JP4538732B2 - Hollow fiber membrane module leak detection method and leak detection device - Google Patents

Hollow fiber membrane module leak detection method and leak detection device Download PDF

Info

Publication number
JP4538732B2
JP4538732B2 JP2005053468A JP2005053468A JP4538732B2 JP 4538732 B2 JP4538732 B2 JP 4538732B2 JP 2005053468 A JP2005053468 A JP 2005053468A JP 2005053468 A JP2005053468 A JP 2005053468A JP 4538732 B2 JP4538732 B2 JP 4538732B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
water
aqueous solution
leak detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005053468A
Other languages
Japanese (ja)
Other versions
JP2006231289A (en
Inventor
辰義 中
秀樹 三原
聡 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2005053468A priority Critical patent/JP4538732B2/en
Publication of JP2006231289A publication Critical patent/JP2006231289A/en
Application granted granted Critical
Publication of JP4538732B2 publication Critical patent/JP4538732B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、逆浸透膜またはナノろ過膜からなる中空糸膜エレメントまたは中空糸膜モジュールのリーク検出方法およびリーク検出装置に関する。より詳しくは、リーク検出において染料を使用しないため洗浄性に優れ、かつ精度良くリークを検出することができるリーク検出方法およびリーク検出装置に関する。   The present invention relates to a leak detection method and a leak detection apparatus for a hollow fiber membrane element or a hollow fiber membrane module comprising a reverse osmosis membrane or a nanofiltration membrane. More specifically, the present invention relates to a leak detection method and a leak detection apparatus that can detect leaks with high accuracy and excellent cleaning properties because no dye is used in leak detection.

中空糸型の選択透過性膜、中でも逆浸透膜およびナノろ過膜は海水の淡水化、医薬・医療用水、超純水製造といった幅広い分野で使用されている。逆浸透膜とは膜分離技術振興協会規格AMST−002には試験液の塩化ナトリウム濃度が500〜2,000mg/lで操作圧力が0.5〜3.0MPaの評価条件の下で塩化ナトリウム除去率93%以上の膜と定義され、また膜分離技術振興協会規格AMST003の5.2の通水能力及び塩化ナトリウム除去性能又はTDS除去性能試験によって得られた塩化ナトリウム除去率が、試験液の塩化ナトリウム濃度またはTDS濃度が3.0×104〜6.0×104mg/lの範囲で操作圧力5.0〜10.0MPaの評価条件の下で、平均濃度基準除去率が99.0%以上、入口濃度基準除去率が98.8%以上得られる膜と定義されている。ナノろ過膜とは、膜分離技術振興協会規格AMST−002には操作圧力1.5MPa以下で使用され、除去率90%以上を示す分離対象物質の分子量範囲が200〜1000を示し、試験液の塩化ナトリウム濃度が500〜2,000mg/lで操作圧力が0.3〜1.5MPaの評価条件の下で塩化ナトリウム除去率5%以上93%未満の膜と定義されている。 Hollow fiber type selectively permeable membranes, particularly reverse osmosis membranes and nanofiltration membranes, are used in a wide range of fields such as seawater desalination, pharmaceutical / medical water, and ultrapure water production. What is reverse osmosis membrane? Membrane separation technology promotion association standard AMST-002 removes sodium chloride under the evaluation conditions of sodium chloride concentration of test solution of 500-2,000 mg / l and operating pressure of 0.5-3.0 MPa. It is defined as a membrane having a rate of 93% or more, and the sodium chloride removal rate obtained by the 5.2 water passage ability and sodium chloride removal performance or TDS removal performance test of the Association for Promotion of Membrane Separation Technology AMST003 is the chloride concentration of the test solution. When the sodium concentration or TDS concentration is in the range of 3.0 × 10 4 to 6.0 × 10 4 mg / l, the average concentration reference removal rate is 99.0 under the evaluation conditions of the operating pressure of 5.0 to 10.0 MPa. % Or more and an inlet concentration reference removal rate of 98.8% or more can be obtained. The nanofiltration membrane is used in the membrane separation technology promotion association standard AMST-002 at an operating pressure of 1.5 MPa or less, and the molecular weight range of the separation target substance showing a removal rate of 90% or more is 200 to 1000. It is defined as a membrane having a sodium chloride removal rate of 5% or more and less than 93% under the evaluation conditions of a sodium chloride concentration of 500 to 2,000 mg / l and an operating pressure of 0.3 to 1.5 MPa.

中空糸膜を集束し端部を樹脂にて接着し、樹脂部を切削加工することにより透過水が吐出する開口面を形成したものを中空糸膜エレメント、これにOリング等のシール部材を取り付けた後圧力容器に組み立てたものを中空糸膜モジュールと呼ぶ。また中空糸膜を束ねて圧力容器に詰め込み、端部に接着樹脂を注入し硬化させ、開口面を切削加工した圧力容器と一体型の中空糸膜モジュールもある。中空糸膜モジュールに海水や河川水、浄水やプロセス用水等を中空糸膜の外側に加圧供給し、透過水と濃縮水に分離することで工業的に利用される。透過水の水質としては塩化物イオン濃度、電気伝導率、蒸発残留物濃度、低分子量有機物濃度、ウィルス、パイロジェン等の項目に対して要求品質が設定されている。逆浸透膜およびナノろ過膜、中空糸膜エレメント、中空糸膜モジュールにリークがあると、透過水の水質が低下し製品としての実用価値がなくなるばかりか、製造工程においては歩留まりが低下しロスが発生する。
高純度の水を得るには高性能な中空糸膜エレメントおよび中空糸膜モジュールが求められる。製造工程において中空糸膜のリークによる性能低下を防止することは重要であるが、製造ラインによって生じるリークを確実に検出し補修することは、製品の安全性・経済的な面からも重要である。
A hollow fiber membrane element is formed by concentrating the hollow fiber membrane, bonding the end with resin, and cutting the resin portion to form an opening surface through which permeated water is discharged. A sealing member such as an O-ring is attached to the hollow fiber membrane element. After that, the one assembled in the pressure vessel is called a hollow fiber membrane module. There is also a hollow fiber membrane module integrated with a pressure vessel in which hollow fiber membranes are bundled and packed in a pressure vessel, an adhesive resin is injected and cured at the end, and the opening surface is cut. Seawater, river water, purified water, process water and the like are pressurized and supplied to the hollow fiber membrane module outside the hollow fiber membrane and separated into permeated water and concentrated water for industrial use. As the quality of permeated water, required quality is set for items such as chloride ion concentration, electrical conductivity, evaporation residue concentration, low molecular weight organic matter concentration, virus, pyrogen and the like. If there are leaks in reverse osmosis membranes, nanofiltration membranes, hollow fiber membrane elements, and hollow fiber membrane modules, the quality of the permeated water will deteriorate and the practical value of the product will not be lost. appear.
In order to obtain high-purity water, high-performance hollow fiber membrane elements and hollow fiber membrane modules are required. While it is important to prevent performance degradation due to leaks in the hollow fiber membrane in the manufacturing process, it is important from the safety and economic aspects of the product to reliably detect and repair leaks that occur in the production line. .

これまで選択透過性膜のリーク検出方法に関する技術は種々報告されている。非特許文献1には中空糸膜モジュールの供給水に染料を添加し、中空糸開口面へシート状物を取り付け、シート状物の染めの状態を確認する方法が報告されている。特許文献1には運転中の中空糸膜モジュールに染料のCrystal violetを添加した供給水を圧入し、漏洩する染料を観察する方法が、非特許文献2には染料のTrypan Blueが、更に非特許文献3にはEosine Yellowishを使用する方法が報告されている。また特許文献2には、染料溶液を用いた逆浸透膜の欠陥検出方法において染料として逆浸透膜には吸着されない食用色素を用い、かつ欠陥から漏洩した染料の検出手段として該食用色素を吸着すると共にイオン交換能を有する多孔性シート状物を用いる検出方法が報告されている。
しかしながら供給水に染料を添加し、開口面へシート状物を取り付けてリークしてきた染料をシ−ト状物に転写する検出方法では中空糸膜への染料の残留があり、洗浄水の使用量が多くなりコストがかさむ、排水による環境負荷が大きいといった問題があった。また開口面へ取り付けたシート状物を剥しながらリーク箇所を照らし合わせる際、実際のリーク箇所とのずれが起こり易くなり、リーク部分を補修した際の水質向上効果が完全なものではないことがあった。
S.Sourirajan,Reverse osmosis and synthetic membranes,p.334,NRCC(1977) 米国特許USP3,567,632号 “In−situ and Dynamically−formed Reverse−Osmosis Membranes”,Research and Development Progress Report, No.730,U.S. Government Printing Office(1971) 「膜」、第一巻、第3号、第231頁(1976) 特開平6−254358号公報
Various techniques relating to leak detection methods for selectively permeable membranes have been reported so far. Non-Patent Document 1 reports a method in which a dye is added to water supplied to a hollow fiber membrane module, a sheet is attached to the opening surface of the hollow fiber, and the dyed state of the sheet is confirmed. Patent Document 1 discloses a method for observing leaked dye by injecting a supply water in which a dye crystal violet is added to a hollow fiber membrane module in operation, and Non-Patent Document 2 further describes a dye Trypan Blue. Reference 3 reports a method of using Eosine Yellowish. Further, Patent Document 2 uses an edible pigment that is not adsorbed on the reverse osmosis membrane as a dye in a method for detecting a defect of a reverse osmosis membrane using a dye solution, and adsorbs the edible pigment as a means for detecting a dye leaked from the defect. In addition, a detection method using a porous sheet-like material having ion exchange ability has been reported.
However, in the detection method in which a dye is added to the feed water and a sheet-like material is attached to the opening surface to transfer the leaked dye to a sheet-like material, the dye remains in the hollow fiber membrane, and the amount of washing water used However, there are problems that the cost increases and the environmental load due to drainage is large. Also, when the leaked part is illuminated while peeling off the sheet attached to the opening surface, the deviation from the actual leaked part is likely to occur, and the water quality improvement effect when repairing the leaked part may not be perfect. It was.
S. Soulirajan, Reverse osmosis and synthetic membranes, p. 334, NRCC (1977) US Pat. No. 3,567,632 “In-situ and Dynamically-Formed Reverse-Osmos Members”, Research and Development Progress Report, No. 4; 730, U.S. S. Government Printing Office (1971) "Membrane", Vol. 1, No. 3, p.231 (1976) JP-A-6-254358

次に中空糸膜モジュールまたは中空糸膜エレメントの中空糸膜の外側より気体を圧入して、中空糸膜モジュールまたは中空糸膜エレメントの開口面上に液体を満たし気泡の発生を見ることでリークを検出する方法がある。特許文献3には開口面に液体をはり込み中空糸膜の外側から気体を圧入して開口面上の液体に気柱を生成せしめることによりリークしている中空糸を個々に検出する方法が記載されている。また特許文献4には中空糸膜モジュールの開口面側の端末に透明なキャップを設け、中空糸膜の外側が内側よりも圧力が高くなるように空気を送り、リークがある中空糸膜の端末から漏出してくる空気の泡を透明キャップを通して検出するリーク検査方法が開示されている。しかしながら、特許文献3に記載の方法では、中空糸膜モジュールを倒立させる必要があり大型のモジュールに対しては作業性・安全性に問題がある。またリーク箇所以外からも気泡が発生するため、開口面全体から出てくる気泡の大小、速度差によりリークを判定する必要があり、大きなリークしか検出できないといった問題がある。
特開昭55−70258号公報 特開昭62−140607号公報
Next, gas is injected from the outside of the hollow fiber membrane of the hollow fiber membrane module or hollow fiber membrane element, the liquid is filled on the opening surface of the hollow fiber membrane module or hollow fiber membrane element, and the occurrence of air bubbles is observed. There is a way to detect. Patent Document 3 describes a method of individually detecting leaking hollow fibers by inserting a liquid into the opening surface and injecting gas from the outside of the hollow fiber membrane to generate an air column in the liquid on the opening surface. Has been. Patent Document 4 discloses a hollow fiber membrane terminal having a leak by providing a transparent cap at the end of the hollow fiber membrane module on the opening surface side, sending air so that the pressure on the outer side of the hollow fiber membrane is higher than that on the inner side. There is disclosed a leak inspection method for detecting air bubbles leaking from a through a transparent cap. However, in the method described in Patent Document 3, it is necessary to invert the hollow fiber membrane module, and there is a problem in workability and safety for a large module. Further, since bubbles are generated from other than the leak location, it is necessary to determine the leak based on the size and speed difference of the bubbles coming out from the entire opening surface, and there is a problem that only a large leak can be detected.
JP-A-55-70258 JP-A-62-140607

特許文献5には放射性物質を供給液に添加し、透過液中に漏れ出た放射性物質からの放射線を検出してリークの有無を検出する方法が開示されている。しかしながらこの方法では高価な放射線検出器が必要であり人体や環境への放射線の影響を考慮する必要があり大掛かりな設備が必要となる。
特開平10−137561号公報
Patent Document 5 discloses a method of detecting the presence or absence of a leak by adding a radioactive substance to a supply liquid and detecting radiation from the radioactive substance leaking into the permeate. However, this method requires an expensive radiation detector, and it is necessary to consider the influence of radiation on the human body and the environment, which requires a large facility.
JP-A-10-137561

非特許文献4には中空糸型逆浸透膜モジュールにいわゆる「spider」治具を取り付けることで中空糸膜エレメントの開口面を剥き出しにした状態で中空糸膜モジュールの運転を可能とし、開口面から出てくる透過水の出方を目視で観察しリークを判別するといった方法が報告されている。しかしながら開口面を剥き出しにした状態で中空糸膜モジュールを運転した際に開口面から出てくる透過水を目視観察し、しみ出す程度の流れはリークなしと判断し、スプレー状に噴出すものをリークとして判断する本方法では、大きいリークしか検出できないのが現実である。
ASTM D3923−94
Non-Patent Document 4 discloses that the hollow fiber membrane module can be operated with the open surface of the hollow fiber membrane element exposed by attaching a so-called “spider” jig to the hollow fiber type reverse osmosis membrane module. There has been reported a method of visually observing how the permeated water comes out and discriminating leaks. However, when the hollow fiber membrane module is operated with the opening surface exposed, the permeated water coming out from the opening surface is visually observed. In the present method for judging as a leak, only a large leak can be detected in reality.
ASTM D3923-94

