JPH0530996B2 - - Google Patents

Info

Publication number
JPH0530996B2
JPH0530996B2 JP60196906A JP19690685A JPH0530996B2 JP H0530996 B2 JPH0530996 B2 JP H0530996B2 JP 60196906 A JP60196906 A JP 60196906A JP 19690685 A JP19690685 A JP 19690685A JP H0530996 B2 JPH0530996 B2 JP H0530996B2
Authority
JP
Japan
Prior art keywords
semipermeable membrane
water channel
outer water
semipermeable
cylindrical container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60196906A
Other languages
Japanese (ja)
Other versions
JPS6258063A (en
Inventor
Takeo Honda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60196906A priority Critical patent/JPS6258063A/en
Publication of JPS6258063A publication Critical patent/JPS6258063A/en
Publication of JPH0530996B2 publication Critical patent/JPH0530996B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、海水などの高濃度溶液と、河川水
や溶媒などの低濃度溶液との間に存在する濃度差
エネルギーを、半透膜による浸透現象を利用して
機械的エネルギーに変換して発電を行う浸透圧利
用濃度差発電における濃度差発電用浸透装置に関
する。
[Detailed Description of the Invention] [Industrial Application Field] This invention utilizes a semipermeable membrane to absorb the energy difference in concentration between a high concentration solution such as seawater and a low concentration solution such as river water or a solvent. The present invention relates to an osmotic device for concentration difference power generation in concentration difference power generation using osmotic pressure, which converts osmosis into mechanical energy to generate power.

[従来の技術] このような浸透圧利用濃度差発電としては、現
在までに次に述べるようないくつかの方式が提案
されている。第3図は米国特許第3906250号に開
示されている方式の浸透圧利用濃度差発電の系統
図を示す。この方式では、地上に設置された浸透
装置1内の半透膜2で区別さた2室のうち、半透
膜外側水路3には、海水などの高濃度溶液5を高
圧ポンプ7により浸透圧以下の圧力で供給する。
同時に、浸透装置1の半透膜内側水路9には、河
川水や溶媒などの低濃度溶液11を低圧ポンプ1
3により供給して、半透膜2を通じて図の矢印1
4方向に浸透を行わせ、残りは排出する。
[Prior Art] As such concentration difference power generation using osmotic pressure, several methods as described below have been proposed to date. FIG. 3 shows a system diagram of concentration difference power generation using osmotic pressure as disclosed in US Pat. No. 3,906,250. In this method, among two chambers separated by a semipermeable membrane 2 in an infiltration device 1 installed on the ground, a highly concentrated solution 5 such as seawater is pumped into the semipermeable membrane outer waterway 3 using a high pressure pump 7 to give an osmotic pressure. Supply at the following pressure.
At the same time, a low-concentration solution 11 such as river water or a solvent is supplied to the semipermeable membrane inner waterway 9 of the osmosis device 1 by the low-pressure pump 1.
3 and through the semipermeable membrane 2 as shown by the arrow 1 in the figure.
Penetrate in 4 directions and drain the rest.

このとき、その浸透が半透膜外側水路の圧力に
抗して行われるので、濃度差エネルギーを機械的
エネルギーに変換したことになる。すなわち、半
透膜外側水路3の排出溶液は加圧供給溶液に浸透
溶媒の相加わつた溶液であるので、濃度差エネル
ギーはその排出溶液を介してタービン15を回転
させ、タービンの同一軸に結合された発電機17
により電力に変換される。
At this time, since the permeation is performed against the pressure of the water channel outside the semipermeable membrane, the concentration difference energy is converted into mechanical energy. That is, since the discharged solution of the semipermeable membrane outer water channel 3 is a solution in which the osmotic solvent is added to the pressurized supply solution, the concentration difference energy rotates the turbine 15 through the discharged solution, and the energy is transmitted to the same axis of the turbine. Combined generator 17
is converted into electricity by

第4図はM.Reali氏が[Energy,6277(1981)]
に発表した方式を系統図に書き直したものであ
る。この方式では、浸透装置1を浸透圧以下の周
囲水圧となる海底18に設置し、浸透装置1内の
半透膜外側水路3に周囲海水5を低圧ポンプ13
で供給する。浸透装置1内の半透膜内側水路9の
圧力が矢印14の浸透によつて大気圧程度(圧力
を定常に保つため大気開放とする方式もある。)
に減少したところに、陸上から河川水11を導管
19を通じて補給する。その時の河川水11の落
差を利用してタービン15を回転させ、この回転
を発電機17により電力に変換する。また、半透
膜内側水路9の一部の溶液(残液)は高圧ポンプ
7により海中に排出される。
Figure 4 is by M.Reali [Energy, 6277 (1981)]
This is a system diagram based on the method announced in . In this method, the infiltration device 1 is installed on the seabed 18 where the ambient water pressure is below the osmotic pressure, and the surrounding seawater 5 is pumped into the semipermeable membrane outer water channel 3 inside the infiltration device 1 by a low-pressure pump 13.
Supplied with The pressure in the semipermeable membrane inner waterway 9 in the osmosis device 1 is approximately atmospheric pressure due to the osmosis as indicated by the arrow 14 (there is also a method in which the pressure is opened to the atmosphere to keep the pressure steady).
When the amount of water has decreased, river water 11 is supplied from land through a conduit 19. The turbine 15 is rotated using the head of the river water 11 at that time, and this rotation is converted into electric power by the generator 17. Further, a part of the solution (residual liquid) in the semipermeable membrane inner waterway 9 is discharged into the sea by the high-pressure pump 7.

ここで、説明の便宜上、第3図に示した方式を
陸上方式(A)、第4図に示した方式を海中方式(B)と
称することとする。
Here, for convenience of explanation, the method shown in FIG. 3 will be referred to as the land method (A), and the method shown in FIG. 4 will be referred to as the underwater method (B).

機械効率MEは正味出力(発電機17の出力か
らポンプ7,13の動力を差引いた値)を理想出
力で除した値とすると、次式(1),(2)の様になる。
但し、ME(陸上)は陸上方式の場合、ME(海中)
は海中方式の場合の機械効率である。
Mechanical efficiency ME is defined as the value obtained by dividing the net output (the value obtained by subtracting the power of the pumps 7 and 13 from the output of the generator 17) by the ideal output, as shown in the following equations (1) and (2).
However, if ME (land) is a land method, ME (undersea)
is the mechanical efficiency for the subsea method.

ME(陸上)={ηTηG−(PH+△PO)/PHηH}・VS
△V+ηTηG−(1+VU/△V)・PL/PHηL……(1) ME(海中)={ηTηG−(PH+△Pi)/PHηH}・VU
△V+ηTηG−PL/PHηL・VS/△V……(2) ここで、ηHは高圧ポンプ7の効率であり、その
ポンプの全場程をPH+水路の圧力損失(ΔPOまた
はΔPi)とする。ηLは低圧ポンプ13の効率であ
り、そのポンプの全場程をPL(ΔPiまたはΔPpと同
じ)とする。ηTはタービン15の効率、PHは落
差、ηGは発電機17の効率、VSは高濃度溶液供
給流量、VUは低濃度溶液排出流量、ΔVは浸透流
量、ΔPpは浸透装置1の半透膜外膜水路3の圧力
損失、ΔPiは半透膜内膜水路9の圧力損失であ
る。
ME (land) = {η T η G − (P H +△P O )/P H η H }・V S /
△V + η T η G − (1 + V U / △V)・P L /P H η L ...(1) ME (undersea) = {η T η G − (P H +△P i ) /P H η H }・V U /
△V+η T η G −P L /P H η L・V S /△V……(2) Here, η H is the efficiency of the high-pressure pump 7, and the total pump stroke is P H + Let the pressure drop be (ΔP O or ΔP i ). η L is the efficiency of the low-pressure pump 13, and the total field of the pump is P L (same as ΔP i or ΔP p ). η T is the efficiency of the turbine 15, P H is the head, η G is the efficiency of the generator 17, V S is the high concentration solution supply flow rate, V U is the low concentration solution discharge flow rate, ΔV is the permeation flow rate, and ΔP p is the permeation device 1, the pressure loss in the semipermeable membrane outer membrane waterway 3 and ΔP i is the pressure loss in the semipermeable membrane inner membrane waterway 9.

半透膜外側水路3と半透膜内側水路9の平均圧
力差を上述の両方式(A),(B)ともほぼPHとみなせ
るので、理想出力はPH・ΔVとなる。
Since the average pressure difference between the semipermeable membrane outer water channel 3 and the semipermeable membrane inner water channel 9 can be regarded as approximately P H in both equations (A) and (B) above, the ideal output is P H ·ΔV.

今、ηH=0.8、ηL=0.8、ηT=0.84、ηG=0.95、
ΔPp=ΔPi、(PH+ΔPp)/PH=1.02、ΔPp/PH
0.02、VU/ΔV=0.5と仮定すると、上式(1)および
(2)は次式(3),(4)となる。
Now, η H =0.8, η L =0.8, η T =0.84, η G =0.95,
ΔP p = ΔP i , (P H + ΔP p )/P H = 1.02, ΔP p /P H =
0.02, V U /ΔV=0.5, the above equation (1) and
(2) becomes the following equations (3) and (4).

ME(陸上)=0.7605−0.477・VS/ΔV(但し、PL
=Pi) ……(3) ME(海中)=0.5595−0.025・VS/ΔV(但し、PL
=ΔPp) ……(4) 両式(3),(4)から高濃度溶液供給流量VS対浸透
流量ΔVの比VS/ΔVを小さくすることにより、
機械効率MEが上がることが分る、特に、第3図
の陸上方式(A)ではVS/ΔVを1.594以下にする必要
がある。
ME (land) = 0.7605−0.477・V S /ΔV (However, P L
= P i ) ...(3) ME (undersea) = 0.5595−0.025・V S /ΔV (However, P L
= ΔP p ) ...(4) From both equations (3) and (4), by decreasing the ratio V S /ΔV of the high concentration solution supply flow rate V S to the permeation flow rate ΔV,
It can be seen that the mechanical efficiency ME increases, especially in the land method (A) in Figure 3, where V S /ΔV needs to be 1.594 or less.

また、半透膜内側水路9の溶液は、溶媒11の
半透膜外側水路3への透過や、半透膜2の不完全
性による溶質5の外側水路3からの拡散リーク
(漏出)などによつて、溶質濃度が上昇するので、
上述の両方式(A),(B)ともその溶液の一部を外部へ
排出して濃度上昇を抑制し、連続運転を可能にし
ている。
In addition, the solution in the semipermeable membrane inner waterway 9 is affected by the permeation of the solvent 11 into the semipermeable membrane outer waterway 3 and the diffusion leakage (leakage) of the solute 5 from the outer waterway 3 due to imperfections in the semipermeable membrane 2. Therefore, the solute concentration increases,
In both methods (A) and (B) above, a portion of the solution is discharged to the outside to suppress the concentration increase and enable continuous operation.

ところで、鵜飼氏らの[燃料及燃焼、47(11)、
865(1980)]での論文によれば、逆浸透装置の半
透膜として中空繊維状半透膜を使用すると、容積
当りの透水量が大きくなり、装置全体が小型化で
きると指摘されている。さらに、その場合は表面
流速が低くても表面更新は理想状態に近くなり、
必要膜面流速を低くおさえることができると指摘
されている。従つて、この指摘によれば、高濃度
溶液供給流量VS対浸透流量ΔVの比VS/ΔVをで
きるだけ小さくすることが要求される浸透圧利用
濃度差発電においては、中空繊維状半透膜が浸透
装置の半透膜として適していることになる。
By the way, Mr. Ukai et al.'s [Fuel and Combustion, 47 (11),
865 (1980)], it is pointed out that if a hollow fibrous semipermeable membrane is used as the semipermeable membrane of a reverse osmosis device, the amount of permeable water per volume increases, and the entire device can be made smaller. . Furthermore, in that case, even if the surface flow velocity is low, the surface renewal will be close to the ideal state,
It has been pointed out that the required membrane flow rate can be kept low. Therefore, according to this point, in concentration difference power generation using osmotic pressure, which requires the ratio of the high concentration solution supply flow rate V S to the osmotic flow rate ΔV to be as small as possible, it is necessary to use a hollow fibrous semipermeable membrane. is suitable as a semipermeable membrane for an osmotic device.

このような中空繊維状半透膜を用いた中空繊維
型浸透装置は従来各種の逆浸透分離装置としてす
でに開発されている。その代表的な構成例を第5
図および第6図に基づいて説明する。本図に示す
ように、多数の中空繊維状半透膜21を多孔芯管
23の周囲に配列積層して、それらの両端を接着
層25,25′で接着固定する。図の左端側の接
着層25は多孔芯管23のみをその端部に開口さ
せ、図の右端側の接着層25′は中空繊維状半透
膜21のみをその端面に開口させる。このように
して、半透膜外側水路3と半透膜内側水路9とに
区画した中空繊維エレメント27を、内部コネク
タ29と集水スペーサ31および端板33,3
3′とを介して円筒容器35内に密封固定する。
Hollow fiber type osmosis devices using such hollow fiber semipermeable membranes have already been developed as various types of reverse osmosis separation devices. A typical configuration example is shown in the fifth section.
This will be explained based on the figure and FIG. As shown in this figure, a large number of hollow fibrous semipermeable membranes 21 are arranged and laminated around a porous core tube 23, and both ends thereof are adhesively fixed with adhesive layers 25, 25'. The adhesive layer 25 on the left side of the figure opens only the porous core tube 23 at its end, and the adhesive layer 25' on the right side of the figure opens only the hollow fibrous semipermeable membrane 21 at its end face. In this way, the hollow fiber element 27 divided into the semipermeable membrane outer water channel 3 and the semipermeable membrane inner water channel 9 is connected to the internal connector 29, the water collection spacer 31, and the end plates 33, 3.
3' and is hermetically fixed in the cylindrical container 35.

この逆浸透分離装置では、高濃度溶液は、図の
左側の端板33の半透膜外側水路入口37から浸
透圧以上の圧力で供給され、内部コネクタ29を
通つて多孔芯管23で分配され、中空繊維状半透
膜21の各繊維の外側をくぐり抜けるように半径
方向に流れる。この間に、高濃度溶液の溶媒は半
透膜21を通して内側水路9内に逆浸透分離さ
れ、半透膜21の繊維群の外層部に達した残りの
高濃度溶液は、図の左側の端板33に設けられた
半透膜外側水路出口39から外部に排出される。
In this reverse osmosis separation device, a highly concentrated solution is supplied from the semipermeable membrane outer water channel inlet 37 of the end plate 33 on the left side of the figure at a pressure higher than the osmotic pressure, and is distributed in the porous core tube 23 through the internal connector 29. , flows in the radial direction so as to pass through the outside of each fiber of the hollow fibrous semipermeable membrane 21. During this time, the solvent of the high concentration solution is separated by reverse osmosis into the inner water channel 9 through the semipermeable membrane 21, and the remaining high concentration solution that has reached the outer layer of the fiber group of the semipermeable membrane 21 is removed from the end plate on the left side of the figure. It is discharged to the outside from a semipermeable membrane outer water channel outlet 39 provided at 33.

中空繊維状半透膜21内の半透膜内側水路9に
逆浸透分離された溶媒は、図の右端の開口から流
出し、集水スペーサ31に集められ、端板33′
に設けられた半透膜内側水路出口41から外部へ
排出される。
The solvent separated by reverse osmosis in the semipermeable membrane inner water channel 9 in the hollow fibrous semipermeable membrane 21 flows out from the opening at the right end in the figure, is collected in the water collection spacer 31, and is passed through the end plate 33'.
The water is discharged to the outside from the semipermeable membrane inner water channel outlet 41 provided in the semipermeable membrane.

だが、このような従来の逆浸透分離装置では、
半透膜内側水路9の開口が水路出口41の1ケ所
しかないので、溶質濃度の上昇を抑制できない。
このため、浸透圧利用濃度差発電にこの逆浸透分
離装置をそのまま使用することは難しい。
However, with such conventional reverse osmosis separation equipment,
Since the semipermeable membrane inner waterway 9 has only one opening, the waterway outlet 41, an increase in solute concentration cannot be suppressed.
Therefore, it is difficult to use this reverse osmosis separation device as is for concentration difference power generation using osmotic pressure.

また、半透膜外側水路3でVS/ΔVを小さくす
ると、半透膜21の表面での流速が低下して、表
面更新が悪くなり、浸透水による濃度の低い領域
の増大、すなわち濃度分極の増大や、流れの片寄
りが生じる。このため、溶媒を浸透させる推進力
としての有効差圧(半透膜21の外側と内側の浸
透圧差から、外側と内側の水路3,9の圧力差を
引いた値)が低下し、浸透流量ΔVを減少させ、
半透膜21の性能を充分活用することができな
い。
Furthermore, when V S /ΔV is made smaller in the semipermeable membrane outer water channel 3, the flow velocity on the surface of the semipermeable membrane 21 decreases, surface renewal becomes worse, and the area of low concentration due to permeated water increases, that is, concentration polarization occurs. This causes an increase in the amount of water and a shift in the flow. Therefore, the effective differential pressure (the difference in osmotic pressure between the outside and inside of the semipermeable membrane 21 minus the pressure difference between the outside and inside water channels 3 and 9), which acts as a driving force for permeating the solvent, decreases, and the permeation flow rate decreases. Decrease ΔV,
The performance of the semipermeable membrane 21 cannot be fully utilized.

事実、M.de Gerloni氏らは、海中方式で上述
のような市販の逆浸透分離装置を用いて実験を行
つたところ、浸透流量ΔVが急速に減少したこと
を報告している[Symp.on Membranes and
Membrane Processes,Peruguia,1982]。上述
したように、この原因は半透膜内側水路9の出口
が1ケ所あるだけで入口がないために、溶質濃度
の上昇が抑制できなかつたためと考えられる。さ
らに、VS/ΔVも3〜10と比較的小さかつたの
で、半透膜外側水路3の濃度分極や流れの片寄り
も多少発達していたものと思われる。
In fact, M. de Gerloni et al. conducted an experiment using the above-mentioned commercially available reverse osmosis separator in an underwater system, and reported that the permeation flow rate ΔV decreased rapidly [Symp.on] Membranes and
Membrane Processes, Peruguia, 1982]. As mentioned above, this is thought to be because the semipermeable membrane inner waterway 9 has only one outlet and no inlet, and therefore the increase in solute concentration could not be suppressed. Furthermore, since V S /ΔV was relatively small at 3 to 10, it seems that the concentration polarization and flow bias in the semipermeable membrane outer water channel 3 had developed to some extent.

[発明が解決しようとする問題点] そこで、中空繊維型浸透装置の半透膜内側水路
に出口と入口とを共に設けた従来例を第7図およ
び第8図を参照して説明する。第7図の浸透装置
は、S.Loeb氏らが[J.Membrane Sci.1249
(1976)]に発表したものである。この装置では、
中空繊維状半透膜21の束がT字型継手管43内
を通り抜けて円筒容器35に入り、右端のエンド
キヤツプ45近くでU字型に折返しで戻つてい
る。T字型継手管43の図の左側に出た中空繊維
状半透膜21の束の両端部は、各々半透膜21内
の半透膜内側水路に低濃度溶液を供給し排出する
ための半透膜内側水路出入口41,47を具えた
補強筒49に接続される。補強筒49と中空繊維
状半透膜21とは、T字型継手管43の図の左側
で接着層25により密封固定されている。
[Problems to be Solved by the Invention] Therefore, a conventional example in which both an outlet and an inlet are provided in the semipermeable membrane inner water channel of a hollow fiber type permeation device will be described with reference to FIGS. 7 and 8. The infiltration device shown in Fig. 7 was developed by Mr. S. Loeb et al. [J.Membrane Sci.1249
(1976)]. With this device,
The bundle of hollow fibrous semipermeable membranes 21 passes through the T-shaped joint tube 43, enters the cylindrical container 35, and returns in a U-shape near the end cap 45 at the right end. Both ends of the bundle of hollow fibrous semipermeable membranes 21 protruding from the left side of the T-shaped joint pipe 43 in the figure are used for supplying and discharging a low concentration solution to the semipermeable membrane inner water channel in the semipermeable membranes 21, respectively. It is connected to a reinforcing cylinder 49 provided with semipermeable membrane inner waterway inlets and outlets 41 and 47. The reinforcing tube 49 and the hollow fibrous semipermeable membrane 21 are hermetically fixed by an adhesive layer 25 on the left side of the T-shaped joint tube 43 in the drawing.

高濃度溶液は、T字型継手管43の半透膜外側
水路入口37から浸透圧以下の圧力で供給され、
円筒容器35と中空繊維状半透膜21の間の半透
膜外側水路3を、半透膜21内から浸み出た浸透
水を集めながら流れて、エンドキヤツプ45に開
口した半透膜外側水路出口39から排出される。
The highly concentrated solution is supplied from the semipermeable membrane outer waterway inlet 37 of the T-shaped joint pipe 43 at a pressure below the osmotic pressure,
The semipermeable membrane outer water channel 3 between the cylindrical container 35 and the hollow fibrous semipermeable membrane 21 flows through the semipermeable membrane outer water channel 3 while collecting the permeated water seeped from inside the semipermeable membrane 21, and flows through the semipermeable membrane outer water channel 3 between the cylindrical container 35 and the hollow fibrous semipermeable membrane 21. It is discharged from the waterway outlet 39.

だが、この浸透装置では半透膜の特性を調べる
ために、濃度分極によつて浸透流量が低下しない
ように高濃度溶液を大量に流している。このた
め、VS/ΔVが40程度にもなり、実用的ではな
い。
However, in this osmosis device, in order to investigate the properties of the semipermeable membrane, a large amount of highly concentrated solution is passed through to prevent the osmotic flow rate from decreasing due to concentration polarization. Therefore, V S /ΔV becomes about 40, which is not practical.

第8図の浸透装置は、本発明者が[昭和60年電
気学会全国大会講演論文集、[11]No.1161]にお
いて発表したものであり、上述の第5図の逆浸透
分離装置を改良したものである。第8図に示すよ
うに、中空繊維状半透膜21は多孔芯管23に交
差配列で積層され、その半透膜21の両端が接着
層25,25′により固定されている。図左端の
接着層25の中央貫通孔には多孔芯管23が開口
し、その接着層25の外端部周囲には中空繊維状
半透膜21が開口している。さらに接着層25の
外周部には円筒容器35との密封を行うシール5
1が配設されている。多孔芯管23の開口部は、
内部コネクタ29の貫通孔を介して端板33の半
透膜外側水路入口37と接続されている。
The osmosis device shown in Figure 8 was announced by the present inventor in [Proceedings of the 1985 National Conference of the Institute of Electrical Engineers of Japan, [11] No. 1161], and is an improved version of the reverse osmosis separation device shown in Figure 5 above. This is what I did. As shown in FIG. 8, the hollow fibrous semipermeable membrane 21 is laminated on the porous core tube 23 in a crosswise arrangement, and both ends of the semipermeable membrane 21 are fixed by adhesive layers 25, 25'. A porous core tube 23 opens in the central through hole of the adhesive layer 25 at the left end of the figure, and a hollow fibrous semipermeable membrane 21 opens around the outer end of the adhesive layer 25. Furthermore, a seal 5 for sealing the cylindrical container 35 is provided on the outer periphery of the adhesive layer 25.
1 is arranged. The opening of the porous core tube 23 is
It is connected to the semipermeable membrane outer water channel inlet 37 of the end plate 33 through the through hole of the internal connector 29 .

半透膜21内の半透膜内側水路9は、中空繊維
状半透膜21の開口を通つて円環状の集水スペー
サ31を抜け、端板33に設けた半透膜内側水路
出口41に接続される。また、図の右端の接着層
25′では、中空繊維状半透膜21のみが開口し、
半透膜内側水路9はその開口を通つて集水スペー
サ31′および内部コネクター29′を通つて端板
33′に設けた半透膜内側水路入口47に接続す
る。
The semipermeable membrane inner water channel 9 in the semipermeable membrane 21 passes through the annular water collection spacer 31 through the opening of the hollow fibrous semipermeable membrane 21 and enters the semipermeable membrane inner water channel outlet 41 provided on the end plate 33. Connected. In addition, in the adhesive layer 25' at the right end of the figure, only the hollow fibrous semipermeable membrane 21 is open;
The semipermeable membrane inner waterway 9 connects through its opening to the semipermeable membrane inner waterway inlet 47 provided in the end plate 33' through the collection spacer 31' and the internal connector 29'.

図の左端の半透膜外側水路入口37に浸透圧以
下の圧力で供給された高濃度溶液は、内部コネク
タ29を通り、多孔芯管23により分配され、中
空繊維状半透膜21の各繊維の間をくぐり抜ける
ように半径方向に流れる。この間に半透膜内側水
路9から浸み出た浸透水を集めた高濃度溶液は、
中空繊維エレメント27の外周部側の半透膜外側
水路3に出て、内部コネクタ29′の外周の環状
間隙を通つて、図の右端の半透膜外側水路出口3
9へ排出される。
The highly concentrated solution supplied to the semipermeable membrane outer water channel inlet 37 at the left end of the figure at a pressure below osmotic pressure passes through the internal connector 29 and is distributed by the porous core tube 23 to each fiber of the hollow fibrous semipermeable membrane 21. It flows in the radial direction, passing through the gaps. During this period, the highly concentrated solution that collected the permeated water that seeped out from the semipermeable membrane inner waterway 9 was
It exits to the semipermeable membrane outer water channel 3 on the outer periphery side of the hollow fiber element 27, passes through the annular gap on the outer periphery of the internal connector 29', and enters the semipermeable membrane outer water channel outlet 3 at the right end in the figure.
It is discharged to 9.

しかしながら、この浸透装置も半透膜の特性を
調べるために、浸透流量が一定となるよう高濃度
溶液を比較的大量に流している。そのため、
VS/ΔVは20以上になつており、陸上方式の機械
効率MEは負になつてしまう(上式(3)を参照)。
However, in order to investigate the properties of the semipermeable membrane, this osmosis device also flows a relatively large amount of highly concentrated solution so that the osmotic flow rate is constant. Therefore,
V S /ΔV is 20 or more, and the mechanical efficiency ME of the land method becomes negative (see equation (3) above).

このように、従来の逆浸透分離装置やそれに近
い構造の浸透装置では、高濃度溶液供給流量対浸
透流量の比VS/ΔVはかなり大きく、浸透圧利用
濃度差発電、特に陸上方式の浸透圧利用濃度差発
電を実現することが困難であつた。
In this way, in conventional reverse osmosis separation equipment and osmosis equipment with a structure similar to it, the ratio of the high concentration solution supply flow rate to the osmotic flow rate, V S /ΔV, is quite large, making it difficult to use osmotic pressure for concentration difference power generation, especially in land-based methods. It has been difficult to realize power generation using concentration difference.

また、第8図の従来の浸透装置では、左右の端
板33,33′で半透膜の外側水路と内側水路の
出入口が中央37,47と、もう一方39,41
では逆になつており、そのため外部配管の誤接続
を生じやすい。また、この従来の浸透装置の構造
では内部コネクタ29′が半径方向および軸方向
に厚みを有するため、中空繊維エレメント27の
外径および長さを円筒容器35の内径および内側
長さに近付けることができず、濃度差発電用とす
るにはその両者の径を相当に大きくする必要があ
るが、それらの径を大きくしても浸透装置の容積
効率(円筒容器No.5の内容積に対する半透膜有効
膜面積の割合)が悪く、耐圧性能や経済性などに
も問題を生ずることになる。
In addition, in the conventional infiltration device shown in FIG. 8, the entrances and exits of the outer water channel and the inner water channel of the semipermeable membrane are located at the center 37, 47 at the left and right end plates 33, 33', and at the other end 39, 41.
The connection is reversed, which makes it easy for external piping to be incorrectly connected. Furthermore, in the structure of this conventional infiltration device, since the internal connector 29' is thick in the radial and axial directions, it is possible to make the outer diameter and length of the hollow fiber element 27 close to the inner diameter and inner length of the cylindrical container 35. However, even if these diameters are increased, the volumetric efficiency of the infiltration device (semi-permeability relative to the internal volume of cylindrical container No. 5) is The ratio of effective membrane area) is poor, and this also causes problems in pressure resistance and economic efficiency.

この発明は、上述の問題点に鑑み、浸透装置の
半透膜外側水路において濃度分極や流れの片寄り
を大きくせずに高濃度溶液供給流量VS対浸透流
量ΔVの比VS/ΔVを小さくして、半透膜の性能
を充分に活用し、これにより浸透圧利用濃度差発
電の効率を高くし、さらには外部配管の誤接続を
解消して取扱を容易にした中空繊維型の濃度差発
電用浸透装置を提供することを目的とする。
In view of the above-mentioned problems, this invention improves the ratio V S /ΔV of the high concentration solution supply flow rate V S to the permeation flow rate ΔV without increasing concentration polarization or unbalanced flow in the semipermeable membrane outer water channel of the osmosis device. Hollow fiber type densifier is small and makes full use of the performance of semi-permeable membrane, thereby increasing the efficiency of concentration difference power generation using osmotic pressure, and also eliminates incorrect connection of external piping and makes handling easier. The purpose of the present invention is to provide an infiltration device for differential power generation.

[問題点を解決するための手段] この目的を達成するため、この発明は、多孔芯
管の周囲に中空繊維状の半透膜を配列積層して該
半透膜の両端を接着固定し、これにより半透膜外
側水路と半透膜内側水路とを区分した中空繊維エ
レメントと、中空繊維エレメントを密封固定した
円筒容器と、中空繊維エレメント側の半透膜外側
水路に配設して半透膜外側水路を偶数に均等に区
画する仕切部と、奇数番目の仕切部の位置で多孔
芯管内の半透膜外側水路を塞ぐ栓とを具備し、円
筒容器の一方の端部において多孔芯管と同軸に半
透膜外側水路の入口が開口し、この入口の周囲に
半透膜内側水路の出口が開口し、かつ円筒容器の
他方の端部において多孔芯管と同軸に半透膜外側
水路の出口が開口し、この出口の周囲に半透膜内
側水路の入口が開口していることを特徴とする。
[Means for Solving the Problems] In order to achieve this object, the present invention arranges and laminates semipermeable membranes in the form of hollow fibers around a porous core tube, and adhesively fixes both ends of the semipermeable membranes. As a result, there is a hollow fiber element that separates the semipermeable membrane outer water channel and the semipermeable membrane inner water channel, a cylindrical container in which the hollow fiber element is sealed and fixed, and a semipermeable membrane disposed in the semipermeable membrane outer water channel on the hollow fiber element side. It is equipped with partition parts that evenly divide the membrane outer water channels into even numbers, and plugs that block the semipermeable membrane outer water channels in the porous core tube at the positions of the odd-numbered partition parts, and the porous core tube at one end of the cylindrical container. The inlet of the semipermeable membrane outer water channel opens coaxially with the membrane, the outlet of the semipermeable membrane inner water channel opens around this inlet, and the semipermeable membrane outer water channel opens coaxially with the porous core tube at the other end of the cylindrical container. The semipermeable membrane is characterized in that an outlet is open, and an inlet of the semipermeable membrane inner water channel is open around the outlet.

[作用] この発明では、中空繊維型浸透装置の中空繊維
エレメントの半透膜外側水路に仕切部を形成して
偶数の区画にその水路を分割するようにしたの
で、高濃度溶液供給流量の浸透流量に対する割合
を少なくし、浸透圧利用濃度差発電の効率を高め
る。
[Function] In this invention, a partition is formed in the semipermeable membrane outer water channel of the hollow fiber element of the hollow fiber type infiltration device to divide the water channel into an even number of sections, so that the permeation of the high concentration solution supply flow rate is reduced. Reduce the ratio to the flow rate and increase the efficiency of concentration difference power generation using osmotic pressure.

また、この発明では、仕切部により中空繊維エ
レメント側の半透膜外側水路を偶数に均等に区画
し、また奇数番目のその仕切部において多孔芯管
内の半透膜外側水路を塞ぐ栓を設けたので、半透
膜外側水路の出入口を円筒容器の両端において多
孔芯管と同軸位置に開口でき、さらに半透膜内側
水路はエレメントの両端に出入口を有しており、
そのため外部配管の誤接続が避けられ、かつ構造
が簡単で製作・組立が容易となる。
Further, in this invention, the semipermeable membrane outer water channels on the hollow fiber element side are equally divided into even numbers by the partition parts, and plugs are provided in the odd numbered partition parts to block the semipermeable membrane outer water channels in the porous core tube. Therefore, the entrances and exits of the semipermeable membrane outer water channel can be opened at both ends of the cylindrical container at coaxial positions with the porous core pipe, and the semipermeable membrane inner water channel has entrances and exits at both ends of the element.
Therefore, incorrect connection of external piping can be avoided, and the structure is simple, making manufacturing and assembly easy.

[実施例] 以下、図面を参照してこの発明の実施例を詳細
に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

実施例の構成 第1図はこの発明の中空繊維型濃度差発電用浸
透装置の実施例の構成を示す。ここで、53と5
5はそれぞれ円筒容器35内に半径方向に立てて
配設した、半透膜外側水路仕切用仕切部であり、
一方の奇数番目のAタイプの仕切部53は多孔芯
管23を塞ぐ栓57と、中空繊維状半透膜21を
接着した接着層61とならなる円板状のものであ
る。他方の偶数番目のBタイプの仕切部55は接
着層61とシール59とからなる環状体のもので
ある。仕切部53と55は本図に示すように交互
に所定間隔で配設して、一度外周部に流れた高濃
度溶液を再び多孔芯管23内に導くことを繰り返
えさせる。
Configuration of an Embodiment FIG. 1 shows the configuration of an embodiment of a hollow fiber type concentration difference power generation infiltration device of the present invention. Here, 53 and 5
5 are semipermeable membrane outer waterway partition partitions disposed vertically in the cylindrical container 35;
One of the odd-numbered A-type partitions 53 is a disc-shaped partition consisting of a plug 57 that closes the porous core tube 23 and an adhesive layer 61 to which the hollow fibrous semipermeable membrane 21 is bonded. The other even-numbered B type partition portion 55 is an annular body consisting of an adhesive layer 61 and a seal 59. The partitions 53 and 55 are arranged alternately at a predetermined interval as shown in this figure, so that the highly concentrated solution that has once flowed to the outer periphery is repeatedly guided into the porous core tube 23.

また、円筒容器35の両端に固定した端板3
3,33′には、半透膜外側水路3の出入口37,
39をその中心部に開口し、半透膜内側水路9の
出入口41,47をその周辺部に開口する。この
円筒容器35と端板33,33′とで囲まれた空
間には、内部コネクタ29,29′と集水スペー
サ31,31′とによつて中空繊維エレメント2
7を保持させる。
In addition, end plates 3 fixed to both ends of the cylindrical container 35
3, 33' have an inlet/outlet 37 of the semipermeable membrane outer water channel 3,
39 is opened at its center, and entrances and exits 41, 47 for the semipermeable membrane inner water channel 9 are opened at its periphery. A space surrounded by the cylindrical container 35 and the end plates 33, 33' is provided with a hollow fiber element 22 by internal connectors 29, 29' and water collection spacers 31, 31'.
Hold 7.

中空繊維エレメント27を構成する高濃度溶液
集配水用多孔芯管23の外側周囲に、中空繊維状
半透膜21を多数配列積層し、その両端を接着層
25,25′により接着固定する。このとき、中
空繊維状半透膜21の配列としては、多孔芯管2
3の軸方向に平行に束ねるか、あるいは互いに交
差するように巻きつけるかのいずれかを採用して
もよい。
A large number of hollow fibrous semipermeable membranes 21 are arranged and laminated around the outside of the porous core tube 23 for collecting and distributing high concentration solution water constituting the hollow fiber element 27, and both ends thereof are adhesively fixed with adhesive layers 25, 25'. At this time, the arrangement of the hollow fibrous semipermeable membranes 21 is as follows:
Either the bundles may be bundled parallel to the axial direction of No. 3, or they may be wrapped so as to cross each other.

半透膜21の両端の接着層25,25′には、
その中央に多孔芯管23を貫通させ、その外端面
周囲に中空繊維状半透膜21の内側水路9を開口
させ、その外周部に円筒容器35に対する密封用
シール51を設け、これにより半透膜外側水路3
と半透膜内側水路9とを区画する。多孔芯管23
の両端に配設した内部コネクタ29,29′は、
多孔芯管23の開口部と、端板33の半透膜外側
水路出入口37,39とを接続する。集水スペー
サ31,31′は中空繊維状半透膜21の開口部
を通る多数の半透膜内側水路9をまとめて端板3
3,33′の半透膜内側水路出入口41,47に
接続する。
The adhesive layers 25 and 25' at both ends of the semipermeable membrane 21 include
A porous core tube 23 is passed through the center, an inner water channel 9 of the hollow fibrous semipermeable membrane 21 is opened around the outer end surface, and a seal 51 for sealing the cylindrical container 35 is provided on the outer periphery of the membrane. Membrane outer water channel 3
and a semipermeable membrane inner waterway 9. Porous core tube 23
The internal connectors 29, 29' arranged at both ends of the
The opening of the porous core tube 23 is connected to the semipermeable membrane outer water channel inlets and outlets 37 and 39 of the end plate 33. The water collection spacers 31 and 31' collectively connect a large number of semipermeable membrane inner water channels 9 passing through the openings of the hollow fibrous semipermeable membrane 21 to the end plate 3.
3, 33' are connected to semipermeable membrane inner waterway inlet/outlet ports 41, 47.

中空繊維エレメント27には、両端の接着層2
5,25′とは別に、上述のように半透膜外側水
路3のみを区分するA仕切部53と、B仕切部5
5とが形成されている。A仕切部53は多孔芯管
23の内側を密閉する栓57を有し、B仕切部5
5は円筒容器35の内壁と接着層61との間を密
閉するシール59とを有する。このような、A,
B2種の仕切部53,55をA仕切部53から順
次交互に繰返して配設し最後にA仕切部53を配
設して、軸方向に半透膜外側水路3を偶数に多段
分割する。
The hollow fiber element 27 has adhesive layers 2 on both ends.
5, 25', as mentioned above, there is an A partition section 53 that divides only the semipermeable membrane outer water channel 3, and a B partition section 5.
5 is formed. The A partition section 53 has a plug 57 that seals the inside of the porous core tube 23, and the B partition section 5
5 has a seal 59 that seals between the inner wall of the cylindrical container 35 and the adhesive layer 61. Like this, A,
The B2 type partitions 53 and 55 are arranged alternately and sequentially from the A partition 53, and finally the A partition 53 is arranged to divide the semipermeable membrane outer water channel 3 into an even number of stages in the axial direction.

これらの仕切部53,55の形成は、例えば次
のように行う。多孔芯管23中に栓57をあらか
じめA仕切部53の配設位置に固定する。次に、
A,Bの仕切部53,55の配設位置で、適当に
粘度を調整したエポキシ系接着剤を塗布含浸した
糸または紐により順次中空繊維状半透膜21を接
着固定しつつ円筒容器35の内径付近まで形成
し、これにより仕切部接着層61を得る。次に、
B仕切部55となる仕切部接着層61の外周に
は、円筒容器35の内壁に対してOリングまたは
単泡スポンジを用いてシール59を形成する。
These partitions 53 and 55 are formed, for example, as follows. A plug 57 is fixed in advance in the porous core tube 23 at a position where the A partition section 53 is provided. next,
The hollow fibrous semipermeable membranes 21 are sequentially adhesively fixed at the locations of the partitions 53 and 55 of A and B using threads or strings impregnated with an epoxy adhesive with an appropriately adjusted viscosity. The partition adhesive layer 61 is obtained by forming the adhesive layer up to the vicinity of the inner diameter. next,
A seal 59 is formed on the outer periphery of the partition adhesive layer 61, which becomes the B partition 55, against the inner wall of the cylindrical container 35 using an O-ring or a single foam sponge.

実施例の作用および特徴 以上のように構成した本例の中空繊維型浸透装
置では、その両端面に高濃度溶液や低濃度溶液の
供給排出口37,39,41,47があり、複数
装置の並列設置が容易で高密度実装が可能となる
他に、次のような特徴を有する。
Functions and features of the embodiment The hollow fiber type infiltration device of this embodiment configured as described above has supply and discharge ports 37, 39, 41, and 47 for high-concentration solutions and low-concentration solutions on both end faces, so that multiple devices can be connected to each other. In addition to easy parallel installation and high-density packaging, it also has the following features:

図の左側の端板33の半透膜外側水路入口3
7に浸透圧以下の圧力で供給された高濃度溶液
は、内部コネクタ29を通り、1段目の多孔芯
管23で配分され、中空繊維状半透膜21の外
側をくぐり抜けながら浸透水を集め、半径方向
外向きに流れて仕切部接着層61の外周部に達
する。次に、高濃度溶液は、2段目では、その
外周部から半径方向内向きに流れ、中空繊維状
半透膜21の外側をくぐり抜けながら浸透水を
集めて多孔芯管23に再び達する。以後、高濃
度溶液は同じ流れパターンを順次繰返しつつ各
段を順次流れ、最終段の多孔芯管23から内部
コネクタ29′を通つて端板33′の半透膜外側
水路出口39に達する。
Semipermeable membrane outer water channel inlet 3 of end plate 33 on the left side of the figure
The highly concentrated solution supplied to 7 at a pressure below osmotic pressure passes through the internal connector 29 and is distributed in the first stage porous core tube 23, passing through the outside of the hollow fibrous semipermeable membrane 21 and collecting the permeated water. , flows radially outward and reaches the outer periphery of the partition adhesive layer 61. Next, in the second stage, the highly concentrated solution flows radially inward from its outer periphery, passes through the outside of the hollow fibrous semipermeable membrane 21, collects permeated water, and reaches the porous core tube 23 again. Thereafter, the highly concentrated solution sequentially flows through each stage while repeating the same flow pattern, and reaches the semipermeable membrane outer water channel outlet 39 of the end plate 33' through the internal connector 29' from the porous core tube 23 at the final stage.

仕切板53,55により水路3の流路幅が実
質的に縮まるので、各段の半透膜外側水路3の
高濃度溶液の流速は、浸透水による流量の増加
がないと仮定しても、仕切部53,55がない
場合の段数倍以上に早くなる。すなわち、同じ
流速は、仕切部53,55がない場合より少な
い高濃度溶液供給流量で得られる。さらに各段
毎にある外周部のスペースや多孔芯管23の内
側スペースにおいて濃度分極や流れの片寄りに
よつて生じた濃度の非一様性が混合されて一様
になることも相乗して、濃度差エネルギが浸透
流量の増加として有効に取出され、その結果
VS/ΔVを少くでき、浸透圧利用濃度差発電の
効率を高めることができる。
Since the width of the water channel 3 is substantially reduced by the partition plates 53 and 55, the flow rate of the highly concentrated solution in the semipermeable membrane outer water channel 3 of each stage is as follows, even assuming that there is no increase in flow rate due to permeated water. The speed is more than twice as high as the number of stages without the partitions 53 and 55. That is, the same flow rate can be obtained with a lower flow rate of high concentration solution supply than when the partitions 53 and 55 are not provided. Furthermore, the non-uniformity of concentration caused by concentration polarization and uneven flow in the outer peripheral space of each stage and the inner space of the porous core tube 23 is mixed and becomes uniform. , the concentration difference energy is effectively extracted as an increase in osmotic flow rate, resulting in
V S /ΔV can be reduced, and the efficiency of concentration difference power generation using osmotic pressure can be increased.

図の右側の端板33′の半透膜内側水路入口
47に供給された低濃度溶液は、集水スペーサ
31′を通つて、中空繊維エレメント27の端
面に開口した多数の中空繊維状半透膜21の内
側水路9内に分配され、外側水路3にその溶媒
を浸透させながら流れる。浸透できなかつた溶
質や中空繊維状半透膜21の不完全性によつて
半透膜外側水路3から拡散リーク(漏出)して
来た溶質によつて濃度が上昇した内側水路9の
溶液は、半透膜21の端面に開口部を経て集水
スペーサ31で集められ、端板33の半透膜内
側水路出口41から排出される。
The low concentration solution supplied to the semipermeable membrane inner waterway inlet 47 of the end plate 33' on the right side of the figure passes through the water collecting spacer 31', and passes through the water collecting spacer 31', and passes through the semipermeable membrane in the form of a large number of semipermeable hollow fiber elements 27. It is distributed within the inner water channel 9 of the membrane 21 and flows with its solvent permeating into the outer water channel 3. The concentration of the solution in the inner water channel 9 has increased due to the solute that could not permeate or the solute that has diffused and leaked from the semipermeable membrane outer water channel 3 due to the imperfection of the hollow fibrous semipermeable membrane 21. The water passes through an opening in the end face of the semipermeable membrane 21 and is collected by the water collection spacer 31, and is discharged from the semipermeable membrane inner water channel outlet 41 of the end plate 33.

この排出によつて、半透膜内側水路9の濃度
上昇が抑制され、溶媒を浸透させる推進力とし
ての有効差圧の低下が防止できるので、浸透流
量を一定に保ち、浸透圧利用濃度差発電の連続
運転を可能にすることができる。
This discharge suppresses the concentration increase in the semipermeable membrane inner waterway 9 and prevents a decrease in the effective differential pressure, which is the driving force for permeating the solvent, so that the permeation flow rate can be kept constant and the osmotic pressure can be used to generate concentration difference power generation. can be operated continuously.

本例の浸透装置に使用する中空繊維状半透膜
21としては、中空繊維エレメント27の容積
当りの浸透量が大きいこと、すなわち中空繊維
充填密度が同じなら、中空繊維状半透膜21の
溶媒透過係数Aをその繊維の外径dで除した値
A/dが大きいこと、および半透膜内側水路9
の溶質濃度が外側水路3からの溶質の拡散リー
クにより上昇しないような完全なもの、すなわ
ち塩除去率の良いものが要求される。さらに、
その半透膜21が、例えば浸透現象を示す薄い
活性層と、多孔質な厚い支持層とからなる非対
称構造の場合には、その支持層内の濃度分極を
少なくするために、支持層の溶質透過係数の大
きいことが必要となる。
The hollow fibrous semipermeable membrane 21 used in the permeation device of this example must have a large permeation amount per volume of the hollow fiber element 27, that is, if the hollow fiber packing density is the same, the solvent in the hollow fibrous semipermeable membrane 21 must be The value A/d obtained by dividing the permeability coefficient A by the outer diameter d of the fiber is large, and the semipermeable membrane inner water channel 9
It is required to be perfect so that the solute concentration in the water does not increase due to diffusion leakage of solute from the outer water channel 3, that is, to have a good salt removal rate. moreover,
If the semipermeable membrane 21 has an asymmetric structure consisting of a thin active layer that exhibits an osmosis phenomenon and a thick porous support layer, for example, in order to reduce concentration polarization within the support layer, solutes in the support layer may be A large transmission coefficient is required.

本例の浸透装置の仕切部53,55による水
路3の分割数と、中空繊維状半透膜21および
円筒容器35の関係は次のように考えられる。
すなわち、高濃度溶液や低濃度溶液が決まれ
ば、利用可能流量や作動圧力が決まる。また、
円筒容器35と端板33,33′の厚さが決ま
れば、中空繊維エレメント27の限界寸法が決
まる。中空繊維状半透膜21の種類を定めれ
ば、その充填率や必要膜面流速が決まり、中空
繊維エレメント27の両端の幅や仕切部53,
55の接着層61の幅を考慮して分割数も決め
られる。
The relationship between the number of divisions of the water channel 3 by the partitions 53 and 55 of the permeation device of this example, the hollow fibrous semipermeable membrane 21 and the cylindrical container 35 is considered as follows.
That is, once a high concentration solution or a low concentration solution is determined, the available flow rate and operating pressure are determined. Also,
Once the thicknesses of the cylindrical container 35 and the end plates 33, 33' are determined, the critical dimensions of the hollow fiber element 27 are determined. Once the type of hollow fibrous semipermeable membrane 21 is determined, its filling rate and required surface flow velocity are determined, and the width of both ends of the hollow fiber element 27, the partition portion 53,
The number of divisions is also determined in consideration of the width of the adhesive layer 61 of 55.

ここで、中空繊維エレメント27の外径と流
速の関係は次のようである。中空繊維エレメン
ト27の外径が大きくなると、最外層の流路断
面積はその外径に比例して大きくなる。また、
中空繊維エレメント27の体積は、その外径の
2乗に比例して増加するので、充填率が一定な
ら膜面積もほぼ外径の2乗に比例して増加し、
浸透量も同様に増える。
Here, the relationship between the outer diameter of the hollow fiber element 27 and the flow rate is as follows. As the outer diameter of the hollow fiber element 27 increases, the flow passage cross-sectional area of the outermost layer increases in proportion to the outer diameter. Also,
Since the volume of the hollow fiber element 27 increases in proportion to the square of its outer diameter, if the filling rate is constant, the membrane area also increases approximately in proportion to the square of the outer diameter.
The amount of penetration increases as well.

したがつて、VS/ΔVを一定とすると、高濃
度溶液供給流量も外径の2乗に比例して増やす
ことになり、結局のところ最外層の流速はほぼ
外径に比例して増加することになる。
Therefore, if V S /ΔV is kept constant, the high concentration solution supply flow rate will also increase in proportion to the square of the outer diameter, and as a result, the flow velocity in the outermost layer will increase approximately in proportion to the outer diameter. It turns out.

また、中空繊維エレメント27の外側水路3
で膜面流速が一番遅くなる場所は、一段目の最
外層にあることが計算により求めるので、以下
では、この場所の膜面流速を最低膜面流速と称
することとする。
In addition, the outer water channel 3 of the hollow fiber element 27
Since it is calculated that the place where the membrane surface flow velocity is the slowest is in the outermost layer of the first stage, the membrane surface flow velocity at this location will be referred to as the lowest membrane surface flow velocity hereinafter.

つぎに、中空繊維エレメント27内の最低膜
面流速が同じときに、同程度のVS/ΔVの性能
が得られるものとして、仕切部53,55によ
る分割数の他に及ぼす影響を考える。まず、そ
の分割数が変わると、仕切部接着層61に相当
する分の膜面積が増減する。さらに、各区画の
流路幅も大きく変化する。いま、最低膜面流速
がN分の1(但し、Nは実数、以下同様)にな
つたとして、半透膜21の溶媒透過係数Aを半
透膜繊維外径dで除した値A/dがN倍である
中空繊維状半透膜21を選ぶか、または中空繊
維エレメント27の外径と最外側膜面流速とが
ほぼ比例することから、円筒容器35の内径が
N倍程度のものを選ぶことによつて、分割数変
更前と同程度のVS/ΔV性能を得ることができ
る。
Next, assuming that when the lowest membrane surface flow velocity in the hollow fiber element 27 is the same, the same performance of V S /ΔV can be obtained, and the influence of the partitions 53 and 55 on the number of divisions will be considered. First, when the number of divisions changes, the membrane area corresponding to the partition adhesive layer 61 increases or decreases. Furthermore, the channel width of each section also varies greatly. Now, assuming that the minimum membrane surface flow velocity is 1/N (where N is a real number, the same applies hereinafter), the value A/d is obtained by dividing the solvent permeability coefficient A of the semipermeable membrane 21 by the semipermeable membrane fiber outer diameter d. Either choose a hollow fibrous semipermeable membrane 21 with N times the inner diameter of the cylindrical container 35, or choose one whose inner diameter is about N times, since the outer diameter of the hollow fiber element 27 and the flow velocity on the outermost membrane surface are almost proportional. Depending on the selection, it is possible to obtain V S /ΔV performance comparable to that before changing the number of divisions.

また、上述と同じ条件のもとで中空繊維状半
透膜21の種類を変えたときには、A/dが変
わらなければ、同じ分割数で同じ性能が得られ
るが、A/dが大きくなるときは膜面流速が増
して性能が良くなる。すなわちVS/ΔVが小さ
くなる傾向にある。同じ性能とするには、分割
数を少なくしたり、円筒容器35の内径を少な
くする。同様に円筒容器35の内径が大きくで
きると、中空繊維エレメント27の外径が大き
くでき、膜面流速が増して性能が向上する。こ
のため、A/dの小さい中空繊維状半透膜21
を使用するときは、分割数を増すより、円筒容
器の内径を大きくする方が、容積効率が悪くな
らず、効果的である。
Furthermore, when changing the type of hollow fibrous semipermeable membrane 21 under the same conditions as described above, if A/d does not change, the same performance can be obtained with the same number of divisions, but when A/d increases The membrane surface flow velocity increases and the performance improves. In other words, V S /ΔV tends to become smaller. In order to maintain the same performance, the number of divisions should be reduced or the inner diameter of the cylindrical container 35 should be reduced. Similarly, if the inner diameter of the cylindrical container 35 can be increased, the outer diameter of the hollow fiber element 27 can be increased, which increases the membrane flow velocity and improves performance. Therefore, the hollow fibrous semipermeable membrane 21 with a small A/d
When using a cylindrical container, it is more effective to increase the inner diameter of the cylindrical container than to increase the number of divisions, since the volumetric efficiency will not deteriorate.

また、仕切部53,55を設けて中空繊維状
半透膜21側の半透膜外側水路3を偶数に均等
に区画し、かつその奇数番目の仕切部53にお
いて多孔芯管23内の半透膜外側水路3を塞ぐ
栓53を設けることで、半透膜外側水路3の出
入口37,39を円筒容器35の両端において
多孔芯管23と同軸位置に開口でき、半透膜外
側水路の出入口37,39を半透膜内側水路9
の出入口41,47と明確に区別できるため、
外部配管との誤接続を容易に避けることができ
る。
Furthermore, the partitions 53 and 55 are provided to equally divide the semipermeable membrane outer water channels 3 on the hollow fibrous semipermeable membrane 21 side into even numbers, and the odd-numbered partitions 53 are used to divide the semipermeable membrane inside the porous core tube 23 into equal parts. By providing the stopper 53 that closes the membrane outer water channel 3, the entrances and exits 37 and 39 of the semipermeable membrane outer water channel 3 can be opened at both ends of the cylindrical container 35 at coaxial positions with the porous core tube 23, and the entrance and exit ports 37 of the semipermeable membrane outer water channel 3 can be opened at both ends of the cylindrical container 35 at coaxial positions with the porous core tube 23. , 39 as the semipermeable membrane inner waterway 9
Because it can be clearly distinguished from the entrances and exits 41 and 47,
Misconnection with external piping can be easily avoided.

この他、構造に関するパラメーターとして、
仕切部53,55による分割間隔と円筒容器3
5の長さがある。この分割間隔は、高濃度溶液
の流量の変化に合わせて、各区画の流速が同程
度になるように区画毎に変えても良いが、等間
隔の場合には対称構造となり、半透膜外側内側
の各水路3,9において左右出入口の区別がな
く、製造や使用に際しての取扱が容易になる。
In addition, as structural parameters,
Division interval by partition parts 53 and 55 and cylindrical container 3
It has a length of 5. This division interval may be changed for each division so that the flow velocity in each division is the same in accordance with changes in the flow rate of the highly concentrated solution, but if the division intervals are equal, a symmetrical structure will result, and the semipermeable membrane will There is no distinction between left and right entrances and exits in each of the inner water channels 3 and 9, which facilitates handling during manufacture and use.

また、円筒容器35の軸方向長さは、流速に
はほとんど関係せず、分割間隔や圧力損失およ
び容積効率に関係する。同じ分割数のときに
は、円筒容器35が長いほど接着層61などの
占める割合が相対的に減つて容積効率が良くな
る。しかし、半透膜内側水路9の圧力損失や濃
度上昇はその水路の長さに直接関係するので、
取扱いの容易性も考慮して円筒容器35は適切
な長さが決められる。
Furthermore, the axial length of the cylindrical container 35 has little to do with the flow rate, but with the division interval, pressure loss, and volumetric efficiency. When the number of divisions is the same, the longer the cylindrical container 35 is, the smaller the proportion occupied by the adhesive layer 61 is, and the better the volumetric efficiency becomes. However, since the pressure loss and concentration increase in the semipermeable membrane inner waterway 9 are directly related to the length of the waterway,
The appropriate length of the cylindrical container 35 is determined in consideration of ease of handling.

実施例の実験結果 第1図の実施例は、中空繊維エレメント27に
A仕切部53を2ケ所、B仕切部55を1ケ所、
A,B,Aの順に等間隔に形成した4分割型浸透
装置である。この構造で、中空繊維状半透膜21
として東洋紡績のHFX−1(外径225μm、浸透量
210l/m2day)を用いて、交差配列に積層した外
径10cm、有効膜面積10m2の中空繊維エレメント2
7を、FRP(繊維強化プラスチツク)製円筒容器
35に密封固定し、3.5wt%食塩水とイオン交換
水を供給して実験を行つた。
Experimental Results of Examples In the example shown in FIG. 1, the hollow fiber element 27 has two A partitions 53 and one B partition 55.
This is a four-part infiltration device in which A, B, and A are formed at equal intervals in that order. With this structure, the hollow fibrous semipermeable membrane 21
Toyobo's HF X -1 (outer diameter 225μm, penetration amount
2 hollow fiber elements with an outer diameter of 10 cm and an effective membrane area of 10 m 2 stacked in a cross arrangement using
7 was sealed and fixed in a cylindrical container 35 made of FRP (fiber-reinforced plastic), and an experiment was conducted by supplying 3.5 wt% saline and ion exchange water.

その結果、この浸透装置において陸上方式で計
算した正味出力が最大となるのは、有効差圧
11atmにおいて食塩水供給流量対浸透流量の比
VS/ΔVが約1.1のときであつた。しかも、この特
性は連続して(10時間〜30時間)安定に得られ
た。このとき、陸上方式の機械効率は0.2358とな
る。
As a result, the maximum net output calculated using the land method for this infiltration device is the effective differential pressure
Ratio of saline supply flow rate to permeate flow rate at 11 atm
This was when V S /ΔV was approximately 1.1. Moreover, this property was stably obtained continuously (10 hours to 30 hours). At this time, the mechanical efficiency of the land-based method is 0.2358.

他の実施例 第2図は本発明の他の実施例の構成を示す。本
例のものは、A仕切部53を中空繊維エレメント
27の中央に1ケ所配設した2分割型浸透装置で
ある。この構造で、前記実験例と同程度以上の性
能を得ようとすると、次のようになる。前記実験
例の4分割型浸透装置の一区画の幅と仕切部接着
層61の幅との比を7対4とすると、同じ円筒容
器35および同じ中空繊維状半透膜21で2分割
の浸透装置を作れば、4分割と比較して膜面積は
1.28倍になり浸透流量も同様に増える。今、VS
ΔV=1.1となつたとすると、一段目外周流量は
1.517倍に増える。しかし、流路断面積も2.57倍
になるので最低膜面流速は1.69分の1になる。こ
のため、第2図の実施例では前実施例に比べて
A/dが1.69倍以上の中空繊維状半透膜21を選
ぶか、円筒容器35の内径が1.69倍程度のものを
選ぶ必要がある。
Other Embodiments FIG. 2 shows the configuration of another embodiment of the present invention. This example is a two-part infiltration device in which one partition A 53 is provided in the center of the hollow fiber element 27. With this structure, if we try to obtain a performance comparable to or better than that of the above experimental example, the following will occur. If the ratio of the width of one section of the four-division type osmosis device and the width of the partition adhesive layer 61 in the experimental example is 7 to 4, the same cylindrical container 35 and the same hollow fibrous semipermeable membrane 21 can divide the osmosis into two parts. If you make a device, the membrane area will be smaller compared to dividing into 4 parts.
It increases by 1.28 times, and the permeation flow rate increases as well. Now, V S /
Assuming that ΔV=1.1, the first stage outer circumferential flow rate is
Increases by 1.517 times. However, since the cross-sectional area of the flow path also increases by 2.57 times, the minimum membrane surface flow velocity becomes 1/1.69. Therefore, in the embodiment shown in FIG. 2, it is necessary to select a hollow fibrous semipermeable membrane 21 with an A/d of 1.69 times or more compared to the previous embodiment, or to select a cylindrical container 35 whose inner diameter is approximately 1.69 times that of the previous embodiment. be.

[発明の効果] 以上説明したように、この発明は中空繊維型浸
透装置の中空繊維エレメントの半透膜外側水路に
仕切部を形成して偶数の区画にその水路を分割す
るようにしたので、高濃度溶液供給流量の浸透流
量に対する割合を少なくし、浸透圧利用濃度差発
電の効率を高める効果が得られ、また、外部配管
の誤接続を避けることができる効果が得られる。
[Effects of the Invention] As explained above, in the present invention, a partition is formed in the semipermeable membrane outer water channel of the hollow fiber element of the hollow fiber type infiltration device to divide the water channel into an even number of sections. It is possible to reduce the ratio of the high concentration solution supply flow rate to the permeation flow rate, thereby increasing the efficiency of concentration difference power generation using osmotic pressure, and also to avoid erroneous connections of external piping.

さらに本発明では、半透膜外側水路の区画を均
等にして出入口を円筒容器の両端において多孔芯
管と同軸位置に開口し、半透膜内側水路はエレメ
ント両端に出入口を設けたため浸透装置の両端に
半透膜外側と内側のそれぞれの出入口を設けるこ
とが可能となるので、発電プラントとして多数個
を並列に設置することが容易となり、実装密度が
向上でき、設置面積を少なくすることができる。
Furthermore, in the present invention, the sections of the semipermeable membrane outer water channel are made equal, and the inlets and outlets are opened at both ends of the cylindrical container at coaxial positions with the porous core pipe, and the semipermeable membrane inner water channel is provided with inlets and outlets at both ends of the element, so that the inlet and outlet ports are provided at both ends of the osmosis device. Since it is possible to provide entrances and exits on the outside and inside of the semipermeable membrane, it becomes easy to install a large number of them in parallel as a power generation plant, improving the packaging density and reducing the installation area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明の実施例
の構成を示す断面図、第3図および第4図はそれ
ぞれ浸透圧利用濃度差発電の構成を示す系統図、
第5図は従来の中空繊維型逆浸透分離装置の構成
を示す断面図、第6図はその要部を拡大して詳細
に示す断面図、第7図は従来の他の浸透装置の構
成を示す正面図、第8図は従来のさらに他の浸透
装置の構成を示す断面図である。 3……半透膜外側水路、9……半透膜内側水
路、21……中空繊維状半透膜、23……多孔芯
管、25,25′……接着層、27……中空繊維
エレメント、29,29′……内部コネクタ、3
1,31′……集水スペーサ、33,33′……端
板、35……円筒容器、37……半透膜外側水路
入口、39……半透膜外側水路出口、41……半
透膜内側水路出口、47……半透膜内側水路入
口、51……シール、53……A仕切部、55…
…B仕切部、57……栓、59……シール、61
……仕切部接着層、VS……高濃度溶液供給量、
ΔV……浸透流量。
FIGS. 1 and 2 are cross-sectional views showing the configuration of an embodiment of the present invention, and FIGS. 3 and 4 are system diagrams showing the configuration of concentration difference power generation using osmotic pressure, respectively.
Figure 5 is a sectional view showing the configuration of a conventional hollow fiber type reverse osmosis separator, Figure 6 is a sectional view showing its main parts in detail, and Figure 7 is a sectional view showing the configuration of another conventional osmosis device. The front view shown in FIG. 8 is a sectional view showing the configuration of still another conventional infiltration device. 3... Semipermeable membrane outer water channel, 9... Semipermeable membrane inner water channel, 21... Hollow fibrous semipermeable membrane, 23... Porous core tube, 25, 25'... Adhesive layer, 27... Hollow fiber element , 29, 29'...Internal connector, 3
1, 31'... Water collection spacer, 33, 33'... End plate, 35... Cylindrical container, 37... Semipermeable membrane outer water channel inlet, 39... Semipermeable membrane outer water channel outlet, 41... Semi-permeable Membrane inner water channel outlet, 47... Semipermeable membrane inner water channel inlet, 51... Seal, 53... A partition, 55...
...B partition, 57...Plug, 59...Seal, 61
...adhesive layer of partition, V S ...high concentration solution supply amount,
ΔV……Permeation flow rate.

Claims (1)

【特許請求の範囲】 1 a 多孔芯管の周囲に中空繊維状の半透膜を
配列積層して該半透膜の両端を接着固定し、こ
れにより半透膜外側水路と半透膜内側水路とを
区分した中空繊維エレメントと、 b 該中空繊維エレメントを密封固定した円筒容
器と、 c 前記中空繊維エレメント側の前記半透膜外側
水路に配設して該半透膜外側水路を偶数に均等
に区画する仕切部と、 d 奇数番目の該仕切部の位置で前記多孔芯管内
の前記半透膜外側水路を塞ぐ栓とを具備し、 e 前記円筒容器の一方の端部において前記多孔
芯管と同軸に前記半透膜外側水路の入口が開口
し、該半透膜外側水路の入口の周囲に前記半透
膜内側水路の出口が開口し、かつ f 前記円筒容器の他方の端部において前記多孔
芯管と同軸に前記半透膜外側水路の出口が開口
し、該半透膜外側水路の出口の周囲に前記半透
膜内側水路の入口が開口していることを特徴と
する濃度差発電用浸透装置。
[Claims] 1 a Hollow fibrous semipermeable membranes are arranged and laminated around a porous core tube, and both ends of the semipermeable membranes are adhesively fixed, thereby forming an outer water channel of the semipermeable membrane and an inner water channel of the semipermeable membrane. (b) a cylindrical container in which the hollow fiber element is sealed and fixed; (c) arranged in the semipermeable membrane outer water channel on the hollow fiber element side so that the semipermeable membrane outer water channels are evenly distributed. d) a stopper that closes the semipermeable membrane outer water channel in the porous core tube at an odd-numbered position of the partition, e) the porous core tube at one end of the cylindrical container; an inlet of the semipermeable membrane outer water channel opens coaxially with the semipermeable membrane outer water channel, an outlet of the semipermeable membrane inner water channel opens around the inlet of the semipermeable membrane outer water channel, and f at the other end of the cylindrical container. Concentration difference power generation characterized in that the outlet of the semipermeable membrane outer water channel opens coaxially with the porous core tube, and the inlet of the semipermeable membrane inner water channel opens around the outlet of the semipermeable membrane outer water channel. Infiltration equipment.
JP60196906A 1985-09-06 1985-09-06 Osmotic apparatus for salinity gradient power generation Granted JPS6258063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60196906A JPS6258063A (en) 1985-09-06 1985-09-06 Osmotic apparatus for salinity gradient power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60196906A JPS6258063A (en) 1985-09-06 1985-09-06 Osmotic apparatus for salinity gradient power generation

Publications (2)

Publication Number Publication Date
JPS6258063A JPS6258063A (en) 1987-03-13
JPH0530996B2 true JPH0530996B2 (en) 1993-05-11

Family

ID=16365613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60196906A Granted JPS6258063A (en) 1985-09-06 1985-09-06 Osmotic apparatus for salinity gradient power generation

Country Status (1)

Country Link
JP (1) JPS6258063A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO314575B1 (en) * 2000-08-04 2003-04-14 Statkraft Sf Semipermeable membrane and method for providing electric power as well as a device
JP4538732B2 (en) * 2005-02-28 2010-09-08 東洋紡績株式会社 Hollow fiber membrane module leak detection method and leak detection device
JP5061059B2 (en) * 2008-08-06 2012-10-31 ダイセン・メンブレン・システムズ株式会社 Hollow fiber membrane module
SG185671A1 (en) * 2010-05-21 2012-12-28 Adrian Brozell Self-assembled surfactant structures
US10259723B2 (en) 2010-05-21 2019-04-16 Znano Llc Self-assembled surfactant structures
JP5514909B2 (en) * 2010-06-28 2014-06-04 協和機電工業株式会社 Hollow fiber type forward osmosis membrane
WO2013065293A1 (en) * 2011-10-31 2013-05-10 Jfeエンジニアリング株式会社 Method and device for preparing fresh water
CN103192967B (en) * 2013-03-25 2015-05-06 上海海事大学 Submarine emergency driving device and use method
JP6076831B2 (en) * 2013-05-22 2017-02-08 ダイセン・メンブレン・システムズ株式会社 Hollow fiber membrane module
JP2015001209A (en) * 2013-06-17 2015-01-05 株式会社神鋼環境ソリューション Power generation device, and power generation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102202A (en) * 1980-12-18 1982-06-25 Toyobo Co Ltd Fluid separator
JPS607905A (en) * 1983-06-27 1985-01-16 Toyobo Co Ltd Fluid separation apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102202A (en) * 1980-12-18 1982-06-25 Toyobo Co Ltd Fluid separator
JPS607905A (en) * 1983-06-27 1985-01-16 Toyobo Co Ltd Fluid separation apparatus

Also Published As

Publication number Publication date
JPS6258063A (en) 1987-03-13

Similar Documents

Publication Publication Date Title
US4613436A (en) Membrane assembly for fluid separations-disk
US4451369A (en) Fluid separation apparatus
Loeb Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations
US4207192A (en) Hollow filament separatory module and method of fabrication
EP1742724B1 (en) Filtration apparatus with pressure vessels for holding cylindrical filtration cartridges
US4293419A (en) Hollow fiber membrane separation apparatus
JPH0530996B2 (en)
US3774771A (en) Reverse osmosis module
CN105916572B (en) For the just porous outlet and the positive infiltration including it or pressure retarded osmosis module of infiltration or pressure retarded osmosis
US8506808B2 (en) Tubesheet and method for making and using the same
CN103180033A (en) Multi-leaf reverse osmosis element
EP0540877A2 (en) Double ended hollow fiber bundle and fluids separation apparatus
CN103167902A (en) Membrane separation module
ES2848117T3 (en) Hollow fiber membrane cartridge and fluid separation module
US10391451B2 (en) Osmosis apparatus
WO1998023361A1 (en) Apparatus and method for reverse osmosis desalination
KR102074257B1 (en) Cylindrical reverse electrodialysis device
HU197223B (en) Candle filter of coil diaphragm
JPH0558769B2 (en)
US11000808B2 (en) Sheet-shaped hollow fiber membrane module and membrane separation unit
US20220097005A1 (en) A filter device, and method of assembly
CN103796743A (en) Membrane module for organophile pervaporation
US3710946A (en) Welded connectors for tubular separator module
JPH01115410A (en) Osmosis device between solutions
JPH06142462A (en) Hollow fiber made separating module having coated fiber bundle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term