JPS5823518B2 - Oil-cooled screw compressor - Google Patents

Oil-cooled screw compressor

Info

Publication number
JPS5823518B2
JPS5823518B2 JP53028468A JP2846878A JPS5823518B2 JP S5823518 B2 JPS5823518 B2 JP S5823518B2 JP 53028468 A JP53028468 A JP 53028468A JP 2846878 A JP2846878 A JP 2846878A JP S5823518 B2 JPS5823518 B2 JP S5823518B2
Authority
JP
Japan
Prior art keywords
oil
pressure
rotor
spring
thrust force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53028468A
Other languages
Japanese (ja)
Other versions
JPS54121406A (en
Inventor
壺井昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP53028468A priority Critical patent/JPS5823518B2/en
Publication of JPS54121406A publication Critical patent/JPS54121406A/en
Publication of JPS5823518B2 publication Critical patent/JPS5823518B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings

Description

【発明の詳細な説明】 本発明はロータの駆動により吐出側から吸込側方向に生
ずるスラスト力を任意に調整できる油冷式スクリュー圧
縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oil-cooled screw compressor that can arbitrarily adjust the thrust force generated from the discharge side to the suction side by driving a rotor.

周知のようにスクリュー圧縮機は雌雄一対のロータを噛
合回転せしめガス体を圧縮し、所定の圧力まで昇圧する
ものであるが、この圧縮過程において高圧側である吐出
側から低圧側である吸込側方向へのスラスト力が発生し
、そのまま放置しておくとロータ同志の噛合に不都合を
生じ圧縮効率の低下をきたすばかりか、ロータ室の吸込
側壁面にロータの端面が接触し圧縮機が正常に作動しな
い状態をも引き起す。
As is well known, a screw compressor rotates a pair of male and female rotors in mesh to compress a gas body and increase the pressure to a predetermined pressure. A thrust force is generated in the direction, and if left as it is, it will not only cause problems in the meshing of the rotors and reduce compression efficiency, but also cause the end surface of the rotor to come into contact with the suction side wall of the rotor chamber, causing the compressor to malfunction. It also causes a state where it does not work.

その為、通常前記スラスト力を支承するスラスト軸受が
設けられるが、単にスラスト軸受を設けるだけではスラ
スト力が大きいため軸受寿命が短いという問題点があっ
た。
For this reason, a thrust bearing is usually provided to support the thrust force, but simply providing a thrust bearing has the problem that the thrust force is large and the life of the bearing is short.

これに対処すべく考案されたものがバランスピストンを
設ける方式であり、第1図にもとづいて説明すると、軸
受1,2.3により回転自在に支承された雌雄一対のロ
ータ4の吐出側ロータ軸5にバランスピストン6を装着
し、該バランスピストン6に反スラスト力F2を生じし
めるよう油圧ポンプ7により油圧をかけうるよう構成す
ることにより、ロータ4の噛合回転により生ずるスラス
ト力F、を打ち消すようになされている。
A method devised to deal with this problem is a system in which a balance piston is provided, which will be explained based on FIG. A balance piston 6 is attached to the rotor 5, and a hydraulic pump 7 applies hydraulic pressure to the balance piston 6 to generate an anti-thrust force F2, thereby canceling out the thrust force F generated by meshing rotation of the rotor 4. is being done.

ところで、油冷式スクリュー圧縮機においては、前記バ
ランスピストン6への注入油は、軸受1゜2.3、ロー
タ4への注入油と同一の油が使用され、前記各部への圧
送は一つの油圧ポンプ7によりなされている。
By the way, in an oil-cooled screw compressor, the oil injected into the balance piston 6 is the same as the oil injected into the bearing 1°2. This is done by a hydraulic pump 7.

さら・に軸受部に注入された後の用済みの油は圧縮機の
低圧部(吸込口12、ロータ室低圧側等)に配送され、
ロータ室に入りロータ4への注入油と一緒になり吐出口
8から吐出され、油分離器9、油クーラ10、油ポンプ
7を経て循環使用される。
Furthermore, the used oil after being injected into the bearing section is delivered to the low pressure section of the compressor (the suction port 12, the low pressure side of the rotor chamber, etc.),
The oil enters the rotor chamber and is discharged from the outlet 8 together with the oil injected into the rotor 4, and is circulated through the oil separator 9, oil cooler 10, and oil pump 7.

ところが、かようなバランスピストン方式においては第
2図に図すように、給油孔13から圧油を注入してその
油圧により反スラスト力F2を生じしめるものであるが
、この反スラスト力F2はバランスピストン6の径が決
ってしまうと一義的に決ってしまう。
However, in such a balance piston system, as shown in Fig. 2, pressure oil is injected from the oil supply hole 13 and the anti-thrust force F2 is generated by the oil pressure, but this anti-thrust force F2 is Once the diameter of the balance piston 6 is determined, it is uniquely determined.

即ち、今、油ポンプ7からの吐出圧力をP2とし、圧縮
機の吸込側の圧力をPlとすれば、軸受側のシリンダ室
14は前述したように吸込側に連通しているため圧力P
1となっており、シリンダ室15は前記圧力P2となっ
ている。
That is, if the discharge pressure from the oil pump 7 is now P2 and the pressure on the suction side of the compressor is Pl, the cylinder chamber 14 on the bearing side is connected to the suction side as described above, so the pressure is P.
1, and the pressure in the cylinder chamber 15 is P2.

又、バランスピストン6の大径部の径をり0、小径部の
径をD2とすると、反スラスト力F2は前記バランスピ
ストン6の両端の差圧(P2 Pt)のみによって下
式のように決ってしまう。
Also, assuming that the diameter of the large diameter portion of the balance piston 6 is 0 and the diameter of the small diameter portion is D2, the anti-thrust force F2 is determined by only the differential pressure (P2 Pt) between both ends of the balance piston 6 as shown in the equation below. I end up.

F2= −(D、”−D2’ ) (P2−P、 )4 従って、運転条件が変化してスラスト力F、が変化して
も反スラスト力F2は変化しないので不適正な反スラス
ト力が作用することになる。
F2= -(D,"-D2') (P2-P, )4 Therefore, even if the operating conditions change and the thrust force F changes, the anti-thrust force F2 will not change, so an inappropriate anti-thrust force will occur. It will work.

これを回避する従来技術としては、例えば特開昭50−
70911号公報に開示されている。
As a conventional technique to avoid this, for example,
It is disclosed in Japanese Patent No. 70911.

これは運転条件に応じてバランスピストン6へノ前記注
入油圧P2を制御するもので、注油配管系路中に制御弁
又は自動弁を設け、該弁を圧縮機の入口圧力と出口圧力
を入力として制御することにより注入油圧P2自身を制
御する必要があり、その制御技術は単に制御弁又は自動
弁を付加するだけで済まず、その弁を制御するための制
御装置を要するため装置盤びにその操作が複雑化すると
共に高価なものとなってしまう。
This is to control the oil pressure P2 injected into the balance piston 6 according to operating conditions, and a control valve or automatic valve is provided in the oil supply piping system, and the valve is operated by inputting the inlet pressure and outlet pressure of the compressor. It is necessary to control the injection hydraulic pressure P2 itself by controlling it, and the control technology is not just adding a control valve or an automatic valve, but also requires a control device to control the valve, so the equipment panel and its operation are difficult to control. This becomes complicated and expensive.

本発明は上記従来技術の実情に鑑み、構成が簡単でかつ
安価に反スラスト力F2を任意に調整できる油冷式スク
リュー圧縮機を提供することを目的としてなされたもの
であり、注入油圧P2を制。
The present invention has been made in view of the above-mentioned state of the prior art, with the object of providing an oil-cooled screw compressor that has a simple configuration and can arbitrarily adjust the anti-thrust force F2 at low cost. Regulation.

御するのでなくバランスピストン6の両端における差圧
(P2P1)を制御することを基本的技術思想とするも
のであり、従ってその特徴とするところは、雌雄一対の
ロータを回動自在に支承してなるロータ室の吸込側に隣
接してシリンダ室を設け、該シリンダ室内に、突出せる
ロータ軸端の少くとも一方に軸受を装着し、該軸受と常
時当接するようバネにより弾圧された油圧ピストンを設
けると共に、前記シリンダ室のロータ室側と反ロータ室
側とをバネにより弾発支持された弁を介して連通ずるバ
イパス路を前記油圧ピストンに設けてなる油冷式スクリ
ュー圧縮機にある。
The basic technical idea is to control the differential pressure (P2P1) at both ends of the balance piston 6 instead of controlling the piston. A cylinder chamber is provided adjacent to the suction side of the rotor chamber, a bearing is installed in at least one of the protruding rotor shaft ends in the cylinder chamber, and a hydraulic piston is pressed by a spring so as to be in constant contact with the bearing. In the oil-cooled screw compressor, the hydraulic piston is provided with a bypass passage that communicates the rotor chamber side and the opposite rotor chamber side of the cylinder chamber via a valve resiliently supported by a spring.

以下本発明を図面にもとづいて詳細に説明する、第3図
は一実施例を示す断面正面図であり、図において20は
軸受21,22,23により回動自在に支承されたロー
タで、24はロータ室25の吸込側に隣接して設けられ
たシリンダ室である。
The present invention will be described below in detail based on the drawings. FIG. 3 is a cross-sectional front view showing one embodiment. In the figure, 20 is a rotor rotatably supported by bearings 21, 22, 23; is a cylinder chamber provided adjacent to the suction side of the rotor chamber 25.

該シリンダ室24内には油圧ピストン26が前記シリン
ダ室24の壁面27に0リング2Bを介して当接し、摺
動自在におかれている。
Inside the cylinder chamber 24, a hydraulic piston 26 is slidably placed in contact with the wall surface 27 of the cylinder chamber 24 via an O-ring 2B.

29はスラスト軸受でロータ軸30端にボルト31、座
金32により固着され、この軸受29の端面に前記油圧
ピストン26がバネ33により常時当接することにより
軸受29の外輪が回るのを防止するようなされている。
A thrust bearing 29 is fixed to the end of the rotor shaft 30 with a bolt 31 and a washer 32, and the hydraulic piston 26 is constantly in contact with the end face of the bearing 29 by a spring 33, thereby preventing the outer ring of the bearing 29 from rotating. ing.

尚、前記バネ33の他端は押え蓋34により支承されて
いる。
The other end of the spring 33 is supported by a presser cover 34.

35は油圧ピストン26を押圧するための油の注油孔で
ある。
Reference numeral 35 denotes an oil filling hole for pressing the hydraulic piston 26.

36は逃し弁で、バネ43により常時弾発支持されてい
るが、このバネ43のバネ力より大きい油圧が作用する
と該弁36が図中左方へ移動し、バイパス路を形成する
孔37.38、バネ室39、孔40を経てロータ室25
側のシリンダ室24に油が流入して過剰油圧を逃がすよ
う構成されている。
Reference numeral 36 denotes a relief valve, which is always elastically supported by a spring 43. When a hydraulic pressure greater than the spring force of this spring 43 is applied, the valve 36 moves to the left in the figure, and a hole 37. 38, spring chamber 39, rotor chamber 25 via hole 40
The structure is such that oil flows into the side cylinder chamber 24 to release excess hydraulic pressure.

次に上記構成をとる圧縮機のスラスト軸受構について説
明すると、圧縮機の駆動に伴いロータ20の回転により
吐出口42側から吸込口41側へのスラスト力F3が発
生するが、これを軽減すべく注油口35から注油して油
圧をかけると、油圧ピストン26が押圧され反スラスト
力F4が生じ、スラスト力F3を軽減することになる。
Next, the thrust bearing mechanism of the compressor having the above configuration will be explained. As the compressor is driven, the rotation of the rotor 20 generates a thrust force F3 from the discharge port 42 side to the suction port 41 side. When oil is filled from the oil filler port 35 and hydraulic pressure is applied, the hydraulic piston 26 is pressed and an anti-thrust force F4 is generated, which reduces the thrust force F3.

この時、前記油圧ピストン26にバイパス路が設けられ
ていないと、油圧ピストン26の径が決まると一義的に
油圧ピストン26の両端の圧力差のみにより反スラスト
力F4が決まってしまい、通常運転時に適正な反スラス
ト力であっても、運転条件が変化した場合には過大な反
スラスト力となり不都合を生じる場合もある。
At this time, if the hydraulic piston 26 is not provided with a bypass path, once the diameter of the hydraulic piston 26 is determined, the anti-thrust force F4 will be uniquely determined only by the pressure difference between both ends of the hydraulic piston 26, and during normal operation Even if the anti-thrust force is appropriate, if the operating conditions change, the anti-thrust force may become excessive and cause problems.

そのため圧力差がある一定値以上になると逃し弁36に
より油をピストン26の反対側へ逃すようバイパス路(
孔37゜38、バネ室39、孔40)を形成し、圧力差
をバネ43のバネ力Fで一定値以下にコントロールする
ようにしている。
Therefore, when the pressure difference exceeds a certain value, the relief valve 36 releases the oil to the opposite side of the piston 26.
Holes 37 and 38, a spring chamber 39, and a hole 40) are formed, and the pressure difference is controlled to below a certain value by the spring force F of the spring 43.

即ち、第4図に示すように前記逃がし弁36の位置にお
いて、その弁座径をdとすれば、次式が成立する。
That is, as shown in FIG. 4, at the position of the relief valve 36, if the diameter of the valve seat is d, the following equation holds true.

−d2P −−d P +F 4 、’、F=−d2(P2−PI ) 従って、バネ43のバネ力がFになるようにバネ43を
選定すれば(P2−P、)の差圧を任意に調整すること
ができる。
−d2P −−d P +F 4 ,', F=−d2(P2−PI) Therefore, if the spring 43 is selected so that the spring force of the spring 43 is F, the differential pressure of (P2−P,) can be set arbitrarily. can be adjusted to

以上詳述したように本発明によれば、油圧ビス:トンへ
の注入油圧は変化させる必要がないので、何らの余分な
油圧操作がいらないため複雑な制御要素が不要となり、
構成が極めて簡単でかつ安価となる効果を奏する。
As detailed above, according to the present invention, there is no need to change the oil pressure injected into the hydraulic screw, so there is no need for any extra hydraulic operation, and therefore no complicated control elements are required.
This has the effect that the configuration is extremely simple and inexpensive.

尚、本発明は1段型圧縮機に限定されるものでなく、2
段型圧縮機にも採用できること勿論であり、2段型圧縮
機においても顕著な効果を示す。
Note that the present invention is not limited to a one-stage compressor, but a two-stage compressor.
It goes without saying that it can be applied to a stage compressor, and also shows remarkable effects in a two-stage compressor.

すなわち、アンロード弁を1段側のみに有する通常の2
段型圧縮機においては、運転条件がアンロード時中間圧
が吸込圧と等しくなる場合があるが、この時、油圧ピス
トンによる反スラスト力がスラスト力より大きくなりす
ぎる時があるが、バイパス路を設けたことによりこれを
解決することができる。
In other words, a normal 2-stage system with an unload valve only on the first stage side
In a stepped compressor, the operating conditions are such that the intermediate pressure becomes equal to the suction pressure during unloading, but at this time, the anti-thrust force by the hydraulic piston may become too large than the thrust force, but it is necessary to By providing this, this problem can be solved.

例えば、吸込圧1ata、中間圧4ata、吐出圧14
ataの2段型圧縮機において、2段側に油圧ヒフ2)
ンを設ける場合、圧力差△Pは△P=14−4=10a
taとなり、これに適した油圧ピストン径が決まるが、
1段側をアンロードした場合、中間圧は吸込圧と等しく
なるため圧力差△Pは△P=14−に13ataとなり
、油圧ピストンによる反スラスト力が、スラスト力より
過大となり、吐出側ロータ端面がケーシングに接触して
しまう。
For example, suction pressure 1 ata, intermediate pressure 4 ata, discharge pressure 14
In ATA's two-stage compressor, there is a hydraulic pressure on the second stage side2)
When installing a pressure difference △P, △P=14-4=10a
ta, and the appropriate hydraulic piston diameter is determined,
When the first stage side is unloaded, the intermediate pressure becomes equal to the suction pressure, so the pressure difference △P becomes 13 ata (△P = 14-), and the anti-thrust force by the hydraulic piston becomes larger than the thrust force, causing the rotor end face on the discharge side to comes into contact with the casing.

ところが、バイパス路が設けられておれば、このような
反スラスト力の過大という現象が回避でき、正常な圧縮
仕事がなされる。
However, if a bypass path is provided, this phenomenon of excessive anti-thrust force can be avoided and normal compression work can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のバランスピストン方式の原理を説明する
概念図、第2図は同図の部分拡大図、第3図は本発明に
係る油冷式スクリュー圧縮機の断面正面図、第4図は逃
し弁の作用説明図である。 1 .2,3・・・・・・軸受、4・・・・・・ロータ
、5・・・・・・ローフ軸、6・・・・・・バランスピ
ストン、7・・・・・・ポンプ、8・・・・・・吐出口
、9・・・・・・油分離器、10・・・・・・クーラー
、12・・・・・・吸込口、20・・・・・・ロータ、
21゜22 、23・・・・・・軸受、24・・・・・
・シリンダ室、25・・・・・・ロータ室、26・・・
・・・油圧ピストン、28・・・・・・0リング、33
・・・・・・バネ、34・・・・・・蓋、35・・・・
・・注油口、36・・・・・・逃し弁、39・・・・・
・バネ室、41・・・・・・吸込口、42・・・・・・
吐出口、43・・・・・・バネ。
Fig. 1 is a conceptual diagram explaining the principle of a conventional balance piston system, Fig. 2 is a partially enlarged view of the same figure, Fig. 3 is a cross-sectional front view of an oil-fed screw compressor according to the present invention, and Fig. 4 is an explanatory diagram of the operation of the relief valve. 1. 2, 3... Bearing, 4... Rotor, 5... Loaf shaft, 6... Balance piston, 7... Pump, 8 ...Discharge port, 9...Oil separator, 10...Cooler, 12...Suction port, 20...Rotor,
21゜22, 23...Bearing, 24...
・Cylinder chamber, 25... Rotor chamber, 26...
...Hydraulic piston, 28...0 ring, 33
... Spring, 34 ... Lid, 35 ...
...Oil filler port, 36...Relief valve, 39...
・Spring chamber, 41...Suction port, 42...
Discharge port, 43... Spring.

Claims (1)

【特許請求の範囲】[Claims] 1 雌雄一対のロータを回動自在に支承してなるロータ
室の吸込側に隣接してシリンダ室を設け、該シリンダ室
内に、突出せるロータ軸端の少くとも一方に軸受を装着
し、該軸受と常時当接するようバネにより弾圧された油
圧ピストンを設けると共に、前記シリンダ室のロータ室
側と反ロータ室側とをバネにより弾発支持された弁を介
して連通ずるバイパス路を前記油圧ピストンに設けてな
る油冷式スクリュー圧縮機。
1. A cylinder chamber is provided adjacent to the suction side of a rotor chamber that rotatably supports a pair of male and female rotors, a bearing is installed in at least one of the protruding rotor shaft ends in the cylinder chamber, and the bearing A hydraulic piston is provided that is biased by a spring so as to be in constant contact with the hydraulic piston, and a bypass passage is provided to the hydraulic piston that communicates a rotor chamber side of the cylinder chamber with a side opposite to the rotor chamber via a valve that is resiliently supported by a spring. Oil-cooled screw compressor.
JP53028468A 1978-03-13 1978-03-13 Oil-cooled screw compressor Expired JPS5823518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53028468A JPS5823518B2 (en) 1978-03-13 1978-03-13 Oil-cooled screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53028468A JPS5823518B2 (en) 1978-03-13 1978-03-13 Oil-cooled screw compressor

Publications (2)

Publication Number Publication Date
JPS54121406A JPS54121406A (en) 1979-09-20
JPS5823518B2 true JPS5823518B2 (en) 1983-05-16

Family

ID=12249475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53028468A Expired JPS5823518B2 (en) 1978-03-13 1978-03-13 Oil-cooled screw compressor

Country Status (1)

Country Link
JP (1) JPS5823518B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1016581A3 (en) * 2005-02-22 2007-02-06 Atlas Copco Airpower Nv IMPROVED WATER INJECTED SCREW COMPRESSOR ELEMENT.
JP4319238B2 (en) * 2008-02-06 2009-08-26 株式会社神戸製鋼所 Oil-cooled screw compressor
DE102021003198A1 (en) 2021-06-22 2022-12-22 Gea Refrigeration Germany Gmbh screw compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070911A (en) * 1973-07-05 1975-06-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070911A (en) * 1973-07-05 1975-06-12

Also Published As

Publication number Publication date
JPS54121406A (en) 1979-09-20

Similar Documents

Publication Publication Date Title
US4770609A (en) Two-stage vacuum pump apparatus and method of operating the same
US6345954B1 (en) Dry gas seal contamination prevention system
US5141389A (en) Control system for regulating the axial loading of a rotor of a fluid machine
US6672088B2 (en) Self-contained regulating valve, and compression type refrigerating machine having the same
US4406589A (en) Compressor
RU2285173C2 (en) Device for insulation
JP3086804B2 (en) Screw machine
JPH11500511A (en) Slide valve driven by gas from screw compressor
JP2939219B2 (en) Combination valve
US8287255B2 (en) Variable displacement rotary pump
US20050254959A1 (en) Fan revolution speed control method
US4711616A (en) Control apparatus for a variable displacement pump
JP3887415B2 (en) Rotary screw compressor with friction balancing means using different pressure levels and method of operation
US6881040B2 (en) Multi-stage screw compressor unit accommodating high suction pressure and pressure fluctuations and method of operation thereof
US3759636A (en) Composite variable oil pressure relief and compressor unload valve assembly
US3635602A (en) Lifting tip seal pump
JPH0260873B2 (en)
JPS5823518B2 (en) Oil-cooled screw compressor
US5341658A (en) Fail safe mechanical oil shutoff arrangement for screw compressor
JP3367109B2 (en) Scroll type fluid machine
JP2752000B2 (en) Thrust load reduction device for dangerous gas compressor
JPS6118030B2 (en)
JPH03242489A (en) Oilless screw type fluid machine
JP2003514181A (en) Screw rotor machine having means for axially biasing at least one rotor
JP3493397B2 (en) Gas compressor