特許文献5には疎水性中空糸膜装置に該中空糸膜の臨海表面張力以上の表面張力を有する液体を加圧供給し、液体がリークしてきた箇所を修理する方法が開示されている。中空糸膜の素材としては疎水性のポリエチレン、ポリプロピレン、PVDF、PTFE等が、液体としては水があげられている。しかしながら逆浸透膜やナノろ過膜にはより親水性の高い膜素材が使用されるのが一般的で、水を加圧供給した場合は開口面から透過水が一面に吐出しリークとの区別がつかないのが現実である。
特開昭58−75559号公報
Patent Literature 5 discloses a method for repairing a portion where the liquid has leaked by pressurizing and supplying a liquid having a surface tension equal to or greater than the sea surface tension of the hollow fiber membrane to the hydrophobic hollow fiber membrane device. Examples of the material for the hollow fiber membrane include hydrophobic polyethylene, polypropylene, PVDF, PTFE, and the like, and the liquid includes water. However, membrane materials with higher hydrophilicity are generally used for reverse osmosis membranes and nanofiltration membranes. When water is supplied under pressure, permeated water is discharged from the opening surface to distinguish it from leaks. The reality is that they are not connected.
JP 58-75559 A

本発明は、このような従来技術の問題点を解決することを目的とするものであって、中空糸膜モジュールをリーク検出作業した後の染料の残留がなく、洗浄の手間がかからず、かつ大掛かりな設備を必要とせず微小なリークまで感度よく検出する方法およびリーク検出装置を提供するものである。   The present invention aims to solve such problems of the prior art, there is no residual dye after performing leak detection work on the hollow fiber membrane module, and it does not take time and effort for cleaning, It is another object of the present invention to provide a method and a leak detection apparatus for detecting even a minute leak with high sensitivity without requiring a large facility.

本発明者らは前記課題を解決するため鋭意研究した結果、本発明に到達した。本発明は以下の構成を有する。
(1)中空糸膜が逆浸透膜またはナノろ過膜である中空糸膜モジュ−ルの中空糸膜集束体の開口面からリークを検出する方法において、濃度が調整された水溶液を該水溶液の持つ浸透圧よりも低い操作圧力で該中空糸膜モジュ−ルの中空糸膜の外側に供給し、該開口面から漏れ出てくる水溶液を検出することを特徴とするリーク検出方法。
(2)該水溶液に無機塩の水溶液を使用することを特徴とする(1)に記載のリーク検出方法。
(3)該水溶液の電気伝導率を指標として水溶液中の濃度を調整することを特徴とする(1)または(2)に記載のリーク検出方法。
(4)無機塩を溶解した水溶液の濃度が2〜5重量%であることを特徴とする(1)〜(3)いずれかに記載のリーク検出方法。
(5)有機化合物を溶解した水溶液の濃度が5〜15重量%であることを特徴とする(1)〜(3)いずれかに記載のリーク検出方法。
(6)操作圧力が水溶液の浸透圧よりも0.1〜3.7MPa低いことを特徴とする(1)〜(5)いずれかに記載のリーク検出方法。
(7)中空糸膜が逆浸透膜またはナノろ過膜である中空糸膜モジュ−ルの中空糸膜集束体の開口面からリークを検出するための設備であって、該開口面を開放した状態の中空糸膜モジュールと、濃度が調整された水溶液を該水溶液の持つ浸透圧よりも低い圧力で連続的に該中空糸膜モジュールに供給するポンプ設備と該水溶液の濃度を調整する設備を備えたことを特徴とするリーク検出装置
As a result of intensive studies to solve the above problems, the present inventors have reached the present invention. The present invention has the following configuration.
(1) In a method for detecting a leak from an opening surface of a hollow fiber membrane converging body of a hollow fiber membrane module in which the hollow fiber membrane is a reverse osmosis membrane or a nanofiltration membrane, the aqueous solution has an aqueous solution whose concentration is adjusted. A leak detection method, comprising: supplying an outside of the hollow fiber membrane of the hollow fiber membrane module at an operating pressure lower than an osmotic pressure, and detecting an aqueous solution leaking from the opening surface.
(2) The leak detection method according to (1), wherein an aqueous solution of an inorganic salt is used as the aqueous solution.
(3) The leak detection method according to (1) or (2), wherein the concentration in the aqueous solution is adjusted using the electrical conductivity of the aqueous solution as an index.
(4) The leak detection method according to any one of (1) to (3), wherein the concentration of the aqueous solution in which the inorganic salt is dissolved is 2 to 5% by weight.
(5) The leak detection method according to any one of (1) to (3), wherein the concentration of the aqueous solution in which the organic compound is dissolved is 5 to 15% by weight.
(6) The leak detection method according to any one of (1) to (5), wherein the operation pressure is 0.1 to 3.7 MPa lower than the osmotic pressure of the aqueous solution.
(7) A facility for detecting leakage from the opening surface of a hollow fiber membrane converging body of a hollow fiber membrane module in which the hollow fiber membrane is a reverse osmosis membrane or a nanofiltration membrane, wherein the opening surface is open A hollow fiber membrane module, a pump facility for continuously supplying an aqueous solution whose concentration has been adjusted to the hollow fiber membrane module at a pressure lower than the osmotic pressure of the aqueous solution, and a facility for adjusting the concentration of the aqueous solution Leak detection device characterized in that

本発明によりリーク検出後の中空糸膜エレメントや中空糸膜モジュールの洗浄が容易となり、洗浄水の使用量低減、排水の処理量の低減が達成できる。かつ最大の利点としては、リーク箇所からのみ溶液が出てくるのを観察できるのでリーク量が1cm3/分以下のような微小なリークが検出できかつリーク箇所を確実に特定できる点である。またリークを検出するための設備も大掛かりなものとならず経済的である。その結果として微小なリークも含めてリーク箇所を封止することによる水質向上効果が大きくなり、中空糸膜モジュールとしての性能が向上するばかりでなく製造工程においては大きな費用をかけずにロスを低減することが可能となる。 According to the present invention, it becomes easy to clean the hollow fiber membrane element or the hollow fiber membrane module after leak detection, and it is possible to reduce the amount of washing water used and the amount of waste water treated. The greatest advantage is that since the solution can be observed only from the leak location, a minute leak with a leak amount of 1 cm 3 / min or less can be detected and the leak location can be identified reliably. In addition, the equipment for detecting leaks is economical without being large-scale. As a result, the water quality improvement effect by sealing the leak location including minute leaks is increased, not only the performance as a hollow fiber membrane module is improved, but also the loss is reduced at a high cost in the manufacturing process. It becomes possible to do.

以下、本発明を詳細に説明する。
本来、逆浸透膜およびナノろ過膜は、水と濃度差のある水溶液を膜を介して接触させることで水は高濃度水溶液側へと導かれる性質がある。いわゆる正浸透現象である。本発明は、この原理を利用し、水溶液の持つ浸透圧以下の操作圧力で水溶液を膜へ供給し、透過水が出ない状態の開口面を観察し水溶液がリークしてくる箇所を特定することを特徴とするリーク検出方法およびリ−ク検出装置である。
Hereinafter, the present invention will be described in detail.
Originally, reverse osmosis membranes and nanofiltration membranes have the property that water is led to the high-concentration aqueous solution side by bringing an aqueous solution having a concentration difference with water through the membrane. This is the so-called forward osmosis phenomenon. The present invention utilizes this principle to supply the aqueous solution to the membrane at an operating pressure lower than the osmotic pressure of the aqueous solution, and to observe the opening surface in a state where no permeated water comes out to identify the location where the aqueous solution leaks. A leak detection method and a leak detection device.

逆浸透膜およびナノろ過膜の中空糸膜を形成する高分子重合体としては、酢酸セルロース類、ポリアミド類、ポリビニルアルコール類、ポリスルホン類等があるが、本発明は特にこれら素材に限定されるものではない。   Examples of the polymer that forms the hollow fiber membrane of the reverse osmosis membrane and the nanofiltration membrane include cellulose acetates, polyamides, polyvinyl alcohols, polysulfones, etc., but the present invention is particularly limited to these materials. is not.

また中空糸膜によってはその構造が活性層と支持層よりなるものがあり、活性層と支持層が同一素材でできているものは非対称膜と呼ばれ、これらが異なる素材でできているものは複合膜と呼ばれている。非対称膜は相転換法で得ることができ、一方複合膜は非対称膜と同様の操作で支持層となる支持膜を製膜した後、このものの表面にコート法や界面重合法、プラズマ重合法等により薄い活性層を形成させることで得ることができる。本発明に使用される中空糸膜はこれらの構造、製法には限定されない。さらに、中空糸膜の形状、即ち外径や内径、中空率(内径の自乗/外径の自乗)、真円度等には特に限定されず、中空糸膜の分離性能、即ち透過水量や塩除去率にも限定されるものではない。   Some hollow fiber membranes have an active layer and a support layer. The active layer and the support layer made of the same material are called asymmetric membranes, and these are made of different materials. It is called a composite membrane. An asymmetric membrane can be obtained by a phase change method, while a composite membrane is formed by forming a support membrane as a support layer in the same manner as the asymmetric membrane, and then coating, interfacial polymerization, plasma polymerization, etc. on the surface of this membrane Can be obtained by forming a thinner active layer. The hollow fiber membrane used in the present invention is not limited to these structures and production methods. Furthermore, the shape of the hollow fiber membrane, that is, the outer diameter and inner diameter, the hollowness (square of inner diameter / square of outer diameter), roundness, etc. are not particularly limited, and the separation performance of the hollow fiber membrane, that is, the amount of permeate and salt The removal rate is not limited.

また本発明の中空糸膜を集束し端部を接着する際に使用する接着樹脂としては、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂等が使用できるが特にこれらに限定されるものではない。接着樹脂で接着された中空糸膜集束体の少なくとも一つの端部は切削加工され、表面が平滑に処理されることで透過水が吐出する開口面が形成される。   In addition, as the adhesive resin used for concentrating the hollow fiber membrane of the present invention and bonding the end portions, epoxy resin, polyurethane resin, polyester resin and the like can be used, but are not particularly limited thereto. At least one end of the hollow fiber membrane bundle bonded with the adhesive resin is cut and the surface is treated to form an opening surface through which permeated water is discharged.

また中空糸膜エレメントの中空糸膜の充填率(中空糸膜エレメントの体積に占める中空糸膜のみの体積の割合)は35%〜75%、より多くは40%〜60%のものが一般的であるが、中空糸膜の充填率が高いほど中空糸膜同士の間隙が小さくなり接着樹脂の含浸斑が発生しやすく、リークしやすいといえる。本発明は中空糸膜の充填率により限定されるものではなく何れの充填率の中空糸膜モジュールにも適用可能である。   The filling rate of the hollow fiber membrane of the hollow fiber membrane element (ratio of the volume of only the hollow fiber membrane in the volume of the hollow fiber membrane element) is generally 35% to 75%, more usually 40% to 60%. However, it can be said that the higher the filling rate of the hollow fiber membranes, the smaller the gap between the hollow fiber membranes, the more likely to cause the impregnation spots of the adhesive resin, and the easier it is to leak. The present invention is not limited by the filling rate of the hollow fiber membrane, and can be applied to a hollow fiber membrane module having any filling rate.

また本発明の中空糸膜エレメントの中空糸膜エレメントの長さと中空糸膜エレメントの直径の比は4〜20であり、より多くは4〜15が一般的である。長さ/直径の比が小さい中空糸膜エレメントの方が中空糸膜の欠損、接着樹脂の含浸斑によるリークが顕著に表れるが、本発明は長さ/直径の比により限定されるものではなく、何れの長さ/直径の比の中空糸膜モジュールにも適用が可能である。   The ratio of the length of the hollow fiber membrane element to the diameter of the hollow fiber membrane element of the hollow fiber membrane element of the present invention is 4 to 20, and more generally 4 to 15. The hollow fiber membrane element having a smaller length / diameter ratio shows more noticeable leakage due to hollow fiber membrane defects and adhesive resin impregnation spots, but the present invention is not limited by the length / diameter ratio. The present invention can be applied to a hollow fiber membrane module having any length / diameter ratio.

また中空糸膜モジュールの形態については、FRP製や塩化ビニル製等の圧力容器に中空糸膜を挿入し端部を接着樹脂にて接着し、切削し開口面を成形した圧力容器一体型の中空糸膜モジュールや、中空糸膜を集束し片端部または両端部を接着し、切削し開口面を成形した中空糸膜エレメントを圧力容器の中にOリング等のシール部材により組み付けた中空糸膜モジュール等、また中空糸膜の外側から加圧通水する外圧型、中空糸膜の内側から加圧する内圧型等があるが、本発明は何れの形態の中空糸膜モジュールにも適用可能である。即ち圧力容器一体型の中空糸膜モジュールにおいては、通常はキャップ等を取り付けて透過水を集水するが、該キャップを取り付ける前の製造工程において、または該キャップを取り外すことで開口面を剥き出しの状態にすることができ、本発明のリーク検出方法が適用可能となる。また中空糸膜エレメントをOリング等のシール部材により圧力容器内に組み付けた中空糸膜モジュールにおいては、通常は集水板と端板で中空糸膜エレメントにかかる圧力を受け保持しているが、集水板を取り外しドーナツ型の端板を圧力容器に取り付けることで、中空糸膜エレメントが圧力容器から飛び出さないように開口面の外周部を保持することができる。開口面を剥き出しの状態にすることができるため本発明のリーク検出方法が適用可能となる。   As for the form of the hollow fiber membrane module, a hollow of pressure vessel integrated type in which a hollow fiber membrane is inserted into a pressure vessel made of FRP, vinyl chloride or the like, an end is bonded with an adhesive resin, and an opening surface is formed by cutting. Yarn membrane module, or hollow fiber membrane module in which hollow fiber membranes are bundled and bonded to one or both ends, and a hollow fiber membrane element formed by cutting and forming an opening surface is assembled in a pressure vessel with a seal member such as an O-ring In addition, there are an external pressure type in which pressurized water is passed from the outside of the hollow fiber membrane, an internal pressure type in which pressure is applied from the inside of the hollow fiber membrane, and the like, but the present invention can be applied to any form of hollow fiber membrane module. That is, in a hollow fiber membrane module integrated with a pressure vessel, normally, a cap or the like is attached to collect permeate, but the opening surface is exposed in the manufacturing process before the cap is attached or by removing the cap. The leak detection method of the present invention can be applied. Further, in the hollow fiber membrane module in which the hollow fiber membrane element is assembled in the pressure vessel by a sealing member such as an O-ring, the pressure applied to the hollow fiber membrane element is usually received and held by the water collecting plate and the end plate. By removing the water collecting plate and attaching a donut-shaped end plate to the pressure vessel, the outer peripheral portion of the opening surface can be held so that the hollow fiber membrane element does not jump out of the pressure vessel. Since the opening surface can be exposed, the leak detection method of the present invention can be applied.

以下図1〜7を用いて本発明の一例を更に詳細に説明する。図1に示すように、中空糸膜エレメント2にOリング7を取り付け、圧力容器1に挿入し端板3とドーナツ型端板6をナット5で固定する。ドーナツ型端板6の内径は中空糸膜エレメント2のチューブシートリング8の外周部分を約5mmの幅で押えるような寸法とした。この幅が小さすぎるとチューブシートリング8の外周部が破損する危険性があり、またこの幅が大きすぎると観察できる図2に示す開口面12の面積が小さくなるため好ましくない。供給水ライン9より供給された水溶液は、中空糸膜エレメント2の中心部にある多孔の芯管11を通じで中空糸膜エレメント2の中空糸膜全体に供給された後、濃縮水ライン10から排出される。図2は図1の中空糸膜モジュールのA部を側面から見た図である。開口面12上にリーク箇所13が観察される。図3は両端部に開口面を加工した中空糸膜エレメント2を圧力容器1に組み込んだ状態を表している。両端部に開口面を有する中空糸膜エレメント2の端部にOリング7およびXパッキン17を取り付けた後、圧力容器1に挿入しドーナツ型端板6を両端部に取り付ける。図3のA部の開口面の中心部に開口している多孔の芯管11に供給コネクター14を挿入し、供給コネクター押え治具15をナット5で圧力容器1に固定することで、内圧により飛び出すのを防止する。B部の開口面の中心部に開口している芯管11にプラグ16を取り付け同じく供給コネクター押え治具15を圧力容器1にナット5で固定することで飛び出しを防止する。供給水ライン9より供給された水溶液は、中空糸膜エレメント2の中心部にある多孔の芯管11を通じで中空糸膜エレメント2の中空糸膜全体に供給された後、濃縮水ライン10から排出される。図4は図3の中空糸膜モジュールのA部を側面から見た図である。供給コネクター押え治具15は立体的に加工されているため側面から観察することで開口面12全面を観察することができる。開口面12上にリーク箇所13が観察できる。また同時に反対側の端部の開口面も同様にリーク箇所が観察できる。
図5は圧力容器一体型の中空糸膜モジュールを表している。中空糸膜18がブラインパイプ19と共に圧力容器1に装填され片端を接着樹脂で接着し、切削加工により開口面を成形している。供給水ライン9より供給された溶液は、中空糸膜18に沿って流れ、ブラインパイプの先端から入り、濃縮水ライン10から排出される。キャップA20は取り付け前の製造工程での状態もしくは取り外した状態を表している。図6は図5の中空糸膜モジュールのA部を側面から見た図である。開口面12上にリーク箇所13が観察できる。
Hereinafter, an example of the present invention will be described in more detail with reference to FIGS. As shown in FIG. 1, an O-ring 7 is attached to the hollow fiber membrane element 2 and inserted into the pressure vessel 1, and the end plate 3 and the donut end plate 6 are fixed with nuts 5. The inner diameter of the donut-shaped end plate 6 was set such that the outer peripheral portion of the tube sheet ring 8 of the hollow fiber membrane element 2 was pressed with a width of about 5 mm. If the width is too small, the outer periphery of the tube seat ring 8 may be damaged. If the width is too large, the area of the opening surface 12 shown in FIG. The aqueous solution supplied from the supply water line 9 is supplied to the entire hollow fiber membrane of the hollow fiber membrane element 2 through the porous core tube 11 at the center of the hollow fiber membrane element 2 and then discharged from the concentrated water line 10. Is done. FIG. 2 is a side view of the A portion of the hollow fiber membrane module of FIG. A leak portion 13 is observed on the opening surface 12. FIG. 3 shows a state in which the hollow fiber membrane element 2 whose opening surfaces are processed at both ends is incorporated in the pressure vessel 1. After the O-ring 7 and the X packing 17 are attached to the ends of the hollow fiber membrane element 2 having opening surfaces at both ends, the doughnut-shaped end plates 6 are attached to both ends by inserting into the pressure vessel 1. By inserting the supply connector 14 into the porous core tube 11 opened at the center of the opening surface of part A in FIG. 3 and fixing the supply connector holding jig 15 to the pressure vessel 1 with the nut 5, Prevent jumping out. The plug 16 is attached to the core tube 11 opened at the center of the opening surface of the B part, and the supply connector holding jig 15 is fixed to the pressure vessel 1 with the nut 5 to prevent the protrusion. The aqueous solution supplied from the supply water line 9 is supplied to the entire hollow fiber membrane of the hollow fiber membrane element 2 through the porous core tube 11 at the center of the hollow fiber membrane element 2 and then discharged from the concentrated water line 10. Is done. FIG. 4 is a side view of the A portion of the hollow fiber membrane module of FIG. Since the supply connector pressing jig 15 is three-dimensionally processed, the entire opening surface 12 can be observed by observing from the side surface. A leak portion 13 can be observed on the opening surface 12. At the same time, a leak point can be observed on the opening surface at the opposite end.
FIG. 5 shows a pressure vessel integrated hollow fiber membrane module. The hollow fiber membrane 18 is loaded into the pressure vessel 1 together with the brine pipe 19, one end is bonded with an adhesive resin, and the opening surface is formed by cutting. The solution supplied from the supply water line 9 flows along the hollow fiber membrane 18, enters from the tip of the brine pipe, and is discharged from the concentrated water line 10. Cap A20 represents the state in the manufacturing process before attachment or the state removed. FIG. 6 is a side view of part A of the hollow fiber membrane module of FIG. A leak portion 13 can be observed on the opening surface 12.

図7は本発明のリーク検出装置を表している。図1、図3、図5に示したような開口面を観察できる中空糸膜モジュール32を供給水ポンプ31に接続する。供給水タンク29に所定濃度の水溶液30を調整し攪拌機28で攪拌する。供給水ポンプ31を起動し圧力調整バルブ36で供給水の圧力計33の値が所定値になるように調整する。濃縮水ライン10は供給水タンク29に連結しており水溶液を循環させる。循環している間、溶液30の濃度は濃度測定機器34を用いて管理し、また水温は温度計35で管理する。中空糸膜モジュール32内に残留していた水の影響で水溶液30の濃度は薄くなるため濃厚水添加ポンプ26を起動させ濃厚水25を供給水タンク29に添加し濃度調整を行う。濃厚水添加タンク24には濃厚水添加タンク攪拌機23が設置されていることが望ましい。濃厚水添加ポンプ26の運転、停止は濃度測定機器34の値により自動運転してもよいし、手動で実施してもよい。また水溶液の循環においては気泡が混入しないようにすることが好ましい。供給水ラインに脱気装置を設けてもよい。   FIG. 7 shows a leak detection apparatus of the present invention. A hollow fiber membrane module 32 capable of observing the opening surface as shown in FIGS. 1, 3, and 5 is connected to the feed water pump 31. An aqueous solution 30 having a predetermined concentration is prepared in the supply water tank 29 and stirred by the stirrer 28. The feed water pump 31 is activated and the pressure adjustment valve 36 is adjusted so that the value of the feed water pressure gauge 33 becomes a predetermined value. The concentrated water line 10 is connected to a supply water tank 29 and circulates the aqueous solution. During the circulation, the concentration of the solution 30 is managed by using the concentration measuring device 34, and the water temperature is managed by the thermometer 35. Since the concentration of the aqueous solution 30 is reduced due to the influence of water remaining in the hollow fiber membrane module 32, the concentrated water addition pump 26 is started and the concentrated water 25 is added to the supply water tank 29 to adjust the concentration. The concentrated water addition tank 24 is preferably provided with a concentrated water addition tank agitator 23. The operation and stop of the concentrated water addition pump 26 may be automatically operated according to the value of the concentration measuring device 34, or may be performed manually. Further, it is preferable that air bubbles are not mixed in the circulation of the aqueous solution. A deaeration device may be provided in the supply water line.

浸透圧を有する水溶液を調整するための水としては濾過した純水あるいは逆浸透膜処理した水を用いるのが好ましい。   As water for adjusting an aqueous solution having osmotic pressure, filtered pure water or water treated with a reverse osmosis membrane is preferably used.

浸透圧を有する水溶液を調整するためのイオン性の溶質としては、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、硫酸ナトリウム、硫酸マグネシウムなどの無機塩、酢酸ナトリウム、クエン酸ナトリウムなどの有機カルボン酸塩などがある。中性の有機化合物としてはグリセリン、ジグリセリンなどの多価アルコ−ル類、グルコース、トレハロ−ス、ショ糖、ラフィノ−スなどの糖類、各種の分子量のポリエチレングリコ−ル、シクロデキストリンなどがある。水への溶解度の高い溶質が好ましい。リークテスト後の中空糸膜モジュールの洗浄性や洗浄排水の処理の問題を考慮すると無機塩を使用することが好ましい。環境負荷の大きい銅などの重金属を含む無機塩や硝酸ナトリウム、硝酸カルシウムなどの窒素を含む無機塩、リン酸ナトリウムなどのリンを含む無機塩は避けるべきである。無機塩の中でコストや入手のし易さから逆浸透膜に対しては塩化ナトリウムが好ましい。塩化ナトリウム水溶液の替りに濾過した海水をそのまま、あるいは希釈して用いてもよい。ナノろ過膜に対しては塩化ナトリウムよりも除去率が高い硫酸マグネシウムが好ましい。無機塩や有機塩の除去率が低くてリ−ク検出の溶質として適切でないときは中性の除去率の高い有機化合物を選択すべきであるが排水のCODやBOD負荷が大きくなり排水処理設備が必要になる。なお水溶液には微生物の繁殖を防ぐためごく微量の殺菌剤を添加してもよい。   Examples of ionic solutes for preparing an aqueous solution having osmotic pressure include inorganic salts such as sodium chloride, potassium chloride, calcium chloride, magnesium chloride, sodium sulfate, and magnesium sulfate, and organic carboxylic acids such as sodium acetate and sodium citrate. There is salt. Neutral organic compounds include polyhydric alcohols such as glycerin and diglycerin, saccharides such as glucose, trehalose, sucrose, and raffinose, polyethylene glycols of various molecular weights, cyclodextrins, etc. . Solutes with high water solubility are preferred. It is preferable to use an inorganic salt in consideration of the problem of the cleanability of the hollow fiber membrane module after the leak test and the treatment of the cleaning waste water. Inorganic salts containing heavy metals such as copper, which have a large environmental load, inorganic salts containing nitrogen such as sodium nitrate and calcium nitrate, and inorganic salts containing phosphorus such as sodium phosphate should be avoided. Among the inorganic salts, sodium chloride is preferable for the reverse osmosis membrane because of cost and availability. Instead of the sodium chloride aqueous solution, filtered seawater may be used as it is or after dilution. For nanofiltration membranes, magnesium sulfate, which has a higher removal rate than sodium chloride, is preferred. If the removal rate of inorganic salts and organic salts is low and is not suitable as a solute for leak detection, organic compounds with a high neutral removal rate should be selected. Is required. A very small amount of a bactericidal agent may be added to the aqueous solution to prevent the growth of microorganisms.

水溶液の濃度について、低濃度の水溶液を送液した場合には水との濃度差が小さく正浸透現象と同時に拡散による透過も無視できなくなり、正浸透現象により開口面の透過水が中空糸膜の中空部に吸い取られていく力が弱くなることで開口面での観察が難しくなる。ナノろ過膜ではその傾向が顕著となる。また開口面の観察可能な作業時間が短くなるといった実際上の問題が発生する。高濃度水溶液を送液した場合、正浸透現象による中空糸膜の急激な脱水が起こり、中空糸膜の膜構造が変化して膜性能が低下するときがある。それゆえ供給水の濃度は適当な範囲にある必要があり、イオン性の無機塩を使用する場合には2wt%〜5wt%が好ましい。塩化ナトリウムを使用し濃度を2wt%〜5wt%とした際の水溶液がもつ25℃における浸透圧はおよそ1.6MPa〜4.0MPaである。例えば、硫酸マグネシウムを使用し濃度を2wt%〜5wt%とした際の水溶液がもつ25℃における浸透圧はおよそ0.5MPa〜1.1MPaである。有機化合物として糖類を使用する場合には、5wt%〜15wt%の濃度が適用可能である。例えば、ショ糖を使用し濃度を5wt%〜15wt%とした際の水溶液がもつ25℃における浸透圧はおよそ0.4MPa〜1.3MPaである。一般的にリ−ク検出に採用されている染料水溶液の濃度は極めて薄いため浸透圧はゼロ近くであり本発明は適用できない。   Regarding the concentration of the aqueous solution, when a low-concentration aqueous solution is fed, the difference in concentration with water is small and the permeation due to diffusion cannot be ignored at the same time as the normal osmosis phenomenon. Observation at the opening surface becomes difficult because the force absorbed by the hollow portion becomes weak. The tendency becomes remarkable in the nanofiltration membrane. In addition, there is a practical problem that the working time for observing the opening surface is shortened. When a high-concentration aqueous solution is fed, the hollow fiber membrane is suddenly dehydrated due to the forward osmosis phenomenon, and the membrane structure of the hollow fiber membrane may change to lower the membrane performance. Therefore, the concentration of the feed water needs to be in an appropriate range, and when using an ionic inorganic salt, 2 wt% to 5 wt% is preferable. The osmotic pressure at 25 ° C. of the aqueous solution when sodium chloride is used and the concentration is 2 wt% to 5 wt% is approximately 1.6 MPa to 4.0 MPa. For example, the osmotic pressure at 25 ° C. of the aqueous solution when magnesium sulfate is used and the concentration is 2 wt% to 5 wt% is approximately 0.5 MPa to 1.1 MPa. When saccharides are used as the organic compound, a concentration of 5 wt% to 15 wt% is applicable. For example, the osmotic pressure at 25 ° C. of the aqueous solution when sucrose is used and the concentration is 5 wt% to 15 wt% is approximately 0.4 MPa to 1.3 MPa. In general, the concentration of an aqueous dye solution used for leak detection is extremely thin, so the osmotic pressure is close to zero, and the present invention cannot be applied.

溶質が電解質である水溶液の濃度を管理、調整するためには電気伝導率計を用いることが好ましい。簡便であり作業性が向上する。中性の有機物の場合は屈折率計や密度計で濃度の管理ができる。   In order to manage and adjust the concentration of the aqueous solution in which the solute is an electrolyte, it is preferable to use an electric conductivity meter. It is simple and workability is improved. In the case of a neutral organic substance, the concentration can be controlled with a refractometer or density meter.

本発明において、操作圧力とは供給水ポンプを作動させ中空糸膜モジュール内に送り込む供給水の圧力を指す。操作圧力が高すぎると、中空糸膜モジュールまたは中空糸膜エレメントの開口面の外周部のみを固定しているためにチューブシートリングや開口面へかかる物理的な負荷が大きくなり物理的な損傷を及ぼすため好ましくない。操作圧力が低すぎるとリーク水量が減少してリークの検出力が低下する可能性がある。そのため、操作圧力としては0.3MPa〜1.5MPaが適当である。より好ましくは0.5〜1.0MPaである。
浸透圧と操作圧力の差は0.1MPa〜3.7MPa、好ましくは0.3MPa〜3.0MPaとなる条件でリーク検出作業を行う。浸透圧と操作圧力の差が0.1MPaよりも小さいと、中空糸膜の性能にも依存するが、開口面が濡れた状態となりリーク箇所の特定がしにくくなる。浸透圧と操作圧力の差を3.7MPaよりも大きくしてもリークの検出能力は変わらず、使用する溶質の無駄になるばかりか、廃水処理のコストも上がるため好ましくない。供給溶液の温度は常温(5℃〜35℃)であることが作業の面から好ましい。浸透圧は絶対温度にほぼ比例するため常温では浸透圧はほぼ一定である。
In the present invention, the operating pressure refers to the pressure of the feed water that is fed into the hollow fiber membrane module by operating the feed water pump. If the operating pressure is too high, only the outer periphery of the open surface of the hollow fiber membrane module or hollow fiber membrane element is fixed, so that the physical load on the tube seat ring and the open surface increases, resulting in physical damage. It is not preferable because it affects. If the operating pressure is too low, the amount of leaked water may be reduced and the leak detection capability may be reduced. Therefore, an operating pressure of 0.3 MPa to 1.5 MPa is appropriate. More preferably, it is 0.5 to 1.0 MPa.
The leak detection operation is performed under the condition that the difference between the osmotic pressure and the operating pressure is 0.1 MPa to 3.7 MPa, preferably 0.3 MPa to 3.0 MPa. If the difference between the osmotic pressure and the operating pressure is less than 0.1 MPa, the opening surface becomes wet, making it difficult to identify the leak location, depending on the performance of the hollow fiber membrane. Even if the difference between the osmotic pressure and the operating pressure is larger than 3.7 MPa, the leak detection capability does not change, and not only is the solute to be used wasted, but also the cost of wastewater treatment is increased. The temperature of the supply solution is preferably room temperature (5 ° C. to 35 ° C.) from the viewpoint of work. Since the osmotic pressure is almost proportional to the absolute temperature, the osmotic pressure is almost constant at room temperature.

供給水ポンプを作動させ水溶液が中空糸膜の外側に供給された時点で開口面に付着していた水は正浸透現象によって数秒で中空部内に吸い取られる。もちろん開口面に付着した水を紙タオル等で拭き取ってから供給水ポンプを作動させてもよい。その後供給水の圧力を所定圧力に調整することにより、中空糸膜が切断している部分や中空糸膜の表面の分離活性層に傷がついている部分、接着樹脂部にピンホールなどがある部分の開口面からは、水溶液が漏れ出てくる現象が観察される。正浸透現象により常に開口面の付着水がない状態でリーク箇所からのみ漏れ出てくる水溶液を検出できるのでリーク箇所の判別が容易である。   When the feed water pump is operated and the aqueous solution is supplied to the outside of the hollow fiber membrane, the water adhering to the opening surface is sucked into the hollow portion in a few seconds by the forward osmosis phenomenon. Of course, the water supply pump may be operated after wiping off the water adhering to the opening surface with a paper towel or the like. After that, by adjusting the pressure of the feed water to a predetermined pressure, the part where the hollow fiber membrane is cut, the part where the separation active layer on the surface of the hollow fiber membrane is damaged, the part where the adhesive resin part has pinholes, etc. A phenomenon in which the aqueous solution leaks out is observed from the opening surface. Since the aqueous solution that leaks only from the leaked portion can be detected in a state where there is always no adhering water on the opening surface due to the forward osmosis phenomenon, the leaked portion can be easily identified.

リークの程度としてはリーク量が1cm3/分以下の極微小なリークまで検出可能であり、10cm3/分程度の比較的大きなリークも確認できる。リークが発生する箇所としては、チューブシートリングとの接着界面、中心部、中空糸膜が開口している部分からのリークに大別できる。チューブシートリングとの接着界面や中心部からは比較的大きなリークが、中空糸膜の開口部からのリークは微小なリークが多く観察される。開口面のリーク箇所には鉛筆などで印をつけておく。リーク箇所の特定だけではなく、その漏れ方を観察することによりリークの発生原因まで推定することができる。リークの発生状態を確認することで製造工程での異常を早期発見・解析・対策することが可能となり工程の安定化、ロスの削減が可能である。 As the degree of leakage, it is possible to detect even a very small leak with a leak amount of 1 cm 3 / min or less, and a relatively large leak of about 10 cm 3 / min can also be confirmed. Locations where leakage occurs can be broadly classified into leakage from the interface with the tube sheet ring, the central portion, and the portion where the hollow fiber membrane is open. A relatively large leak is observed from the bonding interface with the tube sheet ring and the center, and a small leak is often observed from the opening of the hollow fiber membrane. Mark the leaked area of the opening with a pencil. In addition to specifying the leak location, the cause of the leak can be estimated by observing the leak. By checking the state of occurrence of leaks, it is possible to detect, analyze and take measures for abnormalities in the manufacturing process at an early stage, thereby stabilizing the process and reducing loss.

中空糸膜モジュールまたは中空糸膜エレメントのリーク箇所の封止(補修)方法の一例を以下に示す。開口面のリーク箇所に鉛筆で印を付けた中空糸膜モジュールまたは中空糸膜エレメントは圧力容器から抜き出し、開口面を上にした状態で倒立させる。中空糸膜エレメントが乾燥しないようにラップを捲き、鉛筆などで印をつけた開口面を刃先の直径が2mmのドリルを用いて深さ2mmの穴をあける。この状態で12時間以上放置し開口面を乾燥させる。ドリルで穴をあけた部分が乾燥していることを目視で確認し、エポキシ樹脂を注射器で注入する。所定時間放置しエポキシ樹脂を硬化させる。本発明ではリーク箇所の特定の精度が高いため、穴あけ加工する面積も小さくてすみかつ水質の改善効果が高いのが特長である。   An example of a method for sealing (repairing) a leak portion of the hollow fiber membrane module or the hollow fiber membrane element is shown below. The hollow fiber membrane module or the hollow fiber membrane element in which the leaked portion of the opening surface is marked with a pencil is extracted from the pressure vessel and inverted with the opening surface facing up. Wrap the wrap so that the hollow fiber membrane element does not dry, and make a hole with a depth of 2 mm on the opening surface marked with a pencil or the like using a drill with a blade diameter of 2 mm. In this state, it is left for 12 hours or more to dry the opening surface. Visually confirm that the drilled part is dry and inject the epoxy resin with a syringe. Allow to stand for a predetermined time to cure the epoxy resin. In the present invention, since the specific accuracy of the leak location is high, the area to be drilled is small and the effect of improving the water quality is high.

このリーク検出方法は操作性が良く無機塩を溶質として使用することにより、染料を用いた場合に比較して洗浄時間を短くできるという別の効果もある。すなわち、リーク検出を行う中空糸膜モジュールまたは中空糸膜エレメントを準備し、供給水を中空糸膜モジュールへ連続的に供給するための供給水ポンプに接続する。該供給水ポンプを運転し、操作圧力を所定値に調整し、供給水ポンプを起動後1分〜10分間で開口面を観察する。開口面のリークが確認された箇所に鉛筆で印をつける。その後中空糸膜モジュールまたは中空糸膜エレメントを水道水や純水等にて15分間洗浄する。中空糸膜モジュールまたは中空糸膜エレメントの膜面積に応じて洗浄する際の流量は調整し洗浄排水の電気伝導率等を指標にして洗浄が完了していることを確認する。以上のように一連のリーク検出作業および洗浄作業が25分程度で実施でき作業効率がよい点も特長である。   This leak detection method is easy to operate and has another effect that cleaning time can be shortened by using an inorganic salt as a solute as compared with the case of using a dye. That is, a hollow fiber membrane module or a hollow fiber membrane element that performs leak detection is prepared, and connected to a supply water pump for continuously supplying supply water to the hollow fiber membrane module. The feed water pump is operated, the operating pressure is adjusted to a predetermined value, and the opening surface is observed 1 to 10 minutes after the feed water pump is started. Use a pencil to mark the area where the leak of the opening is confirmed. Thereafter, the hollow fiber membrane module or the hollow fiber membrane element is washed with tap water or pure water for 15 minutes. The flow rate at the time of washing is adjusted according to the membrane area of the hollow fiber membrane module or the hollow fiber membrane element, and it is confirmed that the washing is completed by using the electrical conductivity of the washing waste water as an index. As described above, a series of leak detection work and cleaning work can be performed in about 25 minutes, and the work efficiency is also good.

以下、実施例によって本発明を具体的に説明するが、本発明はこれによって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by this.

(電気伝導率の測定法)
電気伝導率計として市販のTOA社製CM−20Jを使用した。電気伝導率の値は25℃に換算した値を用いた。
(Measurement method of electrical conductivity)
A commercial CM-20J manufactured by TOA was used as an electrical conductivity meter. A value converted to 25 ° C. was used as the value of electrical conductivity.

(エンドトキシン濃度の測定法)
エンドトキシン濃度の定量方法としては日本工業規格JIS K8008に記載されている発色合成基質法を採用し、市販されているトキシカラーシステム(生化学工業株式会社製)を使用した。
(Method for measuring endotoxin concentration)
As a method for quantifying endotoxin concentration, a chromogenic synthetic substrate method described in Japanese Industrial Standard JIS K8008 was adopted, and a commercially available Toxicolor System (manufactured by Seikagaku Corporation) was used.

(逆浸透膜エレメントおよびナノ濾過膜モジュ−ルの性能測定法)
逆浸透膜の中空糸膜モジュールおよび中空糸膜エレメントの性能評価は日本工業規格JIS K3805に記載されている方法を用い、海水対応条件として供給水圧力5.4MPa、供給水の塩化ナトリウム濃度35000mg/L、回収率30%(透過水流量/供給水流量×100)、供給水温度25℃にて、かん水対応条件として供給水圧力2.9MPa、供給水の塩化ナトリウム濃度1500mg/L、回収率75%(透過水流量/供給水流量×100)、供給水温度25℃で行った。ナノろ過膜の性能評価は操作圧力0.5MPa、供給水の塩化ナトリウム濃度500mg/L、供給水のショ糖(分子量342)濃度500mg/L、回収率20%、供給水温度25℃の条件で測定した。塩除去率はいずれの場合も入口濃度基準の値を用いた(塩除去率(%)=(1−透過水濃度/供給水濃度)×100)。
(Performance measurement method of reverse osmosis membrane element and nanofiltration membrane module)
The performance evaluation of the hollow fiber membrane module and the hollow fiber membrane element of the reverse osmosis membrane uses the method described in Japanese Industrial Standard JIS K3805, the supply water pressure is 5.4 MPa, the supply water sodium chloride concentration is 35000 mg / L, recovery rate 30% (permeate flow rate / feed water flow rate × 100), feed water temperature 25 ° C., supply water pressure 2.9 MPa as supply water conditions, feed water sodium chloride concentration 1500 mg / L, recovery rate 75 % (Permeate flow rate / feed water flow rate × 100), and the feed water temperature was 25 ° C. The performance of the nanofiltration membrane was evaluated under the following conditions: operating pressure 0.5 MPa, sodium chloride concentration of feed water 500 mg / L, sucrose (molecular weight 342) concentration of feed water 500 mg / L, recovery rate 20%, feed water temperature 25 ° C. It was measured. In each case, the salt removal rate used was the value based on the inlet concentration (salt removal rate (%) = (1-permeate concentration / feed water concentration) × 100).

(中空糸型逆浸透膜の製膜)
市販の三酢酸セルロース(ダイセル化学工業株式会社製、酢化度61.5%)40重量部をエチレングリコール(三井東圧化学株式会社製)18重量部およびN−メチル−2−ピロリドン(三菱化学株式会社製)42重量部よりなる溶液を混合後昇温し製膜原液とした。この溶液を減圧下で脱泡した後、三分割ノズルより空中走行部を経て12〜20℃に冷却した水60重量部、エチレングリコール12重量部およびN−メチル−2−ピロリドン28重量部よりなる凝固液中に吐出させ中空糸膜を得た。ついで中空糸膜を十分水洗した後95℃〜98℃で20分間熱処理し、海水対応の中空糸膜として外径165μm、内径65μmの中空糸膜を得た。また、かん水対応用の中空糸膜としては80℃〜83℃の条件で20分間熱処理し、外径175μm、内径85μmの中空糸膜を得た。中空糸膜の逆浸透性能は海水対応条件として操作圧力5.4MPa、供給水中の塩化ナトリウム濃度35000mg/L、回収率5%以下、供給水温度25℃の条件で、かん水対応条件として供給水圧力2.9MPa、供給水の塩化ナトリウム濃度1500mg/L、回収率5%以下、供給水温度25℃の条件で測定した。
(Hollow fiber type reverse osmosis membrane production)
Commercially available cellulose triacetate (Daicel Chemical Industries, Ltd., acetylation degree 61.5%) 40 parts by weight ethylene glycol (Mitsui Toatsu Chemical Co., Ltd.) 18 parts by weight and N-methyl-2-pyrrolidone (Mitsubishi Chemical Corporation) (Product made) A solution consisting of 42 parts by weight was mixed and then heated to obtain a film-forming stock solution. This solution was degassed under reduced pressure, and then composed of 60 parts by weight of water cooled to 12 to 20 ° C. through an air traveling part from a three-part nozzle, 12 parts by weight of ethylene glycol, and 28 parts by weight of N-methyl-2-pyrrolidone. A hollow fiber membrane was obtained by discharging into a coagulation liquid. Subsequently, the hollow fiber membrane was sufficiently washed with water and then heat treated at 95 ° C. to 98 ° C. for 20 minutes to obtain a hollow fiber membrane having an outer diameter of 165 μm and an inner diameter of 65 μm as a seawater-compatible hollow fiber membrane. Moreover, as a hollow fiber membrane for brazing, heat treatment was performed for 20 minutes at 80 ° C. to 83 ° C. to obtain a hollow fiber membrane having an outer diameter of 175 μm and an inner diameter of 85 μm. The reverse osmosis performance of the hollow fiber membrane is as follows; operating pressure is 5.4 MPa for seawater conditions, sodium chloride concentration in feed water is 35000 mg / L, recovery rate is 5% or less, and feed water temperature is 25 ° C. The measurement was performed under the conditions of 2.9 MPa, sodium chloride concentration of feed water of 1500 mg / L, recovery rate of 5% or less, and feed water temperature of 25 ° C.

(中空糸型の逆浸透膜エレメントの製作)
この中空糸膜を使用してFRP製の多孔の芯管の外周に中空糸膜を所定の外径になりまで捲上げた。該捲上体の外周部には物理的な損傷を防止するためと通水時に中空糸膜が広がらないように動きを抑制するためにネット状の部材を組み付けた。該捲上体の端部を乾燥した後、接着金型にセットした。接着金型には予めチューブシートリングをセットしておき、金型の下部からビスフェノールA型のエポキシ樹脂を流し込むことで、捲上体の中空糸膜同士を接着すると同時にチューブシートリングも接着した。所定日数をかけ所定温度でエポキシ樹脂を硬化させ、捲上体を金型から抜き出した。温湯内に端部の接着樹脂部のみを所定時間浸漬しキュア−した。旋盤により樹脂部を切削し開口面を加工した。
(Production of hollow fiber type reverse osmosis membrane element)
Using this hollow fiber membrane, the hollow fiber membrane was wound up on the outer periphery of a porous core tube made of FRP to a predetermined outer diameter. A net-like member was assembled to the outer periphery of the upper body to prevent physical damage and to prevent movement of the hollow fiber membrane so that it does not spread when water passes. After the end of the upper body was dried, it was set in an adhesive mold. A tube sheet ring was set in advance in the bonding mold, and a bisphenol A type epoxy resin was poured from the lower part of the mold to bond the hollow fiber membranes of the upper body together with the tube sheet ring. The epoxy resin was cured at a predetermined temperature over a predetermined number of days, and the upper body was extracted from the mold. Only the adhesive resin part at the end was immersed in the hot water for a predetermined time and cured. The resin part was cut with a lathe to process the opening surface.

(中空糸型ナノ濾過膜の製膜)
ポリスルホン樹脂(テイジンアモコエンジニアリングプラスチックス社、Udel(登録商標)P−3500)20重量%、トリエチレングリコール4重量%、ラウリルベンゼンスルホン酸ナトリウム0.5重量%、およびジメチルアセトアミド75.5重量%を140℃で16時間加熱混合し、紡糸原液を調製した。二重管構造の中空糸製造用ノズルの外周部からこの紡糸原液を吐出し、中央部からはジメチルアセトアミド30重量%と水70重量%からなる水溶液を吐出させた。6cmにわたって空中走行させた後、水を主成分とする凝固浴中に15m/分で引き取り、ポリスルホン製多孔質中空糸膜を得た。メタフェニレンジアミン2.0重量%、トリエチルアミン1.0重量%、ラウリルスルホン酸ナトリウム0.3重量%、亜硫酸ナトリウム0.1重量%を逆浸透膜処理した水に溶解してアミン水溶液を作製し、この溶液に連続した前記ポリスルホン製多孔質中空糸膜を浸漬、通過させた。このアミン水溶液の濃度組成は一定になるように制御されている。続いてこの多孔質中空糸膜表面の過剰なアミン溶液を除去した後、30℃に制御されたトリメシン酸クロライド0.32重量%を含むn−ヘキサン、フロリナ−トFC−70、1重量%酢酸水溶液に順次接触させ、乾燥塔で105℃の乾熱処理を行った。さらに、水洗槽にて水洗し、外表面に架橋ポリアミドからなる薄膜を有する中空糸膜を得た。 この中空糸膜の外径、内径はそれぞれ350μm、200μmであった。ナノろ過膜としての性能は操作圧力0.5MPa、供給水中の塩化ナトリウム濃度500mg/L、供給水中のショ糖(分子量342)濃度500mg/L、供給水温度25℃の条件で測定した。
(Film formation of hollow fiber type nanofiltration membrane)
20% by weight of a polysulfone resin (Teijin Amoco Engineering Plastics, Udel® P-3500), 4% by weight of triethylene glycol, 0.5% by weight of sodium laurylbenzenesulfonate, and 75.5% by weight of dimethylacetamide. The mixture was heated and mixed at 140 ° C. for 16 hours to prepare a spinning dope. This spinning dope was discharged from the outer periphery of a double-pipe structure hollow fiber manufacturing nozzle, and an aqueous solution consisting of 30% by weight of dimethylacetamide and 70% by weight of water was discharged from the center. After running in the air for 6 cm, it was taken up in a coagulation bath containing water as a main component at 15 m / min, to obtain a polysulfone porous hollow fiber membrane. Dissolve 2.0% by weight of metaphenylenediamine, 1.0% by weight of triethylamine, 0.3% by weight of sodium lauryl sulfonate, 0.1% by weight of sodium sulfite in water subjected to reverse osmosis membrane treatment to prepare an aqueous amine solution, The polysulfone porous hollow fiber membrane continuous with this solution was immersed and passed. The concentration composition of the aqueous amine solution is controlled to be constant. Subsequently, after removing the excessive amine solution on the surface of the porous hollow fiber membrane, n-hexane containing 0.32% by weight of trimesic acid chloride controlled at 30 ° C., Fluorinert FC-70, 1% by weight acetic acid. Sequential contact with the aqueous solution was followed by a dry heat treatment at 105 ° C. in a drying tower. Further, it was washed with water in a washing tank to obtain a hollow fiber membrane having a thin film made of a crosslinked polyamide on the outer surface. The hollow fiber membrane had an outer diameter and an inner diameter of 350 μm and 200 μm, respectively. The performance as a nanofiltration membrane was measured under the conditions of an operating pressure of 0.5 MPa, a sodium chloride concentration of 500 mg / L in feed water, a sucrose (molecular weight 342) concentration in feed water of 500 mg / L, and a feed water temperature of 25 ° C.

(中空糸型のナノ濾過膜モジュ−ルの製作)
中空糸膜約2万本を片端がU字型で、他端の中空糸膜が開口している中空糸膜束の集合体からなる円筒状の巻上げ体にし、胴部の外径76mm、内径67mm、長さ300mmの塩化ビニル樹脂製の容器に挿入した。同時に、濃縮水の排出パイプとなるブラインパイプを装着した。その後、純水で30分間洗浄し液きりし、50℃の熱風で8時間以上乾燥させた。この容器に挿入された中空糸膜の開口面側の片端部をエポキシ樹脂固定し、切削して中空糸膜を開口させた後、外径88mmのキャップを両端に装着した。その後、80%メタノール2Lを30分間循環接触させた。この中空糸膜モジュールは外圧型中空糸膜モジュールであり、中空糸膜の開口部に透過水口を、中空糸膜のU字端部に供給水口を有し、前記ブラインパイプに連通して濃縮水口が設けられている。
(Production of hollow fiber type nanofiltration membrane module)
About 20,000 hollow fiber membranes are formed into a cylindrical wound body consisting of a bundle of hollow fiber membrane bundles having a U-shape at one end and an open hollow fiber membrane at the other end. It was inserted into a vinyl chloride resin container having a length of 67 mm and a length of 300 mm. At the same time, a brine pipe serving as a concentrated water discharge pipe was attached. Then, it was washed with pure water for 30 minutes, drained, and dried with hot air at 50 ° C. for 8 hours or more. One end of the hollow fiber membrane inserted into the container was fixed with epoxy resin and cut to open the hollow fiber membrane, and then caps with an outer diameter of 88 mm were attached to both ends. Thereafter, 2 L of 80% methanol was brought into circulation contact for 30 minutes. This hollow fiber membrane module is an external pressure type hollow fiber membrane module, which has a permeated water port at the opening of the hollow fiber membrane, a supply water port at the U-shaped end of the hollow fiber membrane, and communicates with the brine pipe to the concentrated water port. Is provided.

(実施例1)
FRP製の芯管の周囲に三酢酸セルロース製で外径165μm、内径65μmであり海水対応条件で測定した中空糸膜の性能が透過水量60L/m2/日、塩除去率99.90%である逆浸透中空糸膜を交差配置させ、中空糸膜エレメントを作製した。中空糸膜エレメントの寸法はΦ195×全長1135mm、総開口本数は56万本である。図1に示すように中空糸膜エレメントのチューブシートリング外周部のOリング溝にOリングを取り付け、内径が210mmの圧力容器に挿入した。この中空糸膜エレメントは外圧型であり、加圧時に中空糸膜エレメントが圧力容器から飛び出さないように、中空糸膜エレメント外周部のチューブシートリングの部分のみを支えることのできるドーナツ型の端板を圧力容器に取り付けた。これにより該中空糸膜モジュールに供給水を送液し加圧することができるようになるのと同時に、中空糸膜エレメントの開口面の透過水が出てくる全面およびチューブシートリングと開口面の界面も観察可能とした。この際、中空糸膜モジュールは横置きとした。次に該中空糸膜モジュールへ供給するための溶液を調整した。溶質としては工業塩(塩化ナトリウム)を使用し3.5wt%の濃度になるよう調合した(浸透圧は約2.8MPa)。濃度の管理は電気伝導率計を用いて行った。水溶液の温度は24℃〜25℃の範囲であった。
供給水を中空糸膜モジュールへ連続的に供給するための供給水ポンプを運転し、操作圧力を0.5MPaに調整した。中空糸膜モジュールの供給口より送液された供給水は、中空糸膜エレメント中心部にある芯管から径方向外側に向かって広がり、中空糸膜エレメント最外層と圧力容器との隙間を通じて濃縮水口から中空糸膜モジュール外へ排出される。この濃縮水は供給水タンクへと戻した。中空糸膜モジュール内部および中空部に残留している水により供給水の塩濃度は薄められるため、電気伝導率計によりモニターし、濃塩水を追加投入することにより所定の濃度になるよう調整を行った。
供給水ポンプを起動後10分後に開口面を観察した。開口面の外周部に近い部分に1ヶ所リークが確認されたため、その部分に鉛筆で印をつけた。中空糸膜エレメントを純水にて15分間洗浄後、圧力容器から抜き出し開口面を上にして倒立させた状態で水切りを行った。純水は上水を逆浸透で処理して作製した。鉛筆で印をつけたリーク箇所をドリルで穴をあけ、エポキシ樹脂を流し込み48時間かけて硬化させた。
Example 1
A hollow fiber membrane made of cellulose triacetate and having an outer diameter of 165 μm and an inner diameter of 65 μm around a core tube made of FRP, measured under seawater conditions, has a permeate flow rate of 60 L / m 2 / day and a salt removal rate of 99.90%. Some reverse osmosis hollow fiber membranes were crossed to produce a hollow fiber membrane element. The dimensions of the hollow fiber membrane element are Φ195 × total length 1135 mm, and the total number of openings is 560,000. As shown in FIG. 1, an O-ring was attached to the O-ring groove on the outer periphery of the tube sheet ring of the hollow fiber membrane element, and inserted into a pressure vessel having an inner diameter of 210 mm. This hollow fiber membrane element is an external pressure type, and a donut-shaped end that can support only the tube seat ring portion of the outer periphery of the hollow fiber membrane element so that the hollow fiber membrane element does not jump out of the pressure vessel during pressurization. A plate was attached to the pressure vessel. As a result, it becomes possible to supply and pressurize the supply water to the hollow fiber membrane module, and at the same time, the entire surface from which the permeated water comes out of the opening surface of the hollow fiber membrane element and the interface between the tube sheet ring and the opening surface. Was also observable. At this time, the hollow fiber membrane module was placed horizontally. Next, a solution to be supplied to the hollow fiber membrane module was prepared. An industrial salt (sodium chloride) was used as a solute, and the concentration was 3.5 wt% (osmotic pressure was about 2.8 MPa). The concentration was controlled using an electric conductivity meter. The temperature of the aqueous solution was in the range of 24 ° C to 25 ° C.
A supply water pump for continuously supplying the supply water to the hollow fiber membrane module was operated, and the operation pressure was adjusted to 0.5 MPa. The supply water sent from the supply port of the hollow fiber membrane module spreads radially outward from the core tube at the center of the hollow fiber membrane element and passes through the gap between the outermost layer of the hollow fiber membrane element and the pressure vessel. To the outside of the hollow fiber membrane module. This concentrated water was returned to the feed water tank. Since the salt concentration of the feed water is diluted by the water remaining in the hollow fiber membrane module and in the hollow part, it is monitored by an electric conductivity meter and adjusted to a predetermined concentration by adding concentrated salt water. It was.
The opening surface was observed 10 minutes after starting the feed water pump. Since one leak was found in a portion near the outer peripheral portion of the opening surface, the portion was marked with a pencil. The hollow fiber membrane element was washed with pure water for 15 minutes, then extracted from the pressure vessel, and drained in an inverted state with the opening face up. Pure water was prepared by treating the water with reverse osmosis. A leak point marked with a pencil was drilled with a drill, and an epoxy resin was poured and cured for 48 hours.

リーク封止後の中空糸膜エレメント性能評価を海水対応条件で行った。リーク箇所の封止前に透過水量12.5m3/日、塩除去率99.3%であったものが、リーク箇所の封止後は透過水量12.2m3/日、塩除去率99.8%となり水質を表す指標である塩除去率が向上していた。 The performance evaluation of the hollow fiber membrane element after leak sealing was performed under seawater-compatible conditions. Although the permeated water amount was 12.5 m 3 / day and the salt removal rate was 99.3% before sealing the leaked portion, the permeated water amount was 12.2 m 3 / day and the salt removal rate was 99.3% after sealing the leaked portion. The salt removal rate, which is an indicator of water quality, was 8%.

(実施例2)
FRP製の芯管の周囲に三酢酸セルロース製で外径165μm、内径65μm、海水対応条件で測定した中空糸膜の性能が透過水量55L/m2/日、塩除去率99.90%である逆浸透中空糸膜を交差配置させ、中空糸膜エレメントを作製した。中空糸膜エレメントの寸法はΦ260×全長1310mm、総開口本数は100万本であった。図3に示すようにOリングおよびXパッキンを装着し、内径280mmの圧力容器に組み込んだ。この中空糸膜エレメントは外圧型でかつ両端に開口面を有している。加圧時に組み込まれた中空糸膜エレメントが圧力容器から飛び出さないように、中空糸膜エレメント外周部のチューブシートリングの部分のみを支えることのできるドーナツ型の端板を圧力容器に取り付けた。また該中空糸膜エレメントの開口面の中央部には供給水を通水するための芯管の開口部を設けており、この部分に供給水を通水するためのコネクターを取り付け、該コネクターが内圧により抜け落ちないようにするため供給コネクター押え治具も圧力容器に固定した。反対側の開口面中央部の芯管の開口部にはOリング付きのプラグを取り付け、供給コネクター押え治具で抜けないように固定した。該供給コネクター押え治具の形状は、ドーナツ型の端板との隙間に鉛筆を持った手が入るような立体的アーチ型の形状とした。両端開口型の中空糸エレメントについては両端の開口面を同時に観察した。ドーナツ型の端板を使用することにより、中空糸膜エレメントの外周部を支持出来るのと同時に、中空糸膜エレメントの開口面の透過水が出てくる全面およびチューブシートリングと開口面の界面も観察可能となる。この際、中空糸膜モジュールは横置きとした。これ以降の操作は実施例1と同じとした。
(Example 2)
The performance of the hollow fiber membrane made of cellulose triacetate and having an outer diameter of 165 μm, an inner diameter of 65 μm and measured under seawater-compatible conditions around the core tube made of FRP is a permeated water amount of 55 L / m 2 / day and a salt removal rate of 99.90%. Reverse osmosis hollow fiber membranes were crossed to produce a hollow fiber membrane element. The dimensions of the hollow fiber membrane element were Φ260 × total length 1310 mm, and the total number of openings was 1 million. As shown in FIG. 3, an O-ring and an X packing were attached and assembled into a pressure vessel having an inner diameter of 280 mm. This hollow fiber membrane element is an external pressure type and has open surfaces at both ends. A donut-shaped end plate capable of supporting only the tube sheet ring portion on the outer periphery of the hollow fiber membrane element was attached to the pressure vessel so that the hollow fiber membrane element incorporated during pressurization did not jump out of the pressure vessel. In addition, an opening of a core tube for passing the supply water is provided at the center of the opening surface of the hollow fiber membrane element, and a connector for passing the supply water is attached to this portion, The supply connector holding jig was also fixed to the pressure vessel to prevent it from falling off due to internal pressure. A plug with an O-ring was attached to the opening of the core tube at the center of the opening surface on the opposite side, and fixed with a supply connector pressing jig so as not to come off. The shape of the supply connector pressing jig was a three-dimensional arch shape in which a hand holding a pencil could be inserted into the gap with the donut-shaped end plate. For both-end open type hollow fiber elements, the open surfaces at both ends were observed at the same time. By using a donut-shaped end plate, the outer periphery of the hollow fiber membrane element can be supported, and at the same time, the entire surface from which the permeated water from the open surface of the hollow fiber membrane element comes out and the interface between the tube seat ring and the open surface Observable. At this time, the hollow fiber membrane module was placed horizontally. The subsequent operations were the same as those in Example 1.

リーク封止後の中空糸膜エレメント性能を実施例1と同じ方法で評価した。リーク箇所封止前に透過水量26.6m3/日、塩除去率99.2%であったものが、片側に3箇所、反対側に1箇所のリークを封止後は透過水量26.4m3/日、塩除去率99.8%となり水質を表す指標である塩除去率が向上していた。 The hollow fiber membrane element performance after leak sealing was evaluated by the same method as in Example 1. Permeated water volume was 26.6m 3 / day before sealing the leak location, and the salt removal rate was 99.2%. After sealing the leak at 3 sites on one side and 1 site on the other side, the permeated water volume was 26.4m. 3 / day, the salt removal rate was 99.8%, and the salt removal rate, which is an indicator of water quality, was improved.

(実施例3)
FRP製の芯管の周囲に三酢酸セルロース製で外径175μm、内径85μm、かん水対応条件で測定した中空糸膜の性能が透過水量220L/m2/日、塩除去率99.0%である逆浸透中空糸膜を交差配置させ、中空糸膜エレメントを作製した。寸法はΦ195×全長1135mm、総開口本数は54万本である。図1に示すように中空糸膜エレメントのチューブシートリングにOリングを装着し、内径210mmの圧力容器に組み込んだ。この中空糸膜エレメントは外圧型であり、加圧時に組み込まれた中空糸膜エレメントが圧力容器から飛び出さないように、中空糸膜エレメント外周部のいわゆるチューブシートリングの部分のみを支えることのできるドーナツ型の端板を圧力容器に取り付けた。中空糸膜モジュールは横置きとし、中空糸膜エレメントの開口面の透過水が出てくる全面およびチューブシートリングと開口面の界面を目視にて観察した。これ以降の操作は実施例1と同じとした。
(Example 3)
The performance of the hollow fiber membrane made of cellulose triacetate around the core tube made of FRP and having an outer diameter of 175 μm, an inner diameter of 85 μm and measured under conditions for watering is a permeated water amount of 220 L / m 2 / day and a salt removal rate of 99.0% Reverse osmosis hollow fiber membranes were crossed to produce a hollow fiber membrane element. The dimensions are Φ195 × total length 1135 mm, and the total number of openings is 540,000. As shown in FIG. 1, an O-ring was attached to the tube sheet ring of the hollow fiber membrane element, and it was assembled in a pressure vessel having an inner diameter of 210 mm. This hollow fiber membrane element is an external pressure type, and can support only the so-called tube seat ring portion of the outer periphery of the hollow fiber membrane element so that the hollow fiber membrane element incorporated during pressurization does not jump out of the pressure vessel. A donut end plate was attached to the pressure vessel. The hollow fiber membrane module was placed horizontally, and the entire surface from which permeated water from the opening surface of the hollow fiber membrane element emerged and the interface between the tube sheet ring and the opening surface were visually observed. The subsequent operations were the same as those in Example 1.

リーク封止後の中空糸膜エレメント性能評価をかん水対応条件で行った。リーク箇所の封止前に透過水量56.1m3/日、塩除去率94.5%であったものが、3箇所のリークを封止後は透過水量55.4m3/日、塩除去率96.8%となり水質を表す指標である塩除去率が向上していた。 The performance evaluation of the hollow fiber membrane element after leak sealing was carried out under the conditions corresponding to brine. The amount of permeated water was 56.1 m 3 / day and the salt removal rate was 94.5% before sealing the leaked portion, but the amount of permeated water was 55.4 m 3 / day and the salt removal rate after sealing the leak at three locations. The salt removal rate, which is an index representing water quality, was 96.8%.

供給水のエンドトキシン濃度を10EU/mlに調整し、かん水対応条件で運転し、得られた透過水について測定したところ、透過水のエンドトキシン濃度はリーク封止前に0.008EU/mlであったものがリーク封止後は0.002EU/mlにまで低下した。エンドトキシン除去性能も向上することが確認された。   The endotoxin concentration of the feed water was adjusted to 10 EU / ml, operated under the conditions for irrigation, and the obtained permeate was measured. The endotoxin concentration of the permeate was 0.008 EU / ml before leak sealing. However, it decreased to 0.002 EU / ml after leak sealing. It was confirmed that the endotoxin removal performance was also improved.

(実施例4)
ポリスルホン製多孔質中空糸膜の外表面に架橋ポリアミドからなる薄膜を有する外径、内径がそれぞれ350μm、200μmであるナノろ過膜20160本を片端がU字型で、他端の中空糸膜が開口している中空糸束の集合体からなる円筒状の巻上げ体にし、胴部の外径76mm、内径67mm、長さ300mmの塩化ビニル樹脂製の容器に挿入した。使用した中空糸膜の性能は透過水量250L/m2/日、NaClの除去率は87.0%、ショ糖の除去率は98.0%であった。同時に、濃縮水の排出パイプとなるブラインパイプを装着した。その後、純水で30分間洗浄し液きりし、50℃の熱風で8時間以上乾燥させた。この容器に挿入された中空糸膜の開口側の片端部をエポキシ樹脂固定し、切削して中空糸膜を開口させた。その後、80%メタノール2Lを30分間循環接触させ図5に示す中空糸膜モジュ−ルを得た。この膜モジュールは外圧型中空糸膜モジュールであり、中空糸膜の開口部に透過水口を、中空糸膜のU字端部に供給水口を有し、前記ブラインパイプに連通して非透過水口が設けられている。
Example 4
Polysulfone porous hollow fiber membrane has a thin film made of cross-linked polyamide on the outer surface and 20160 nanofiltration membranes with inner and outer diameters of 350 μm and 200 μm, respectively, U-shaped at one end and open at the other end A cylindrical wound body made of an aggregate of hollow fiber bundles was inserted into a vinyl chloride resin container having an outer diameter of 76 mm, an inner diameter of 67 mm, and a length of 300 mm. The hollow fiber membrane used had a permeated water volume of 250 L / m 2 / day, a NaCl removal rate of 87.0%, and a sucrose removal rate of 98.0%. At the same time, a brine pipe serving as a concentrated water discharge pipe was attached. Then, it was washed with pure water for 30 minutes, drained, and dried with hot air at 50 ° C. for 8 hours or more. One end of the hollow fiber membrane inserted into the container was fixed with epoxy resin and cut to open the hollow fiber membrane. Thereafter, 2 L of 80% methanol was circulated for 30 minutes to obtain a hollow fiber membrane module shown in FIG. This membrane module is an external pressure type hollow fiber membrane module, which has a permeated water port at the opening of the hollow fiber membrane, a supply water port at the U-shaped end of the hollow fiber membrane, and a non-permeated water port that communicates with the brine pipe. Is provided.

次に該中空糸膜モジュールへ供給するための溶液を調整した。溶質としては硫酸マグネシウムを使用し7wt%の濃度になるよう調合した(浸透圧は約1.6MPa)。濃度の管理は電気伝導率計を用いて行った。供給水を中空糸膜モジュールへ連続的に供給するための供給水ポンプを運転し、操作圧力を0.5MPaに調整した。この際濃縮水は供給水タンクへと戻した。中空糸膜モジュール内部および中空部に残留している水により供給水の塩濃度は薄められるため、電気伝導率計によりモニターし、濃厚水を追加投入することにより所定の濃度になるよう調整を行った。供給ポンプを起動後10分後に開口面を観察した。開口面の外周部に近い部分に1ヶ所リークが確認されたため、その部分に鉛筆で印をつけた。この操作の際、中空糸膜モジュールは倒立させていても横置きにしていても作業性は変わらず、検出されるリークの数についても差がなかった。中空糸膜モジュールを純水にて15分間洗浄した。鉛筆で印をつけたリーク箇所をドリルで穴をあけ、エポキシ樹脂を流し込み48時間かけて硬化させた。   Next, a solution to be supplied to the hollow fiber membrane module was prepared. Magnesium sulfate was used as the solute, and the concentration was adjusted to 7 wt% (osmotic pressure was about 1.6 MPa). The concentration was controlled using an electric conductivity meter. A supply water pump for continuously supplying the supply water to the hollow fiber membrane module was operated, and the operation pressure was adjusted to 0.5 MPa. At this time, the concentrated water was returned to the feed water tank. Since the salt concentration of the feed water is diluted by the water remaining in the hollow fiber membrane module and in the hollow part, it is monitored by an electric conductivity meter and adjusted to a predetermined concentration by adding concentrated water. It was. The opening surface was observed 10 minutes after starting the supply pump. Since one leak was found in a portion near the outer peripheral portion of the opening surface, the portion was marked with a pencil. During this operation, the workability did not change whether the hollow fiber membrane module was inverted or placed horizontally, and there was no difference in the number of leaks detected. The hollow fiber membrane module was washed with pure water for 15 minutes. A leak point marked with a pencil was drilled with a drill, and an epoxy resin was poured in and cured for 48 hours.

リーク封止後の中空糸膜モジュールの性能評価を行った。リーク箇所の封止前に透過水量0.9m3/日、塩化ナトリウムの塩除去率85%、ショ糖の除去率92%であったものが、リーク箇所の封止後は透過水量0.9m3/日、塩化ナトリウムの塩除去率91%、ショ糖の除去率95%となり水質を表す指標である除去率が向上していた。 The performance of the hollow fiber membrane module after leak sealing was evaluated. Before sealing the leaked portion, the permeated water amount was 0.9 m 3 / day, the salt removal rate of sodium chloride was 85%, and the sucrose removal rate was 92%. 3 / day, the salt removal rate of sodium chloride was 91% and the removal rate of sucrose was 95%, and the removal rate, which is an indicator of water quality, was improved.

(比較例1)
FRP製の芯管の周囲に三酢酸セルロース製で外径165μm、内径65μm、海水対応条件で測定した中空糸膜の性能が透過水量60L/m2/日、塩除去率99.90%である中空糸膜を交差配置させ、逆浸透中空糸膜エレメントを作製した。中空糸膜エレメントの寸法はΦ195×全長1135mm、総開口本数は56万本である。図1に示すように中空糸膜エレメントのチューブシートリングにOリングを装着し内径が210mmの圧力容器に組み込み、中空糸膜エレメントの開口面へ開口面とほぼ同じ大きさのろ紙(アドバンテック東洋株式会社製 高純度ろ紙 No.5A)を取り付けた。ろ紙と集水板の間に金網をはさみ込んだ後、端板を取り付けた。このろ紙をセットしたモジュールへの供給水は染料のクリスタルバイオレット(和光純薬工業株式会社製 製品コード番号 031−04852)を純水に溶かし希釈したものを使用した。この際、中空糸膜モジュールは横置きとした。純水としては上水を逆浸透して得られた水を使用した。該染料濃度は色見本を作製し0.2〜0.5ppmになるように調整した。希薄水溶液であり浸透圧はほぼゼロである。供給水圧力は2.9Mpaに調整し30分間連続運転し、濃縮水、透過水ともに供給水タンクへ戻す循環運転とした。30分後に供給水ポンプの運転を停止し、端板、集水板、金網を取り外し、中空糸膜エレメント開口面へ取り付けたろ紙が剥がれないように慎重に中空糸膜エレメントを圧力容器より取り出した。中空糸膜エレメントの開口面に取り付けたろ紙は一度に外すことなく1/3周〜半周ずつ剥していき、ろ紙に着色した染料箇所と中空糸膜エレメント開口面の位置を一致させながらリーク箇所に鉛筆で印をつけた。リーク箇所は開口面の外周近傍に2箇所検出した。鉛筆で印をつけたリーク箇所をドリルで僅かに窪みをつけ、エポキシ樹脂を流し込み硬化させリークを封止した。リーク箇所の封止が完了した中空糸膜エレメントは染料を取り除くため純水を供給水圧力2.9MPa、濃縮水流量30l/分となる条件で60分間加圧供給し、中空糸膜エレメントに残留した該染料を水洗した。その際の該モジュールから出てくる透過水および濃縮水は排水として処理した。
(Comparative Example 1)
The performance of a hollow fiber membrane made of cellulose triacetate around an FRP core tube and having an outer diameter of 165 μm, an inner diameter of 65 μm and measured under seawater conditions is a permeated water amount of 60 L / m 2 / day and a salt removal rate of 99.90%. The hollow fiber membranes were crossed to produce a reverse osmosis hollow fiber membrane element. The dimensions of the hollow fiber membrane element are Φ195 × total length 1135 mm, and the total number of openings is 560,000. As shown in Fig. 1, the O-ring is attached to the tube sheet ring of the hollow fiber membrane element and incorporated in a pressure vessel with an inner diameter of 210 mm. The filter paper of the same size as the opening surface is attached to the opening surface of the hollow fiber membrane element (Advantech Toyo Co., Ltd.) Company-made high purity filter paper No. 5A) was attached. An end plate was attached after inserting a wire mesh between the filter paper and the water collecting plate. The water supplied to the module in which the filter paper was set was prepared by dissolving and diluting the dye crystal violet (product code number 031-04852 manufactured by Wako Pure Chemical Industries, Ltd.) in pure water. At this time, the hollow fiber membrane module was placed horizontally. As pure water, water obtained by reverse osmosis of clean water was used. The dye concentration was adjusted to 0.2 to 0.5 ppm by preparing a color sample. It is a dilute aqueous solution and its osmotic pressure is almost zero. The supply water pressure was adjusted to 2.9 Mpa, the operation was continued for 30 minutes, and both the concentrated water and the permeated water were returned to the supply water tank. After 30 minutes, the operation of the feed water pump was stopped, the end plate, the water collecting plate, and the wire mesh were removed, and the hollow fiber membrane element was carefully removed from the pressure vessel so that the filter paper attached to the opening surface of the hollow fiber membrane element did not peel off. . The filter paper attached to the opening surface of the hollow fiber membrane element is peeled off by 1/3 to half without removing it at once, so that the dye site colored on the filter paper and the position of the opening surface of the hollow fiber membrane element coincide with each other. Marked with a pencil. Two leak points were detected in the vicinity of the outer periphery of the opening surface. The leak point marked with a pencil was slightly recessed with a drill, and an epoxy resin was poured and cured to seal the leak. The hollow fiber membrane element that has been sealed at the leak point is supplied with pure water for 60 minutes under the conditions of a supply water pressure of 2.9 MPa and a concentrated water flow rate of 30 l / min to remove the dye, and remains in the hollow fiber membrane element. The dye was washed with water. The permeated water and concentrated water coming out of the module at that time were treated as waste water.

リーク封止した中空糸膜エレメントの性能評価を海水対応条件で行った。リーク箇所封止前に透過水量11.8m3/日、塩除去率99.3%であったものが、リーク箇所封止後は透過水量11.7m3/日、塩除去率99.4%となり水質を表す指標である塩除去率の向上は僅かであった。該中空糸膜モジュールを、再度クリスタルバイオレットを用いてリーク検査を実施したところ、封止したエポキシ樹脂の近傍から再度リークが検出された。リーク箇所をろ紙に転写して読み取るためリーク封止位置のズレが生じていたためであった。 The performance evaluation of the leak-sealed hollow fiber membrane element was performed under seawater conditions. The permeated water amount was 11.8 m 3 / day and the salt removal rate was 99.3% before sealing the leak site, but the permeated water amount was 11.7 m 3 / day and the salt removal rate was 99.4% after the leak site was sealed. Therefore, the improvement of the salt removal rate, which is an indicator of water quality, was slight. When the hollow fiber membrane module was again inspected for leaks using crystal violet, leaks were detected again from the vicinity of the sealed epoxy resin. This is because the leak location was shifted because the leak location was transferred to the filter paper and read.

(比較例2)
FRP製の芯管の周囲に三酢酸セルロース製で外径165μm、内径65μm、海水対応条件で測定した中空糸膜の性能が透過水量60L/m2/日、塩除去率99.90%である逆浸透中空糸膜を交差配置させ、中空糸膜エレメントを作製した。中空糸膜エレメントの寸法はΦ195×全長1135mm、総開口本数は56万本である。図1に示すように中空糸膜エレメントのチューブシートリング外周部のOリング溝にOリングを取り付け、内径が210mmの圧力容器に挿入した。この中空糸膜エレメントは外圧型であり、加圧時に中空糸膜エレメントが圧力容器から飛び出さないように、中空糸膜エレメント外周部のチューブシートリングの部分のみを支えることのできるドーナツ型の端板を圧力容器に取り付けた。これにより該中空糸膜モジュールに供給水を送液し加圧することができるようになるのと同時に、中空糸膜エレメントの開口面の透過水が出てくる全面およびチューブシートリングと開口面の界面もが観察可能となる。この中空糸膜モジュールを開口面が上向きになるように倒立させ開口面に水を張った。中空糸膜モジュールの供給水口から圧力0.5MPaの加圧空気を供給し、濃縮水口を封じて中空糸膜モジュール内に加圧空気を保持した。開口面全体から気泡が出てくるのが観察され、チューブシートリングと接着樹脂との界面から比較的大きな気泡が観察されたのでこの点をリーク箇所として鉛筆で印をつけた。鉛筆で印をつけたリーク箇所をドリルで穴をあけ、エポキシ樹脂を流し込み48時間かけて硬化させた。
(Comparative Example 2)
The performance of a hollow fiber membrane made of cellulose triacetate around an FRP core tube and having an outer diameter of 165 μm, an inner diameter of 65 μm and measured under seawater conditions is a permeated water amount of 60 L / m 2 / day and a salt removal rate of 99.90%. Reverse osmosis hollow fiber membranes were crossed to produce a hollow fiber membrane element. The dimensions of the hollow fiber membrane element are Φ195 × total length 1135 mm, and the total number of openings is 560,000. As shown in FIG. 1, an O-ring was attached to the O-ring groove on the outer periphery of the tube sheet ring of the hollow fiber membrane element, and inserted into a pressure vessel having an inner diameter of 210 mm. This hollow fiber membrane element is an external pressure type, and a donut-shaped end that can support only the tube seat ring portion of the outer periphery of the hollow fiber membrane element so that the hollow fiber membrane element does not jump out of the pressure vessel during pressurization. A plate was attached to the pressure vessel. As a result, it becomes possible to supply and pressurize the supply water to the hollow fiber membrane module, and at the same time, the entire surface from which the permeated water comes out of the opening surface of the hollow fiber membrane element and the interface between the tube sheet ring and the opening surface. Can be observed. The hollow fiber membrane module was inverted so that the opening surface faced upward, and water was applied to the opening surface. Pressurized air with a pressure of 0.5 MPa was supplied from the supply water port of the hollow fiber membrane module, and the concentrated water port was sealed to hold the pressurized air in the hollow fiber membrane module. Bubbles were observed to emerge from the entire opening surface, and relatively large bubbles were observed from the interface between the tube sheet ring and the adhesive resin, and this point was marked with a pencil as a leak point. A leak point marked with a pencil was drilled with a drill, and an epoxy resin was poured and cured for 48 hours.

リーク封止後の中空糸膜エレメント性能評価を海水対応条件で行った。リーク箇所の封止前に透過水量12.3m3/日、塩除去率99.3%であったものが、リーク箇所の封止後は透過水量12.2m3/日、塩除去率99.4%となり水質を表す指標である塩除去率は僅かに向上していた。 The performance evaluation of the hollow fiber membrane element after leak sealing was performed under seawater-compatible conditions. Although the permeated water amount was 12.3 m 3 / day and the salt removal rate was 99.3% before the leak portion was sealed, the permeated water amount was 12.2 m 3 / day and the salt removal rate was 99.3% after the leak portion was sealed. The salt removal rate, which is 4%, indicating water quality, was slightly improved.

(比較例3)
FRP製の芯管の周囲に三酢酸セルロース製で外径165μm、内径65μm、海水対応条件で測定した中空糸膜の性能が透過水量60L/m2/日、塩除去率99.90%である逆浸透中空糸膜を交差配置させ、中空糸膜エレメントを作製した。中空糸膜エレメントの寸法はΦ195×全長1135mm、総開口本数は56万本である。図1に示すように中空糸膜エレメントのチューブシートリング外周部のOリング溝にOリングを取り付け、内径が210mmの圧力容器に挿入した。この中空糸膜エレメントは外圧型であり、加圧時に中空糸膜エレメントが圧力容器から飛び出さないように、中空糸膜エレメント外周部のチューブシートリングの部分のみを支えることのできるドーナツ型の端板を圧力容器に取り付けた。中空糸膜モジュールは横置きとした。該モジュールに電気伝導率が200μS/cmの水道水(浸透圧は約0.01MPa)を操作圧力0.5MPaで供給した。供給水ポンプを起動後1分〜10分の間に開口面を観察したが開口面全面から透過水が出ておりリーク箇所の特定はできなかった。この同じ中空糸膜エレメントを実施例1と同じ方法でリーク検出を実施したところ、開口面に4点のリークを検出した。
(Comparative Example 3)
The performance of a hollow fiber membrane made of cellulose triacetate around an FRP core tube and having an outer diameter of 165 μm, an inner diameter of 65 μm and measured under seawater conditions is a permeated water amount of 60 L / m 2 / day and a salt removal rate of 99.90%. Reverse osmosis hollow fiber membranes were crossed to produce a hollow fiber membrane element. The dimensions of the hollow fiber membrane element are Φ195 × total length 1135 mm, and the total number of openings is 560,000. As shown in FIG. 1, an O-ring was attached to the O-ring groove on the outer periphery of the tube sheet ring of the hollow fiber membrane element, and inserted into a pressure vessel having an inner diameter of 210 mm. This hollow fiber membrane element is an external pressure type, and a donut-shaped end that can support only the tube seat ring portion of the outer periphery of the hollow fiber membrane element so that the hollow fiber membrane element does not jump out of the pressure vessel during pressurization. A plate was attached to the pressure vessel. The hollow fiber membrane module was placed horizontally. Tap water having an electric conductivity of 200 μS / cm (osmotic pressure was about 0.01 MPa) was supplied to the module at an operating pressure of 0.5 MPa. Although the opening surface was observed 1 minute to 10 minutes after starting the feed water pump, the permeated water had come out from the entire opening surface, and the location of the leak could not be specified. When leak detection was performed on the same hollow fiber membrane element in the same manner as in Example 1, four leaks were detected on the opening surface.

実施例1〜4および比較例1〜3から明らかなように、本発明のリーク検出方法およびリーク検出装置により微小なリークも検出でき、そのリークを封止(補修)することで良好な水質を有する中空糸膜モジュールおよび中空糸膜エレメントを提供することができる。   As is clear from Examples 1 to 4 and Comparative Examples 1 to 3, the leak detection method and the leak detection apparatus of the present invention can also detect minute leaks, and seal (repair) the leaks to obtain good water quality. A hollow fiber membrane module and a hollow fiber membrane element can be provided.

本発明のリーク検出方法およびリーク検出装置により得られる中空糸膜モジュールおよび中空糸膜エレメントは、良好な水質を有するため、海水淡水化、水精製、医療、医薬用水、エンドトキシンフリー水製造等の用途に幅広く利用することができ、産業界に寄与することが大である。   Since the hollow fiber membrane module and the hollow fiber membrane element obtained by the leak detection method and leak detection device of the present invention have good water quality, they are used for seawater desalination, water purification, medical treatment, pharmaceutical water, endotoxin-free water production, etc. It can be used widely and contributes to the industry.

本発明のリーク検出法の一例示す図である。It is a figure which shows an example of the leak detection method of this invention. 図1におけるリ−ク検出法のリ−クを示す図である。It is a figure which shows the leak of the leak detection method in FIG. 本発明のリーク検出法の他の実施例を示す図である。It is a figure which shows the other Example of the leak detection method of this invention. 図3におけるリ−ク検出法のリ−クを示す図である。It is a figure which shows the leak of the leak detection method in FIG. 本発明のリーク検出法の他の実施例を示す図である。It is a figure which shows the other Example of the leak detection method of this invention. 図5におけるリ−ク検出法のリ−クを示す図である。It is a figure which shows the leak of the leak detection method in FIG. 本発明のリーク検出装置の一例を示す図である。It is a figure which shows an example of the leak detection apparatus of this invention.

符号の説明Explanation of symbols

1. 圧力容器
2. 中空糸膜エレメント
3. 端板
4. スタッドボルト
5. ナット
6. ドーナツ型端板
7. Oリング
8. チューブシートリング
9. 供給水ライン
10.濃縮水ライン
11.芯管
12.開口面
13.リーク箇所
14.供給コネクター
15.供給コネクター押え治具
16.プラグ
17.Xパッキン
18.中空糸膜
19.ブラインパイプ
20.キャップA
21.キャップB
22.接着樹脂部
23.濃厚水添加タンク撹拌機
24.濃厚水添加タンク
25.濃厚水
26.濃厚水添加ポンプ
27.濃厚水供給ライン
28.撹拌機
29.供給水タンク
30.水溶液
31.供給水ポンプ
32.中空糸膜モジュール
33.圧力計
34.濃度測定機器
35.温度計
36.圧力調整バルブ
1. Pressure vessel 2. 2. Hollow fiber membrane element End plate 4. Stud bolt 5. Nut 6. 6. Donut end plate O-ring Tube seat ring 9. Supply water line 10. Concentrated water line 11. Core tube 12. Opening surface 13. Leak point 14. Supply connector 15. Supply connector holding jig 16. Plug 17. X packing 18. Hollow fiber membrane 19. Brine pipe 20. Cap A
21. Cap B
22. Adhesive resin part 23. Thick water addition tank agitator 24. Concentrated water addition tank 25. Rich water 26. Concentrated water addition pump 27. Concentrated water supply line 28. Agitator 29. Supply water tank 30. Aqueous solution 31. Supply water pump 32. Hollow fiber membrane module 33. Pressure gauge 34. Concentration measuring device 35. Thermometer 36. Pressure adjustment valve

Claims (7)

中空糸膜が逆浸透膜またはナノろ過膜である中空糸膜モジュ−ルの中空糸膜集束体の開口面からリークを検出する方法であって、濃度が調整された水溶液を該水溶液の持つ浸透圧よりも低い操作圧力で、該中空糸膜モジュールの中空糸膜の外側に供給し、該開口面から漏れ出てくる水溶液を検出することを特徴とするリーク検出方法。   A method for detecting a leak from an opening surface of a hollow fiber membrane converging body of a hollow fiber membrane module in which the hollow fiber membrane is a reverse osmosis membrane or a nanofiltration membrane, and the permeation of the aqueous solution with the concentration adjusted A leak detection method comprising: detecting an aqueous solution that is supplied to the outside of the hollow fiber membrane of the hollow fiber membrane module at an operating pressure lower than the pressure and leaks from the opening surface. 該水溶液に無機塩または有機化合物を溶解した水溶液を使用することを特徴とする請求項1に記載のリーク検出方法。   The leak detection method according to claim 1, wherein an aqueous solution in which an inorganic salt or an organic compound is dissolved in the aqueous solution is used. 該水溶液の電気伝導率を指標として水溶液中の濃度を調整することを特徴とする請求項1または2に記載のリーク検出方法。   3. The leak detection method according to claim 1, wherein the concentration in the aqueous solution is adjusted using the electrical conductivity of the aqueous solution as an index. 無機塩を溶解した水溶液の濃度が2〜5重量%であることを特徴とする請求項1〜3いずれかに記載のリーク検出方法。   4. The leak detection method according to claim 1, wherein the concentration of the aqueous solution in which the inorganic salt is dissolved is 2 to 5% by weight. 有機化合物を溶解した水溶液の濃度が5〜15重量%であることを特徴とする請求項1〜3いずれかに記載のリーク検出方法。   The leak detection method according to claim 1, wherein the concentration of the aqueous solution in which the organic compound is dissolved is 5 to 15% by weight. 操作圧力が水溶液の浸透圧よりも0.1〜3.7MPa低いことを特徴とする請求項1〜5いずれかに記載のリーク検出方法。   6. The leak detection method according to claim 1, wherein the operation pressure is 0.1 to 3.7 MPa lower than the osmotic pressure of the aqueous solution. 中空糸膜が逆浸透膜またはナノろ過膜である中空糸膜モジュ−ルの中空糸膜集束体の開口面からリークを検出するための設備であって、該開口面を開放した状態の中空糸膜モジュールと、濃度が調整された水溶液を該水溶液の持つ浸透圧よりも低い圧力で連続的に該中空糸膜モジュールに供給するポンプ設備と該水溶液の濃度を調整する設備を備えたことを特徴とするリーク検出装置。   A hollow fiber membrane is a reverse osmosis membrane or a nanofiltration membrane, and is a facility for detecting leaks from the opening surface of a hollow fiber membrane converging body of a hollow fiber membrane module, wherein the hollow fiber is open. It comprises a membrane module, a pump facility for continuously supplying an aqueous solution whose concentration is adjusted to the hollow fiber membrane module at a pressure lower than the osmotic pressure of the aqueous solution, and a facility for adjusting the concentration of the aqueous solution. Leak detection device.
JP2005053468A 2005-02-28 2005-02-28 Hollow fiber membrane module leak detection method and leak detection device Expired - Fee Related JP4538732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005053468A JP4538732B2 (en) 2005-02-28 2005-02-28 Hollow fiber membrane module leak detection method and leak detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005053468A JP4538732B2 (en) 2005-02-28 2005-02-28 Hollow fiber membrane module leak detection method and leak detection device

Publications (2)

Publication Number Publication Date
JP2006231289A JP2006231289A (en) 2006-09-07
JP4538732B2 true JP4538732B2 (en) 2010-09-08

Family

ID=37039514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005053468A Expired - Fee Related JP4538732B2 (en) 2005-02-28 2005-02-28 Hollow fiber membrane module leak detection method and leak detection device

Country Status (1)

Country Link
JP (1) JP4538732B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109083B2 (en) * 2007-05-25 2012-12-26 東洋紡株式会社 Method for inspecting tube-in-orifice nozzle and method for producing hollow fiber membrane
JP5811738B2 (en) * 2011-09-26 2015-11-11 三菱レイヨン株式会社 Method for repairing hollow fiber membrane module and hollow fiber membrane module
CN103212295B (en) * 2013-04-19 2015-09-02 荷丰(天津)化工工程有限公司 Industrial large-scale seawater desalination technology and device
CN107253048B (en) * 2017-06-19 2019-06-04 十堰市倍力汽车管业有限公司 The air-leakage test and nozzle of automobile pipeline keep circle to install integrated tooling
KR102342446B1 (en) * 2018-10-18 2021-12-22 주식회사 엘지화학 Method of detecting defection of seperation memebrane element and apparatus of detecting defection of seperation memebrane element
KR102288130B1 (en) * 2018-10-18 2021-08-09 주식회사 엘지화학 Method of detecting defection of seperation memebrane element and apparatus of detecting defection of seperation memebrane element
CN114563134B (en) * 2022-03-02 2023-02-07 中南大学 Shield tunnel segment three-dimensional joint waterproof performance test device and test method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252878A (en) * 1975-10-28 1977-04-28 Kurita Water Ind Ltd Desalting apparatus using reverse osmotic membrane
JPS6258063A (en) * 1985-09-06 1987-03-13 Agency Of Ind Science & Technol Osmotic apparatus for salinity gradient power generation
JPH02284035A (en) * 1989-04-25 1990-11-21 Toyobo Co Ltd Leak test method for hydrophobic hollow yarn type porous membrane
JPH08285792A (en) * 1995-04-14 1996-11-01 Kanegafuchi Chem Ind Co Ltd Defect detection method for hollow yarn membrane in hollow yarn membrane module
JPH0924256A (en) * 1995-07-12 1997-01-28 Nitto Denko Corp Inspecting method for leak in membrane separator
JPH11109092A (en) * 1997-10-01 1999-04-23 Mitsubishi Heavy Ind Ltd Processing method for radioactive material-containing waste liquid using reverse osmosis membrane
JP2000079328A (en) * 1998-09-07 2000-03-21 Nitto Denko Corp Cleaning of reverse osmosis membrane module
JP2000107575A (en) * 1998-10-05 2000-04-18 Toyobo Co Ltd Leak inspection method for permselective membrane module
JP2001264253A (en) * 2000-03-15 2001-09-26 Toshiba Corp Amorphous iron detector and waste water purifier provided with this detector
JP2004507340A (en) * 2000-06-02 2004-03-11 ビバンデイ・ユニベルサル Nanofiltration module or reverse osmosis module, or method of checking the system integrity of such a module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252878A (en) * 1975-10-28 1977-04-28 Kurita Water Ind Ltd Desalting apparatus using reverse osmotic membrane
JPS6258063A (en) * 1985-09-06 1987-03-13 Agency Of Ind Science & Technol Osmotic apparatus for salinity gradient power generation
JPH02284035A (en) * 1989-04-25 1990-11-21 Toyobo Co Ltd Leak test method for hydrophobic hollow yarn type porous membrane
JPH08285792A (en) * 1995-04-14 1996-11-01 Kanegafuchi Chem Ind Co Ltd Defect detection method for hollow yarn membrane in hollow yarn membrane module
JPH0924256A (en) * 1995-07-12 1997-01-28 Nitto Denko Corp Inspecting method for leak in membrane separator
JPH11109092A (en) * 1997-10-01 1999-04-23 Mitsubishi Heavy Ind Ltd Processing method for radioactive material-containing waste liquid using reverse osmosis membrane
JP2000079328A (en) * 1998-09-07 2000-03-21 Nitto Denko Corp Cleaning of reverse osmosis membrane module
JP2000107575A (en) * 1998-10-05 2000-04-18 Toyobo Co Ltd Leak inspection method for permselective membrane module
JP2001264253A (en) * 2000-03-15 2001-09-26 Toshiba Corp Amorphous iron detector and waste water purifier provided with this detector
JP2004507340A (en) * 2000-06-02 2004-03-11 ビバンデイ・ユニベルサル Nanofiltration module or reverse osmosis module, or method of checking the system integrity of such a module

Also Published As

Publication number Publication date
JP2006231289A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4538732B2 (en) Hollow fiber membrane module leak detection method and leak detection device
KR102039807B1 (en) Forward osmosis membrane and forward osmosis treatment system
JP6492663B2 (en) Composite semipermeable membrane and method for producing the same
JP5418739B1 (en) Hollow fiber type semipermeable membrane, manufacturing method and module thereof, and water treatment method
JP2008093544A (en) Composite semipermeable membrane and manufacturing method thereof
JP6694326B2 (en) Composite membrane
US7674382B2 (en) Method of cleaning fouled and/or scaled membranes
KR20180124151A (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for manufacturing composite semipermeable membrane
JP2016155078A (en) Forward osmosis treatment system
JP4058657B2 (en) Method for inspecting leak of selectively permeable membrane module
EP3088073B1 (en) High-functional polyamide-based dry water treatment separator and method for manufacturing same
KR20180112097A (en) Method for improving blocking rate of reverse osmosis membrane, treatment agent for improving blocking rate, and reverse osmosis membrane
Yang et al. Optimization of interfacial polymerization to fabricate thin-film composite hollow fiber membranes in modules for brackish water reverse osmosis
JP6485540B2 (en) Composite semipermeable membrane and method for producing the same
JP2018103184A (en) Manufacturing method of hollow fiber type semipermeable membrane
JP6070260B2 (en) Hollow fiber type semipermeable membrane, manufacturing method and module thereof
JP5630961B2 (en) Hollow fiber porous membrane and water treatment method
JP2012196590A (en) Filtration membrane, cleaning means of filtration membrane, and selection method of pretreat means
KR20140134683A (en) Porous film preservation solution
Low et al. Industrial scale thin-film composite membrane modules for salinity-gradient energy harvesting through pressure retarded osmosis
CN108211826A (en) A kind of forward osmosis membrane and preparation method thereof
WO2015125755A1 (en) Hollow fiber membrane element and hollow fiber membrane module
JP2017144390A (en) Composite membrane
Cai et al. Hollow Fibers for Reverse Osmosis and Nanofiltration
SG188687A1 (en) Thin film composite osmosis membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R151 Written notification of patent or utility model registration

Ref document number: 4538732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees