要とな
り、取扱流体室4と外部との差圧がメカニカルシ
ール6,7の最高許容差圧より大きな場合は、第
8図に示すようにさらに循環液室8とメカニカル
シール9を設けるとともに2台の高圧ポンプ1
0,11を設ける必要があるなど、各メカニカル
シール6,7または9の前後の差圧が最高許容差
圧以下になるように構成する必要があり、構造が
複雑で極めて高価につく問題を有している。
In addition, as shown in FIG. 7, in a fluid machine 3 in which the rotating shaft 2 is exposed to the outside in order to be connected to the drive source 1, a mechanical seal is used to seal the handling fluid chamber 4 and the circulating fluid chamber 5. In addition to 6, a mechanical seal 7 is required to axially seal the circulating fluid chamber 5 and the outside, and if the differential pressure between the handling fluid chamber 4 and the outside is greater than the maximum allowable differential pressure of the mechanical seals 6 and 7, As shown in the figure, a circulating fluid chamber 8 and a mechanical seal 9 are further provided, and two high-pressure pumps 1 are installed.
0, 11, etc., so that the differential pressure before and after each mechanical seal 6, 7, or 9 must be configured to be below the maximum allowable differential pressure, which has the problem of making the structure complicated and extremely expensive. are doing.

さらに、取扱流体の圧力が大きいと、流体機械
3の定常運転中に取扱流体の圧力が大きく変動す
る場合は勿論、定常運転中は取扱流体の圧力がほ
ぼ一定で変化しない場合であつても、メカニカル
シール6が軸封する取扱流体室4が流体機械3の
吐出側である場合や取扱流体が流体機械3の起動
と同時に他の装置にて加熱昇圧され始めて流体機
械3に流入される場合は、起動から定常運転へお
よび定常運転から停止へと至る間に取扱流体室4
の圧力が変化するので、この圧力変化に追従して
循環液室5,8の圧力を変化させ、メカニカルシ
ール6,7,9の前後の差圧を常に一定範囲に保
持する装置が必要となる。
Furthermore, if the pressure of the fluid to be handled is high, the pressure of the fluid to be handled may fluctuate greatly during steady operation of the fluid machine 3, and even if the pressure of the fluid to be handled is approximately constant and does not change during steady operation, When the handling fluid chamber 4 that is shaft-sealed by the mechanical seal 6 is on the discharge side of the fluid machine 3, or when the handling fluid begins to be heated and pressurized by another device at the same time as the fluid machine 3 is started, and then flows into the fluid machine 3. , from startup to steady operation and from steady operation to stop, the handling fluid chamber 4
Since the pressure changes, a device is required to follow this pressure change and change the pressure in the circulating fluid chambers 5 and 8 to maintain the differential pressure across the mechanical seals 6, 7, and 9 within a constant range. .

この定差圧を得る装置として、前記第7図に示
すように、定差圧調整弁12を用い、この定差圧
調整弁12のベローズ室13を取扱流体室4に連
通し、循環液タンク14の循環液を高圧ポンプ1
0から循環液室5を経て定差圧調整弁12の弁入
口15に流入させ、弁出口16から循環液タンク
14へと戻して循環させる構成の装置が考えられ
ている。
As shown in FIG. 7, a constant differential pressure regulating valve 12 is used as a device for obtaining this constant differential pressure. 14 circulating fluid to high pressure pump 1
A device has been considered in which the circulating fluid flows from the circulating fluid chamber 5 to the valve inlet 15 of the constant differential pressure regulating valve 12 and returns to the circulating fluid tank 14 from the valve outlet 16 for circulation.

この装置によれば、循環液室5から定差圧調整
弁12の弁入口15に流入した循環液は、入口室
17、下部スプール18と中間室19間に形成さ
れる下部オリフイス20、中間室19、および上
部スプール21と中間室19間に形成される上部
オリフイス22を経て弁出口16から流出される
が、前記中間室19は下部スプール18の均圧室
24に連通され、下部スプール18はスプリング
25を介して調整ねじ26に支持されているの
で、例えば中間室19の圧力が増加すると、均圧
孔23によつて中間室19と同圧になる下部均圧
室24と下部オリフイス20の流路抵抗によつて
中間室19より高圧になる入口室17との圧力差
が減少され、この圧力差とスプリング25の力と
の平衡がくずれて下部スプール18が上方へ移動
され、下部オリフイス20が絞られて入口室17
の圧力が増加され、この入口室17と下部均圧室
24との圧力差が増加されてスプリング25の力
と平衡する位置に下部スプール18が停止され、
すなわち中間室19の圧力に対して入口室17の
圧力が常にほぼ一定圧高くなるように保持され、
またベロース室13を覆う上部均圧室27が均圧
孔28を介して中間室19に連通されているの
で、例えばベローズ室13の圧力が増加すると、
上部スプール21がベローズ29の伸張を伴つて
下方へ移動され、上部オリフイス22が絞られて
中間室19の圧力が増加され、均圧孔28によつ
て中間室19と同圧になる上部均圧室27の圧力
とベローズ室13の圧力とが平衡する位置に上部
スプール21が停止され、すなわちベローズ室1
3と同圧である流体機械3の取扱流体室4と中間
室19とが常にほぼ同圧となるように保持され、
従つて取扱流体室4の圧力が変化してもこの圧力
に対して循環液室5の圧力が常にほぼ一定圧高く
なるよう保持される。
According to this device, the circulating fluid that has flowed into the valve inlet 15 of the constant differential pressure regulating valve 12 from the circulating fluid chamber 5 is transferred to the inlet chamber 17, the lower orifice 20 formed between the lower spool 18 and the intermediate chamber 19, and the intermediate chamber. 19, and an upper orifice 22 formed between the upper spool 21 and the intermediate chamber 19 to flow out from the valve outlet 16, but the intermediate chamber 19 is communicated with the pressure equalizing chamber 24 of the lower spool 18, and the lower spool 18 is Since it is supported by an adjustment screw 26 via a spring 25, for example, when the pressure in the intermediate chamber 19 increases, the lower pressure equalizing chamber 24 and the lower orifice 20, which have the same pressure as the intermediate chamber 19, are caused by the pressure equalizing hole 23. Due to the flow path resistance, the pressure difference between the intermediate chamber 19 and the inlet chamber 17, which has a higher pressure, is reduced, and the balance between this pressure difference and the force of the spring 25 is disrupted, and the lower spool 18 is moved upward, causing the lower orifice 20 to move upward. is narrowed down to the entrance chamber 17
, the pressure difference between the inlet chamber 17 and the lower pressure equalizing chamber 24 is increased, and the lower spool 18 is stopped at a position where it is balanced with the force of the spring 25.
That is, the pressure in the inlet chamber 17 is always maintained at a substantially constant level higher than the pressure in the intermediate chamber 19;
Further, since the upper pressure equalization chamber 27 covering the bellows chamber 13 is communicated with the intermediate chamber 19 via the pressure equalization hole 28, for example, when the pressure in the bellows chamber 13 increases,
The upper spool 21 is moved downward with the expansion of the bellows 29, the upper orifice 22 is narrowed, and the pressure in the intermediate chamber 19 is increased, and the upper pressure equalizes to the same pressure as the intermediate chamber 19 through the pressure equalizing hole 28. The upper spool 21 is stopped at a position where the pressure in the chamber 27 and the pressure in the bellows chamber 13 are balanced, that is, the pressure in the bellows chamber 1
The handling fluid chamber 4 and the intermediate chamber 19 of the fluid machine 3, which have the same pressure as the fluid machine 3, are always maintained at approximately the same pressure,
Therefore, even if the pressure in the handling fluid chamber 4 changes, the pressure in the circulating fluid chamber 5 is always maintained at a substantially constant level higher than this pressure.

しかし、前記定差圧調整弁12はその機構上、
取扱流体室4のある範囲の圧力変化に対しては循
環液室5の圧力をほぼ定差圧を保つて追従させる
ことができるものの、広範囲の圧力変化に対して
は定差圧を保持できず、再現性にも問題があり、
比較的短期間で故障に至り易いなどの欠点があ
る。
However, due to its mechanism, the constant differential pressure regulating valve 12 has
Although the pressure in the circulating fluid chamber 5 can be made to follow pressure changes within a certain range of the handling fluid chamber 4 while maintaining an approximately constant differential pressure, it is not possible to maintain a constant differential pressure over a wide range of pressure changes. , there are also problems with reproducibility,
It has drawbacks such as being prone to failure in a relatively short period of time.

本発明は前記問題点に鑑みなされたもので、キ
ヤンドモータやウエツトタイプモータを直結し、
またはマグネツトカツプリングを介して駆動源を
連結した高圧流体機械、すなわち回転軸が外部に
露出しない完全無漏洩構造の高圧流体機械を採用
して、取扱流体の外部への漏洩を完全に阻止し、
かつ軸受部または駆動部の潤滑や冷却を妨げるガ
スやスラリ含有液または高温流体などの取扱流体
の前記軸受部または駆動部への侵入を阻止するた
めの軸封部1ケ所に対して取扱流体が高圧であつ
てもメカニカルシールやその循環液室および循環
液室加圧用の高圧ポンプを複数設ける必要がな
く、取扱流体の圧力変化に拘らずメカニカルシー
ルの前後の差圧を常に設定範囲内に確実に保持で
きて信頼性と寿命とが大幅に向上され、設備コス
トと運転コストが廉価につき、騒音も低くなる高
圧流体機械の軸封装置を提供するものである。
The present invention was made in view of the above-mentioned problems, and it directly connects a canned motor or a wet type motor.
Alternatively, a high-pressure fluid machine with a drive source connected via a magnetic coupling, that is, a high-pressure fluid machine with a completely leak-free structure in which the rotating shaft is not exposed to the outside, is used to completely prevent the fluid being handled from leaking to the outside. ,
In addition, the handling fluid is applied to one shaft sealing part for preventing handling fluid such as gas, slurry-containing liquid, or high-temperature fluid that interferes with lubrication or cooling of the bearing or driving part from entering the bearing or driving part. Even at high pressures, there is no need to install a mechanical seal, its circulating fluid chamber, or multiple high-pressure pumps for pressurizing the circulating fluid chamber, ensuring that the differential pressure across the mechanical seal is always within the set range regardless of pressure changes in the fluid being handled. The present invention provides a shaft sealing device for a high-pressure fluid machine, which can be maintained at a high temperature, greatly improve reliability and service life, reduce equipment costs and operating costs, and reduce noise.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の高圧流体機械の軸封装置は、回転軸が
外部へ露出しない完全無漏洩構造の高圧流体機械
において、取扱流体が充満される取扱流体室を軸
封するメカニカルシールを介して前記取扱流体室
に隣接する循環液室を設け、この循環液室に循環
ポンプにて循環液を供給循環させる密閉循環経路
を形成するとともにこの密閉循環経路を加圧する
高圧ポンプなどからなる加圧手段と前記密閉循環
経路を減圧する減圧手段とを設け、前記メカニカ
ルシールの前記取扱流体室側と前記循環液室側と
の差圧を検出する差圧検出手段と、この差圧検出
手段の信号によつて前記メカニカルシールの前記
取扱流体室側よりも前記循環液室側の圧力を高く
してかつその差圧を設定範囲内に保持するように
前記加圧手段と前記減圧手段とを制御する圧力制
御手段とを備えてなるものである。
(Means for Solving the Problems) A shaft sealing device for a high-pressure fluid machine according to the present invention seals a handling fluid chamber filled with handling fluid in a high-pressure fluid machine with a completely leak-free structure in which the rotating shaft is not exposed to the outside. A circulating fluid chamber is provided adjacent to the handled fluid chamber through a mechanical seal, and a closed circulation path is formed in which circulating fluid is supplied and circulated by a circulation pump to this circulating fluid chamber, and a high pressure is applied to pressurize this closed circulation path. A differential pressure detecting means is provided with a pressurizing means such as a pump and a depressurizing means for reducing the pressure in the closed circulation path, and detects a differential pressure between the handling fluid chamber side and the circulating fluid chamber side of the mechanical seal; The pressurizing means and the mechanical seal are configured to make the pressure on the circulating fluid chamber side higher than the handling fluid chamber side of the mechanical seal in response to a signal from the differential pressure detecting means, and to maintain the differential pressure within a set range. The pressure reducing means is provided with a pressure control means for controlling the pressure reducing means.

(作用) 本発明の高圧流体機械の軸封装置は、循環ポン
プによつて循環液が密閉循環経路を循環されて循
環液室に供給され、それによつてメカニカルシー
ルが潤滑および冷却され、このメカニカルシール
の取扱流体室側と循環液室側との差圧が差圧検出
手段にて検出され、この差圧検出手段からの信号
を受けた圧力制御手段により加圧手段と減圧手段
が作動されて密閉循環経路の圧力が増減され、メ
カニカルシールの取扱流体室側よりも循環液室側
の圧力が高くかつその差圧が設定範囲内に保持さ
れるように制御される。
(Function) In the shaft sealing device for a high-pressure fluid machine of the present invention, circulating fluid is circulated through a closed circulation path by a circulation pump and supplied to a circulating fluid chamber, thereby lubricating and cooling a mechanical seal. The differential pressure between the handled fluid chamber side and the circulating fluid chamber side of the seal is detected by the differential pressure detection means, and the pressure control means that receives a signal from the differential pressure detection means operates the pressurization means and the pressure reduction means. The pressure in the closed circulation path is increased or decreased and controlled so that the pressure on the circulating fluid chamber side of the mechanical seal is higher than on the handled fluid chamber side and the differential pressure is maintained within a set range.

(実施例) 次に本発明を多段キヤンドモータブロワに採用
した実施例について説明する。
(Example) Next, an example in which the present invention is applied to a multi-stage canned motor blower will be described.

第1図において、31は多段ブロワ部32とキ
ヤンドモータ部33を気密に一体に構成してなる
高耐圧の多段キヤンドモータブロワで、多段ブロ
ワ部32の外側ケーシング34内にブロワ回転軸
35に取着された各段羽根車36と各段ケーシン
グ37とが吐出口38の両側に背面組合せにして
配列されており、外側ケーシング34の両端側に
ブロワ回転軸35を軸封する前部メカニカルシー
ル39と後部メカニカルシール40がそれぞれ配
設され、取扱ガスが充満される外側ケーシング3
4内すなわち取扱ガス室41の両端側に各メカニ
カルシール39および40を介して隣接する前部
循環液室42と後部循環液室43がそれぞれ形成
されており、各循環液室42および43にはそれ
ぞれ前部ブロワ軸受44および後部ブロワ軸受4
5が配設されてこの両ブロワ軸受44,45にて
ブロワ回転軸35が回動自在に支架されている。
In FIG. 1, reference numeral 31 denotes a high-voltage multi-stage canned motor blower in which a multi-stage blower section 32 and a canned motor section 33 are integrally configured in an airtight manner. The impellers 36 of each stage and the casings 37 of each stage are arranged in a back-to-back combination on both sides of the discharge port 38, and a front mechanical seal 39 for sealing the blower rotating shaft 35 is provided at both ends of the outer casing 34. and a rear mechanical seal 40, respectively, and the outer casing 3 is filled with handling gas.
A front circulating fluid chamber 42 and a rear circulating fluid chamber 43 are formed adjacent to each other through mechanical seals 39 and 40 at both ends of the handling gas chamber 41, respectively. Front blower bearing 44 and rear blower bearing 4 respectively
A blower rotating shaft 35 is rotatably supported by both blower bearings 44 and 45.

また、多段ブロワ部32とキヤンドモータ部3
3を接続するアダプタ46内において、前部キヤ
ンドモータ軸受47と後部キヤンドモータ軸受4
8にて回動自在に支架されたキヤンドモータ回転
軸49とブロワ回転軸35とが軸継手50によっ
て連結されている。
In addition, the multi-stage blower section 32 and the canned motor section 3
3, the front canned motor bearing 47 and the rear canned motor bearing 4
A canned motor rotating shaft 49 and a blower rotating shaft 35, which are rotatably supported at 8, are connected by a shaft coupling 50.

また、前部循環液室42と後部循環液室43と
が循環パイプ51にて接続され、低吐出圧の循環
ポンプ52の吸込口53が循環パイプ54にて前
部循環液室42に、吐出口55が熱交換器56を
介して循環パイプ57にてキヤンドモータ部33
の後端室58にそれぞれ接続されており、前記循
環ポンプ52によつて循環液が熱交換器56、循
環パイプ57、後端室58、後部キヤンドモータ
軸受48、後部ロータ室59、キヤン間隙60、
前部ロータ室61、前部キヤンドモータ軸受4
7、アダプタ46内空間、後部ブロワ軸受45と
後部メカニカルシール40を内包する後部循環液
室43、循環パイプ51、前部メカニカルシール
39と前部ブロワ軸受44を内包する前部循環液
室42、循環パイプ54と循環されて、両メカニ
カルシール39,40と両ブロワ軸受44,45
および両キヤンドモータ軸受47,48を潤滑す
るとともにこれらとキヤンドモータ部33のステ
ータ62およびロータ63を冷却する密閉循環経
路64が形成されている。
Further, the front circulating fluid chamber 42 and the rear circulating fluid chamber 43 are connected through a circulation pipe 51, and the suction port 53 of the circulation pump 52 with a low discharge pressure is connected to the front circulating fluid chamber 42 through the circulation pipe 54. An outlet 55 connects to the canned motor section 33 via a heat exchanger 56 and a circulation pipe 57.
The circulation pump 52 supplies the circulating fluid to the heat exchanger 56, the circulation pipe 57, the rear end chamber 58, the rear canned motor bearing 48, the rear rotor chamber 59, the can gap 60, and the rear end chamber 58.
Front rotor chamber 61, front canned motor bearing 4
7, the inner space of the adapter 46, the rear circulating fluid chamber 43 containing the rear blower bearing 45 and the rear mechanical seal 40, the circulation pipe 51, the front circulating fluid chamber 42 containing the front mechanical seal 39 and the front blower bearing 44; It circulates through the circulation pipe 54, and both mechanical seals 39, 40 and both blower bearings 44, 45
A closed circulation path 64 is formed that lubricates both canned motor bearings 47 and 48 and cools them and the stator 62 and rotor 63 of the canned motor section 33.

また、プランジヤーポンプ65とアキユムレー
タ66との組合せまたはギヤポンプなどからなる
極めて低流量の高圧ポンプ67、この高圧ポンプ
67の吸込側に接続された循環液タンク68、高
圧ポンプ67の吐出側に接続された加圧制御弁6
9および安全弁70とからなる加圧手段71が構
成され、加圧制御弁69の他端が熱交換器56と
キヤンドモータ部33の後端室58とを接続する
循環パイプ57に接続されることにより前記加圧
手段71が密閉循環経路64に接続されており、
減圧制御弁72の一端が前記循環パイプ57に他
端が循環液タンク68に接続されて減圧手段73
が構成されている。
Also, a high pressure pump 67 with an extremely low flow rate consisting of a combination of a plunger pump 65 and an accumulator 66 or a gear pump, a circulating fluid tank 68 connected to the suction side of the high pressure pump 67, and a circulating fluid tank 68 connected to the discharge side of the high pressure pump 67. Pressure control valve 6
9 and a safety valve 70, the other end of the pressurization control valve 69 is connected to the circulation pipe 57 that connects the heat exchanger 56 and the rear end chamber 58 of the canned motor section 33. The pressurizing means 71 is connected to a closed circulation path 64,
One end of the pressure reduction control valve 72 is connected to the circulation pipe 57 and the other end is connected to the circulation fluid tank 68, and the pressure reduction means 73
is configured.

また、前部循環液室42の圧力を検出する第1
の圧力センサ74、前部循環液室42に前部メカ
ニカルシール39を介して隣接する取扱ガス室4
1とほぼ同圧となる多段ブロワ部32の吸込口7
5の圧力を検出する第2の圧力センサ76、第1
の圧力センサ74の直接信号と第2の圧力センサ
76の加圧バイアス回路77を介した間接信号と
を比較指示する加圧用圧力指示調節計78および
第1の圧力センサ74の直接信号と第2の圧力セ
ンサ76の減圧バイアス回路79を介した間接信
号とを比較指示する減圧用圧力指示調節計80と
からなる差圧検出手段81が設けられており、制
御信号を発生して加圧手段71の加圧制御弁69
を制御する前記加圧用圧力指示調節計78と制御
信号を発生して減圧手段73の減圧制御弁72を
制御する前記減圧用圧力指示調節計80とが圧力
制御手段82となつている。
In addition, a first
pressure sensor 74 , the handling gas chamber 4 adjacent to the front circulating fluid chamber 42 via the front mechanical seal 39
The suction port 7 of the multi-stage blower section 32 has almost the same pressure as 1.
The second pressure sensor 76 detects the pressure of the first
The pressurizing pressure indicator controller 78 compares the direct signal of the pressure sensor 74 with the indirect signal via the pressurizing bias circuit 77 of the second pressure sensor 76 and the direct signal of the first pressure sensor 74 and the second pressure sensor 76. A differential pressure detecting means 81 is provided, which includes a pressure reducing pressure indicating regulator 80 for comparing and instructing an indirect signal from the pressure sensor 76 via the reducing pressure bias circuit 79. Pressure control valve 69
The pressurizing pressure indicating regulator 78 for controlling the pressurizing pressure indicating regulator 78 and the reducing pressure indicating regulator 80 for generating a control signal to control the pressure reducing control valve 72 of the pressure reducing means 73 constitute the pressure controlling means 82.

そして、前部メカニカルシール39の取扱ガス
室41側よりも前部循環液室42側の圧力が高く
かつその差圧が前部メカニカルシール39の最大
許容差圧の範囲内に収まるように定められた上限
設定差圧と下限設定差圧に対して、前部メカニカ
ルシール39の取扱ガス室41側と前部循環液室
42側との差圧が前記下限設定差圧と一致する時
に加圧用圧力指示調節計78への第1の圧力セン
サ74の直接信号と第2の圧力センサ76の間接
信号との値が等しくなるように加圧バイアス回路
77が調節され、前部メカニカルシール39の取
扱ガス室41側と前部循環液室42側との差圧が
前記上限設定差圧と一致する時に減圧用圧力指示
調節計80への第1の圧力センサ74の直接信号
と第2の圧力センサ76の間接信号との値が等し
くなるように減圧バイアス回路79が調整されて
いる。
The pressure on the front circulating fluid chamber 42 side of the front mechanical seal 39 is higher than that on the handling gas chamber 41 side, and the differential pressure is determined to be within the range of the maximum allowable differential pressure of the front mechanical seal 39. When the differential pressure between the handling gas chamber 41 side and the front circulating fluid chamber 42 side of the front mechanical seal 39 matches the lower limit setting differential pressure with respect to the upper limit setting differential pressure and the lower limit setting differential pressure, the pressurizing pressure is determined. The pressurization bias circuit 77 is adjusted so that the direct signal of the first pressure sensor 74 and the indirect signal of the second pressure sensor 76 to the indicating controller 78 are equal in value, and the handling gas of the front mechanical seal 39 is When the differential pressure between the chamber 41 side and the front circulating fluid chamber 42 side matches the upper limit setting differential pressure, a direct signal from the first pressure sensor 74 and the second pressure sensor 76 are sent to the decompression pressure indicating controller 80. The reduced pressure bias circuit 79 is adjusted so that the value of the indirect signal is equal to that of the indirect signal.

また、高圧ポンプ67の吐出側にはこの高圧ポ
ンプ67の電源リレー83を作動させる圧力スイ
ツチ84が接続されており、この圧力スイツチ8
4の作動圧力は高圧ポンプの67の吐出側圧力が
前部メカニカルシール39の取扱ガス室41側の
最大圧力と前記上限設定差圧との和を、すなわち
前部循環液室42の最大圧力を幾分越える圧力に
設定され、高圧ポンプ67の吐出側圧力が密閉循
環経路64を加圧するに十分な圧力になると高圧
ポンプ67が停止され、それより圧力が減少する
と再び高圧ポンプ67が起動されて加圧手段71
の運転コストが低減されるよう構成されている。
Further, a pressure switch 84 is connected to the discharge side of the high-pressure pump 67 to operate a power supply relay 83 of the high-pressure pump 67.
The operating pressure 4 is determined by the discharge side pressure 67 of the high pressure pump being the sum of the maximum pressure on the handling gas chamber 41 side of the front mechanical seal 39 and the upper limit setting differential pressure, that is, the maximum pressure in the front circulating fluid chamber 42. When the pressure on the discharge side of the high-pressure pump 67 reaches a pressure sufficient to pressurize the closed circulation path 64, the high-pressure pump 67 is stopped, and when the pressure decreases further, the high-pressure pump 67 is started again. Pressure means 71
The system is designed to reduce operating costs.

また、必要に応じて、前部循環液室42に循環
液の温度を検出する温度センサ85、循環ポンプ
52の駆動用インバータ86および温度センサ8
5の信号と温度設定回路87の信号とを比較指示
してインバータ86を制御する温度指示調節計8
8が設けられ、前部循環液室42の循環液温が設
定温度となるように循環ポンプ52の吐出流量が
制御され、すなわち熱交換器56での循環液の放
熱量が制御されるよう構成されている。
In addition, if necessary, a temperature sensor 85 for detecting the temperature of the circulating fluid in the front circulating fluid chamber 42, an inverter 86 for driving the circulation pump 52, and a temperature sensor 8
5 and a temperature setting circuit 87 to control the inverter 86.
8 is provided, and the discharge flow rate of the circulation pump 52 is controlled so that the temperature of the circulating fluid in the front circulating fluid chamber 42 becomes a set temperature, that is, the amount of heat released from the circulating fluid in the heat exchanger 56 is controlled. has been done.

次に、以上のように構成された実施例の作用に
ついて説明する。
Next, the operation of the embodiment configured as above will be explained.

多段キヤンドモータブロワ31の起動前に、密
閉循環経路64の循環ポンプ52、加圧手段7
1、減圧手段73、差圧検出手段81および圧力
制御手段82を作動させると、循環ポンプ52に
よつて密閉循環経路64の循環液が熱交換器5
6、循環パイプ57、後端室58、後部キヤンド
モータ軸受48、後部ロータ室59、キヤン間隙
60、前部ロータ室61、前部キヤンドモータ軸
受47、アダプタ46内の空間、後部ブロワ軸受
45と後部メカニカルシール40を包含する後部
循環液室43、循環パイプ51、前部メカニカル
シール39と前部ブロワ軸受44を包含する前部
軸受液室42および循環パイプ54を経て循環ポ
ンプ52へと循環され、また減圧手段73は減圧
制御弁72が閉じられ、加圧手段71は加圧制御
弁69が閉じられて高圧ポンプ67によつてその
吐出側が昇圧され、圧力スイツチ84の設定圧力
に至ると電源リレー83が遮断されて高圧ポンプ
67が停止され、加圧手段71が圧力スイツチ8
4の設定圧力に保持される。
Before starting the multi-stage canned motor blower 31, the circulation pump 52 of the closed circulation path 64 and the pressurizing means 7
1. When the pressure reducing means 73, the differential pressure detecting means 81 and the pressure controlling means 82 are operated, the circulating liquid in the closed circulation path 64 is supplied to the heat exchanger 5 by the circulation pump 52.
6. Circulation pipe 57, rear end chamber 58, rear canned motor bearing 48, rear rotor chamber 59, can gap 60, front rotor chamber 61, front canned motor bearing 47, space inside adapter 46, rear blower bearing 45 and rear mechanical It is circulated to the circulation pump 52 via the rear circulation liquid chamber 43 containing the seal 40, the circulation pipe 51, the front bearing liquid chamber 42 containing the front mechanical seal 39 and the front blower bearing 44, and the circulation pipe 54, and In the pressure reducing means 73, the pressure reducing control valve 72 is closed, and in the pressurizing means 71, the pressure control valve 69 is closed and the pressure on the discharge side thereof is increased by the high pressure pump 67. When the pressure reaches the set pressure of the pressure switch 84, the power supply relay 83 is activated. is shut off, the high pressure pump 67 is stopped, and the pressurizing means 71 is switched to the pressure switch 8.
The pressure is maintained at a set pressure of 4.

そして、前部循環液室42の圧力が第1の圧力
センサ74にて検出され、前部メカニカルシール
39の取扱ガス室41側とほぼ同圧となる多段ブ
ロワ部32の吸込口75の圧力が第2の圧力セン
サ76にて検出され、第1の圧力センサ74の直
接信号と第2の圧力センサ76の加圧バイアス回
路77を介した間接信号とが加圧用圧力指示調節
計78にて比較指示され、その制御信号によつて
前部メカニカルシール39の取扱ガス室41側と
前部循環液室42側との差圧、すなわち前部メカ
ニカルシール39の前後の差圧が下限設定差圧に
なるまで加圧制御弁69が開かれて密閉循環経路
64に加圧手段71の圧力が加えられる。
Then, the pressure in the front circulating fluid chamber 42 is detected by the first pressure sensor 74, and the pressure at the suction port 75 of the multistage blower section 32 becomes approximately the same pressure as that on the handling gas chamber 41 side of the front mechanical seal 39. Detected by the second pressure sensor 76, the direct signal of the first pressure sensor 74 and the indirect signal of the second pressure sensor 76 via the pressurizing bias circuit 77 are compared by the pressurizing pressure indicating controller 78. The control signal causes the differential pressure between the handling gas chamber 41 side and the front circulating fluid chamber 42 side of the front mechanical seal 39, that is, the differential pressure across the front mechanical seal 39 to reach the lower limit set differential pressure. The pressure control valve 69 is opened until the pressure from the pressure means 71 is applied to the closed circulation path 64.

次に、多段キヤンドモータブロワ31を起動す
ると、密閉循環経路64を循環される循環液によ
つて両メカニカルシール39,40と両ブロワ軸
受44,45および両キヤンドモータ軸受47,
48が潤滑されるとともに、これらとキヤンドモ
ータ部33のステータ62およびロータ63が冷
却されて円滑に運転される。
Next, when the multi-stage canned motor blower 31 is started, the circulating fluid circulated through the closed circulation path 64 causes both mechanical seals 39, 40, both blower bearings 44, 45, both canned motor bearings 47,
48 are lubricated, and the stator 62 and rotor 63 of the canned motor section 33 are cooled and operated smoothly.

そして、多段キヤンドモータブロワ31の運転
中に多段ブロワ部32の吸込口75に吸込まれる
取扱いガスの圧力が上昇する場合は、すなわち前
部メカニカルシール39の取扱ガス室41側の圧
力と下限設定差圧との和が前部循環液室42の圧
力より高くなる傾向にあれば、加圧用圧力指示調
節計78の制御信号によつて加圧制御弁69が開
かれて加圧手段71の圧力が密閉循環経路64に
加えられ、前部メカニカルシール39の取扱ガス
室41側の圧力と下限設定差圧との和よりも前部
循環液室42の圧力が下回らないよう、すなわち
前部メカニカルシール39の前後の差圧が下限設
定差圧よりも小さくならないように前部循環液室
42の圧力が上昇される。
When the pressure of the handling gas sucked into the suction port 75 of the multistage blower section 32 increases during operation of the multistage canned motor blower 31, the lower limit of the pressure on the handling gas chamber 41 side of the front mechanical seal 39 increases. If the sum with the set differential pressure tends to be higher than the pressure in the front circulating fluid chamber 42, the pressure control valve 69 is opened by the control signal from the pressure indicating controller 78 for pressurization, and the pressure in the pressure means 71 is increased. Pressure is applied to the closed circulation path 64 so that the pressure in the front circulating fluid chamber 42 does not become lower than the sum of the pressure on the handling gas chamber 41 side of the front mechanical seal 39 and the lower limit set differential pressure. The pressure in the front circulating fluid chamber 42 is increased so that the differential pressure across the seal 39 does not become smaller than the lower limit set differential pressure.

なお、この時、加圧手段71は密閉循環経路6
4を加圧する反面その圧力が低下されるので、圧
力スイツチ84が作動して高圧ポンプ67が運転
され、前部メカニカルシール39の前後の差圧が
下限設定差圧と一致して圧力制御弁69が閉じら
れた後、高圧ポンプ67の吐出側圧力が圧力スイ
ッチ84の設定圧力に至ると高圧ポンプ67が停
止される。
Note that at this time, the pressurizing means 71 is connected to the closed circulation path 6.
4 is pressurized, but the pressure is reduced, so the pressure switch 84 is activated and the high pressure pump 67 is operated, and the differential pressure across the front mechanical seal 39 matches the lower limit set differential pressure, and the pressure control valve 69 is activated. After the high-pressure pump 67 is closed, when the discharge side pressure of the high-pressure pump 67 reaches the set pressure of the pressure switch 84, the high-pressure pump 67 is stopped.

また逆に、多段キヤンドモータブロワ31の運
転中に多段ブロワ部32の吸込口75に吸込まれ
る取扱ガスの圧力が下降する場合は、すなわち前
部メカニカルシール39の取扱ガス室41側の圧
力と上限設定差圧との和が前部循環液室42の圧
力より低くなる傾向にあれば、減圧用圧力指示調
節計80の制御信号によつて減圧制御弁72が開
かれてこの弁72を介して循環液タンク68に密
閉循環経路64が開放され、前部メカニカルシー
ル39の取扱ガス室41側の圧力と上限設定圧力
との和よりも前部循環液室42の圧力が上回らな
いよう、すなわち前部メカニカルシール39の前
後の差圧が上限設定差圧よりも大きくならないよ
うに前部循環液室42の圧力が下降される。
Conversely, when the pressure of the handling gas sucked into the suction port 75 of the multistage blower section 32 decreases during operation of the multistage canned motor blower 31, the pressure on the handling gas chamber 41 side of the front mechanical seal 39 decreases. If the sum of the pressure and the upper limit setting differential pressure tends to be lower than the pressure in the front circulating fluid chamber 42, the pressure reduction control valve 72 is opened by the control signal from the pressure reduction pressure indicator controller 80, and this valve 72 is opened. A closed circulation path 64 is opened to the circulating fluid tank 68 through the sealing fluid tank 68, and the pressure in the front circulating fluid chamber 42 does not exceed the sum of the pressure on the handling gas chamber 41 side of the front mechanical seal 39 and the upper limit setting pressure. That is, the pressure in the front circulating fluid chamber 42 is lowered so that the differential pressure across the front mechanical seal 39 does not become larger than the upper limit set differential pressure.

このようにして、前部メカニカルシール39の
前後の差圧が、取扱ガス室41の圧力変化に拘ら
ずこの圧力変化に追従して、常に上限設定差圧と
下限設定差圧との間、すなわち前部メカニカルシ
ール39の最大許容差圧の範囲内の所定値に保持
され、また後部循環液室43の圧力は前部循環液
室42の圧力よりも循環パイプ51の管路抵抗に
よる圧力降下分高くなるものの、の圧力降下(10
分の数Kg/cm2程度)は上限および下限設定差圧
(10数Kg/cm2乃至数10Kgf/cm2)に比べて極めて
小さく実用上無視し得るので、後部メカニカルシ
ール40の前後の差圧も前部メカニカルシール3
9と同様に常に上限設定差圧と下限設定差圧との
間に保持され、従つて取扱ガス室41の圧力が両
循環液室42,43の圧力よりも高くなつて取扱
ガスが両循環液室42,43に侵入し、両メカニ
カルシール39,40は勿論、各軸受44,4
5,47,48の潤滑と冷却と妨げておよびステ
ータ62とロータ63の冷却を妨げて故障に至ら
しめたり、逆に取扱ガス室41の圧力が低くなり
すぎ、各循環液室42,43と取扱ガス室41と
の差圧が各メカニカルシール39,40の最大許
容差圧よりも大きくなつて各メカニカルシール3
9,40のPV値が増大することにより各メカニ
カルシール39,40が著しく摩耗されあるいは
破損されて故障に至ることはない。
In this way, the differential pressure before and after the front mechanical seal 39 follows the pressure change regardless of the pressure change in the handling gas chamber 41, and is always between the upper limit set differential pressure and the lower limit set differential pressure, i.e. The pressure in the rear circulating fluid chamber 43 is maintained at a predetermined value within the maximum allowable differential pressure of the front mechanical seal 39, and the pressure in the rear circulating fluid chamber 43 is lower than the pressure in the front circulating fluid chamber 42 by the pressure drop due to the line resistance of the circulation pipe 51. Although the pressure drop is higher (10
The difference between the front and rear mechanical seals 40 is extremely small compared to the upper and lower limit setting differential pressures (tens of kg/ cm 2 to several tens of kgf/cm 2 ) and can be ignored in practical terms. Front mechanical seal 3
9, the differential pressure is always maintained between the upper limit setting differential pressure and the lower limit setting differential pressure, so that the pressure in the handled gas chamber 41 becomes higher than the pressure in both circulating fluid chambers 42 and 43, and the handled gas flows into both circulating fluids. It invades the chambers 42, 43, and not only the mechanical seals 39, 40 but also the bearings 44, 4.
5, 47, 48, and the cooling of the stator 62 and rotor 63, leading to failure, or conversely, the pressure in the handling gas chamber 41 becomes too low and the circulating fluid chambers 42, 43 and Each mechanical seal 3
The mechanical seals 39 and 40 will not be significantly worn or damaged due to an increase in the PV values of the seals 9 and 40, thereby preventing them from failing.

また、密閉循環経路64の循環液は、両メカニ
カルシール39,40、両ブロワ軸受44,45
および両キヤンドモータ軸受47,48の回転摩
擦熱やステータ62とロータ63の発熱並びに取
扱ガスの熱影響を受けて昇温され、他方では熱交
換器56や循環パイプ51,54,57などにて
放熱されて降温され、この受熱量と放熱量とが平
衡する温度で循環されるが、この温度が温度セン
サ85にて検出されて温度指示調節計88にて温
度設定回路87の設定温度と比較され、設定温度
よりも循環液温度が高い時にはインバータ86の
出力周波数が上昇されて循環ポンプ52の吐出流
量が増加され、すなわち熱交換器56などの放熱
量が増大されて循環液温度が下降され、逆に設定
温度よりも循環液温度が低い時にはインバータ8
6の出力周波数が下降されて循環ポンプ52の吐
出流量が減少され、すなわち熱交換器56などの
放熱量が減少されて循環液温度が上昇されるの
で、多段ブロワ部32の吸込口75へ流入される
取扱ガスの圧力変化、すなわち取扱ガスの密度変
化に基づく負荷の変化によるキヤンドモータ部3
3の発熱量変化や前記吸込口75へ流入される取
扱ガスの温度変化に起因する循環液の受熱量変化
があつても、および外気温の変化による熱交換器
56などでの循環液の放熱量変化があつても、循
環液温度は常に設定温度に保持され、従つて循環
液が異常昇温されて両メカニカルシール39,4
0や各軸受44,45,47,48およびステー
タ62とロータ63の冷却が不十分となつて故障
に至ることがなく、および循環液の受熱量が少な
い時には循環ポンプ52の吐出流量が減少されて
消費動力が減少されるので循環ポンプ52の運転
コストが安くつく。
Further, the circulating fluid in the closed circulation path 64 is supplied to both mechanical seals 39 and 40, and both blower bearings 44 and 45.
The temperature rises due to the rotational friction heat of both canned motor bearings 47 and 48, the heat generated by the stator 62 and rotor 63, and the heat of the handled gas, while the heat is radiated through the heat exchanger 56, circulation pipes 51, 54, 57, etc. The temperature is lowered and circulated at a temperature at which the amount of heat received and the amount of heat released are in balance. This temperature is detected by the temperature sensor 85 and compared with the set temperature of the temperature setting circuit 87 by the temperature indicating controller 88. When the circulating fluid temperature is higher than the set temperature, the output frequency of the inverter 86 is increased and the discharge flow rate of the circulation pump 52 is increased, that is, the amount of heat released by the heat exchanger 56 etc. is increased and the circulating fluid temperature is lowered. Conversely, when the circulating fluid temperature is lower than the set temperature, inverter 8
6 is lowered and the discharge flow rate of the circulation pump 52 is reduced, that is, the amount of heat released by the heat exchanger 56 etc. is reduced and the temperature of the circulating fluid is increased. Canned motor section 3
Even if there is a change in the amount of heat received by the circulating fluid due to a change in the calorific value of 3 or a change in the temperature of the handled gas flowing into the suction port 75, or a change in the outside temperature, the circulating fluid will not be released in the heat exchanger 56, etc. Even if there is a change in the amount of heat, the circulating fluid temperature is always maintained at the set temperature.
0, each of the bearings 44, 45, 47, 48, the stator 62, and the rotor 63 will not be insufficiently cooled and cause a failure, and the discharge flow rate of the circulation pump 52 will be reduced when the amount of heat received by the circulating fluid is small. Since the power consumption is reduced, the operating cost of the circulation pump 52 is reduced.

また、密閉循環経路64の昇圧は加圧手段71
にて行われるので、前記循環ポンプ52は、両メ
カニカルシール39,40と各軸受44,45,
47,48の潤滑と冷却およびキヤンドモータ部
33の冷却に必要な流量を得ることさえできれば
その吐出圧は低くてもよいので、密閉循環経路6
4に必要な圧力と流量とを1台のポンプで得る場
合に比べて動力が数10乃至数100分の1と極めて
小型のポンプですみ、設備コストと運転コストが
廉価につき、騒音も大幅に低くなる。
Further, the pressure in the closed circulation path 64 is increased by a pressurizing means 71.
Therefore, the circulation pump 52 includes both mechanical seals 39, 40 and each bearing 44, 45,
47 and 48 and the canned motor section 33 can be obtained, the discharge pressure may be low.
Compared to obtaining the pressure and flow rate required for step 4 with a single pump, the power required is several tenths to several hundredths of that of a very small pump, and the equipment and operating costs are low, and the noise is significantly reduced. It gets lower.

また、加圧手段71の高圧ポンプ67も、密閉
循環経路64を加圧するに十分な吐出圧でさえあ
ればその流量は極めて微量でよいので、超小型の
ポンプですみ、設備コストと運転コストが廉価に
つき、騒音も極めて低い。
Furthermore, the high-pressure pump 67 of the pressurizing means 71 only needs to have an extremely small flow rate as long as the discharge pressure is sufficient to pressurize the closed circulation path 64, so an ultra-small pump can be used, reducing equipment costs and operating costs. It is inexpensive and produces extremely low noise.

また、差圧検出手段81は前記実施例の他、第
2図に示すように、前部循環液室42と多段ブロ
ワ部32の吸込口75との差圧、すなわち前部メ
カニカルシール39の前後の差圧を直接検出する
差圧センサ89のみで構成してもよく、この場合
において第1図に示すように加圧用圧力指示調節
計78、減圧用圧力指示調節計80および加圧制
御弁69と減圧制御弁72を採用する場合は、図
示しないが加圧バイアス回路77に代えて下限差
圧設定回路を、減圧バイアス回路79に代えて上
限差圧設定回路をそれぞれ設け、加圧用圧力指示
調節計78へ下限差圧設定回路の設定信号と差圧
センサ89の検出信号とを入力し、減圧用圧力指
示調節計80へ上限差圧設定回路の設定信号と差
圧センサ89の検出信号とを入力すればよいが、
第2図に示すように差圧設定回路90、この回路
90の設定信号と差圧センサ89の検出信号とを
比較指示する圧力指示調節計91、およびこの圧
力指示調節計91からの入力信号を判定してその
出力を弁別するコンパレータ92とからなる圧力
制御手段82を設けるとともに加圧制御弁69を
加圧電磁弁93に、減圧制御弁72を減圧電磁弁
94に代えて、差圧センサ89の検出信号が差圧
設定回路90の設定信号と一致するよう、すなわ
ち前部メカニカルシール39の前後の差圧が差圧
設定回路90にて設定した設定差圧と一致するよ
うに加圧電磁弁93と減圧電磁弁94を交互に開
閉して密閉循環経路64に加える圧力を制御して
もよい。
In addition to the above-mentioned embodiment, the differential pressure detection means 81 also detects the differential pressure between the front circulating fluid chamber 42 and the suction port 75 of the multi-stage blower section 32, that is, the pressure difference between the front mechanical seal 39 and the front mechanical seal 39, as shown in FIG. It may be configured only with a differential pressure sensor 89 that directly detects the differential pressure of When adopting the pressure reduction control valve 72, a lower limit differential pressure setting circuit is provided in place of the pressurization bias circuit 77, and an upper limit differential pressure setting circuit is provided in place of the pressure reduction bias circuit 79, although not shown, to adjust the pressure indication for pressurization. The setting signal of the lower limit differential pressure setting circuit and the detection signal of the differential pressure sensor 89 are input to the total 78, and the setting signal of the upper limit differential pressure setting circuit and the detection signal of the differential pressure sensor 89 are input to the pressure reducing pressure indicating controller 80. All you have to do is enter it, but
As shown in FIG. 2, there is a differential pressure setting circuit 90, a pressure indicating regulator 91 that compares and instructs the setting signal of this circuit 90 with the detection signal of the differential pressure sensor 89, and an input signal from this pressure indicating regulator 91. A pressure control means 82 consisting of a comparator 92 for determining and discriminating its output is provided, and the pressure control valve 69 is replaced by a pressure control solenoid valve 93, the pressure reduction control valve 72 is replaced by a pressure reduction solenoid valve 94, and a differential pressure sensor 89 is installed. The pressurizing solenoid valve is set so that the detection signal of the front mechanical seal 39 matches the setting signal of the differential pressure setting circuit 90, that is, the differential pressure before and after the front mechanical seal 39 matches the set differential pressure set by the differential pressure setting circuit 90. The pressure applied to the closed circulation path 64 may be controlled by alternately opening and closing the pressure reducing solenoid valve 93 and the pressure reducing solenoid valve 94.

また、図示しないが減圧手段73に減圧制御弁
72や減圧電磁弁94に代えてオリフイスを採用
し、加圧制御弁72を常時開いて高圧ポンプ67
の吐出流を加圧制御弁69、オリフイス、循環液
タンク68、高圧ポンプ67と循環させ、加圧制
御弁72の開度を制御することによつて加圧制御
弁72とオリフイスとの間にある循環液の圧力、
すなわち密閉循環経路64の圧力を加減してもよ
く、加圧手段71もプランジヤーポンプ65やギ
ヤポンプに代えて、例えば密閉循環液タンクの循
環液を圧縮空気で加圧して密閉循環経路64に注
送するものでもよい。
Although not shown, an orifice is used in the pressure reducing means 73 in place of the pressure reducing control valve 72 and the pressure reducing solenoid valve 94, and the pressure controlling valve 72 is always open and the high pressure pump 67
The discharge flow is circulated through the pressurization control valve 69, the orifice, the circulating fluid tank 68, and the high-pressure pump 67, and by controlling the opening degree of the pressurization control valve 72, a Some circulating fluid pressure,
That is, the pressure in the closed circulation path 64 may be adjusted, and the pressurizing means 71 may also be replaced with the plunger pump 65 or gear pump, for example, by pressurizing the circulating fluid in the closed circulation fluid tank with compressed air and injecting it into the closed circulation path 64. It may also be something you send.

また、取扱ガスに腐蝕性がない場合は、第3図
に示すように、多段ブロワ部32の前後の軸受を
ボール軸受95および96にして取扱ガス中に浸
して設け、この後部ボール軸受96と軸継手50
との間に1個のメカニカルシール97のみを配設
すればよく、および第4図に示すように、ブロワ
軸受を設けずにブロワ回転軸とキヤンドモータ回
転軸を共通軸98にする場合も1個のメカニカル
シール97のみを設ければよい。
If the handled gas is not corrosive, as shown in FIG. Shaft coupling 50
Only one mechanical seal 97 needs to be installed between the two mechanical seals 97, and one mechanical seal 97 may be installed between the blower rotation shaft and the canned motor rotation shaft, as shown in FIG. It is sufficient to provide only the mechanical seal 97.

また完全無漏洩構造の多段ブロワを構成するた
めの駆動部はキヤンドモータの他、このキヤンド
モータと置き換えできるウエツトタイプモータを
採用してもよく、あるいは第5図に示すように多
段ブロワ部32をマグネツトカツプリング99を
介して汎用モータ100に連結して完全無漏洩構
造の多段ブロワを構成することもできる。
In addition to the canned motor, the driving section for configuring the multistage blower with a completely leak-free structure may be a wet type motor that can be replaced with the canned motor, or the multistage blower section 32 may be connected to a magnet as shown in FIG. It is also possible to connect to the general-purpose motor 100 via the coupling 99 to configure a multi-stage blower with a completely leak-free structure.

以上、本発明を高圧の多段ブロワに採用した実
施例について説明したが、単段ブロワまたはルー
ツ式やスクリユー式の圧縮機にも勿論採用でき、
および図示しないがスラリを含有するポンプ取扱
液や高温のポンプ取扱液をキヤンドモータ循環液
と隔離して前記ポンプ取扱液がキヤンドモータ部
へ侵入しないようにメカニカルシールを使用した
キヤンドモータポンプや、第6図に示すように密
閉攪拌タンク101内の高圧液102を攪拌する
キヤンドモータ攪拌機103において、密閉攪拌
タンク101の高圧気相部104とキヤンドモー
タ部105間を軸封する場合にも採用でき、すな
わち取扱流体の圧力変化が大きい場合の高圧流体
機械の軸封装置に採用できる。
The embodiments in which the present invention is applied to a high-pressure multi-stage blower have been described above, but it can of course also be applied to a single-stage blower or a roots-type or screw-type compressor.
Although not shown, there is a canned motor pump that uses a mechanical seal to isolate the pump handling liquid containing slurry and high temperature pump handling liquid from the canned motor circulating fluid and prevent the pump handling liquid from entering the canned motor section. As shown in the figure, in a canned motor stirrer 103 that stirs a high-pressure liquid 102 in a hermetic stirring tank 101, it can also be adopted when a shaft seal is formed between the high-pressure gas phase part 104 of the hermetic stirring tank 101 and the canned motor part 105. It can be used in shaft sealing devices for high-pressure fluid machinery where pressure changes are large.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高圧流体機械を回転軸が外部
へ露出しない完全無漏洩構造としたので、取扱流
体の外部への漏洩が完全に阻止されることは勿
論、軸受部または駆動部の潤滑と冷却を妨げるガ
スやスラリ含有液また高温流体などの取扱流体の
前記駆動部または軸受部への侵入を阻止するため
の軸封部1ケ所に対して取扱流体が高圧であつて
もメカニカルシールやその循環液室および循環液
室加圧用の高圧ポンプを複数設ける必要がなく、
また低吐出圧の循環ポンプにて循環液をメカニカ
ルシールの循環液室へ供給循環させる密閉循環経
路を設けるとともにこの密閉循環経路を加圧する
低流量の高圧ポンプなどからなる加圧手段と密閉
循環経路を減圧する減圧手段とを設け、メカニカ
ルシールの前後の差圧を差圧検出手段にて検知し
て圧力制御手段により前記加圧手段と減圧手段と
を制御するようにしたので、取扱流体の圧力変化
に拘らずメカニカルシールの前後の差圧を常に設
定範囲内に確実に保持できて信頼性と寿命とが大
幅に向上され、かつ循環ポンプや加圧手段の高圧
ポンプも密閉循環経路に必要な圧力と流量とを1
台のポンプで得る場合に比べて極めて小型ですん
で設備コストと運転コストが廉価につき、騒音も
大幅に低くなる。
According to the present invention, the high-pressure fluid machine has a completely leak-free structure in which the rotating shaft is not exposed to the outside, which not only completely prevents the handling fluid from leaking to the outside, but also lubricates the bearing or drive part. Even if the fluid to be handled is at high pressure, there is no mechanical seal or its There is no need to install multiple high-pressure pumps to pressurize the circulating fluid chamber and the circulating fluid chamber.
In addition, a closed circulation path is provided in which a circulating pump with a low discharge pressure supplies and circulates the circulating fluid to the circulating fluid chamber of the mechanical seal, and a pressurizing means consisting of a high pressure pump with a low flow rate that pressurizes this closed circulation path and a closed circulation path. The pressure reduction means for reducing the pressure of the fluid being handled is provided, and the pressure difference across the mechanical seal is detected by the differential pressure detection means, and the pressure control means is used to control the pressurization means and the pressure reduction means. The differential pressure before and after the mechanical seal can always be reliably maintained within the set range regardless of changes, greatly improving reliability and service life. Pressure and flow rate are 1
Compared to the case obtained with a single pump, it is extremely small, so the equipment cost and operating cost are low, and the noise is also significantly lower.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の高圧流体機械の軸封装置の一
実施例を示す多段キヤンドモータブロワの断面
図、第2図ないし第4図は他のそれぞれ異なる実
施例を示す多段キヤンドモータブロワの断面図、
第5図は他の実施例を示す多段ブロワの断面図、
第6図は他の実施例を示すキヤンドモータ攪拌装
置の断面図、第7図、第8図はそれぞれ従来の軸
封装置の断面図である。 35……回転軸、42,43……循環液室、6
4……密閉循環経路、67……高圧ポンプ、71
……加圧手段、73……減圧手段、81……差圧
検出手段、82……圧力制御手段。
FIG. 1 is a sectional view of a multi-stage canned motor blower showing one embodiment of the shaft sealing device for high-pressure fluid machinery of the present invention, and FIGS. 2 to 4 are multi-stage canned motor blowers showing other different embodiments. A cross-sectional view of
FIG. 5 is a sectional view of a multi-stage blower showing another embodiment;
FIG. 6 is a sectional view of a canned motor stirring device showing another embodiment, and FIGS. 7 and 8 are sectional views of conventional shaft sealing devices. 35... Rotating shaft, 42, 43... Circulating fluid chamber, 6
4... Sealed circulation path, 67... High pressure pump, 71
...pressure means, 73 ... pressure reduction means, 81 ... differential pressure detection means, 82 ... pressure control means.

Claims (1)

【特許請求の範囲】[Claims] 1 回転軸が外部へ露出しない完全無漏洩構造の
高圧流体機械において、取扱流体が充満される取
扱流体室を軸封するメカニカルシールを介して前
記取扱流体室に隣接する循環液室を設け、この循
環液室に循環ポンプにて循環液を供給循環させる
密閉循環経路を形成するとともにこの密閉循環経
路を加圧する高圧ポンプなどからなる加圧手段と
前記密閉循環経路を減圧する減圧手段とを設け、
前記メカニカルシールの前記取扱流体室側と前記
循環液室側との差圧を検出する差圧検出手段と、
この差圧検出手段の信号によつて前記メカニカル
シールの前記取扱流体室側よりも前記循環液室側
の圧力を高くしてかつその差圧を設定範囲内に保
持するように前記加圧手段と前記減圧手段とを制
御する圧力制御手段とを備えたことを特徴とする
高圧流体機械の軸封装置。
1. In a high-pressure fluid machine with a completely leak-free structure in which the rotating shaft is not exposed to the outside, a circulating fluid chamber is provided adjacent to the handling fluid chamber through a mechanical seal that seals the handling fluid chamber filled with the handling fluid, and this Forming a closed circulation path for supplying and circulating circulating fluid by a circulation pump to the circulating fluid chamber, and providing a pressurizing means such as a high-pressure pump for pressurizing this closed circulation path and a depressurizing means for reducing the pressure in the closed circulation path,
differential pressure detection means for detecting a differential pressure between the handling fluid chamber side and the circulating fluid chamber side of the mechanical seal;
The pressure applying means is configured to make the pressure on the circulating fluid chamber side of the mechanical seal higher than the handling fluid chamber side and maintain the differential pressure within a set range based on the signal from the differential pressure detection means. A shaft sealing device for a high-pressure fluid machine, comprising: a pressure control means for controlling the pressure reducing means;
JP12940886A 1986-06-04 1986-06-04 Shaft seal device for high pressure hydraulic machine Granted JPS62288777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12940886A JPS62288777A (en) 1986-06-04 1986-06-04 Shaft seal device for high pressure hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12940886A JPS62288777A (en) 1986-06-04 1986-06-04 Shaft seal device for high pressure hydraulic machine

Publications (2)

Publication Number Publication Date
JPS62288777A JPS62288777A (en) 1987-12-15
JPH0530999B2 true JPH0530999B2 (en) 1993-05-11

Family

ID=15008804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12940886A Granted JPS62288777A (en) 1986-06-04 1986-06-04 Shaft seal device for high pressure hydraulic machine

Country Status (1)

Country Link
JP (1) JPS62288777A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5846967B2 (en) * 2012-03-02 2016-01-20 株式会社日立製作所 Centrifugal steam compressor and shaft seal system used therefor
EP3660324A4 (en) * 2017-07-26 2021-04-14 Ebara Corporation Pump and sealing system

Also Published As

Publication number Publication date
JPS62288777A (en) 1987-12-15

Similar Documents

Publication Publication Date Title
US5211031A (en) Scroll type compressor and refrigeration cycle using the same
US6672088B2 (en) Self-contained regulating valve, and compression type refrigerating machine having the same
US6672846B2 (en) Capacity modulation for plural compressors
US5267452A (en) Back pressure valve
US20170268498A1 (en) Multistage Compressor
US20060204378A1 (en) Dual horizontal scroll machine
KR20040110098A (en) Plural compressors
US20210324862A1 (en) Centrifugal pump for conveying a fluid
CN111365874B (en) Refrigerant circulation system
KR100451651B1 (en) The structure for preventing the reverse - rotation of centrifugal compressor
CN111637056A (en) Vortex rotary compressor, control method thereof and air conditioner
JP2007511700A (en) Tandem compressor with discharge valve in connecting passage
US12038007B2 (en) Liquid ring pump control
US5201648A (en) Screw compressor mechanical oil shutoff arrangement
JP4043433B2 (en) air compressor
US11994138B2 (en) Gas compressor with a plurality of air realease systems each having an air release valve and an air regulating valve
JPH0530999B2 (en)
US6418740B1 (en) External high pressure to low pressure valve for scroll compressor
JP2014156789A (en) Submersible pump
JP4795977B2 (en) Compressor operation method
US6824350B2 (en) Hydrodynamic sealing system for centrifugal systems
WO2014106233A1 (en) Compressor control for reverse rotation failure
JP2953212B2 (en) Expansion turbine with braking fan
CN116044772B (en) Skid-mounted centrifugal pump pumping system and operation control method thereof
JPS5823518B2 (en) Oil-cooled screw compressor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees