JP2000107575A - Leak inspection method for permselective membrane module - Google Patents

Leak inspection method for permselective membrane module

Info

Publication number
JP2000107575A
JP2000107575A JP10282410A JP28241098A JP2000107575A JP 2000107575 A JP2000107575 A JP 2000107575A JP 10282410 A JP10282410 A JP 10282410A JP 28241098 A JP28241098 A JP 28241098A JP 2000107575 A JP2000107575 A JP 2000107575A
Authority
JP
Japan
Prior art keywords
membrane module
dye
membrane
leak
fluorescent dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10282410A
Other languages
Japanese (ja)
Other versions
JP4058657B2 (en
Inventor
Seiji Yoshida
清司 吉田
Atsuo Kumano
淳夫 熊野
Hideki Yamada
英樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP28241098A priority Critical patent/JP4058657B2/en
Publication of JP2000107575A publication Critical patent/JP2000107575A/en
Application granted granted Critical
Publication of JP4058657B2 publication Critical patent/JP4058657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a leak inspection method for a permselective membrane module whereby detection is facilitated; the concn. of a dye is reduced; and a membrane or a member of the module is prevented from staining by using a soln. of a fluorescent dye having a specified mol.wt. and by determining leak spots by detecting the fluorescence of the dye leaking from defects of the module. SOLUTION: This method is applicable to any permselective membrane module as far as it is a membrane module consisting mainly of a separation membrane capable of separating and concentrating a substance, though a reverse osmosis membrane and a nanofiltration membrane are pref. Any fluorescent dye is usable if it is soluble in some solvent, has fluorescent properties, and meets the requirements. The effective mol.wt. of the fluorescent dye is about 300-3,000 in terms of the capability of the membrane for hindering the dye. The detection of the dye can be easily made visible by the irradiation with ultraviolet rays. More specifically, a fluorescent dye soln. contg. a diaminostilbenedisulfonic acid deriv. or the like is used for the leak inspection of a permselective membrane module consisting of cellulose acetate or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水の精製や排水の
浄化に用いられる選択透過性膜モジュール、特に圧力を
駆動力として分離、精製、回収を行う膜モジュールの欠
陥を検査する方法に関し、特に、逆浸透膜およびナノ濾
過膜の膜モジュールのリーク箇所を特定する欠陥部の検
出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a selectively permeable membrane module used for purifying water and purifying wastewater, and more particularly to a method for inspecting a membrane module for separation, purification and recovery using pressure as a driving force. In particular, the present invention relates to a method for detecting a defective portion for specifying a leak portion of a membrane module of a reverse osmosis membrane and a nanofiltration membrane.

【0002】逆浸透膜は海水の淡水化や超純水に利用さ
れ、最近では水道水の高度処理や高級浄水器等への応用
が検討され、この用途にあう極低操作圧であって、低い
脱塩率のナノ濾過膜が開発されてきた。膜モジュールは
膜製造時の欠陥や取扱いに由来する傷や膜と容器との間
の接着部に生じるひび割れ等の欠陥が生じることが多々
ある。一方では、膜面に生じた欠陥は小さくても分離性
能の低下と共に、ウィルスやエンドトキシン等のリーク
となって膜モジュールの完全性を損なう。この欠陥部は
補修して、完全な膜モジュールとして、供給することが
より安価な膜モジュールの生産につながる。欠陥を持つ
膜モジュールの補修を行うにはリーク箇所を特定する必
要がある。
Reverse osmosis membranes are used for desalination of seawater and ultrapure water. Recently, applications for advanced treatment of tap water and high-grade water purifiers have been studied. Nanofiltration membranes with low desalination rates have been developed. Membrane modules often have defects such as defects during the manufacture of the film, scratches resulting from handling, and cracks generated at the bonding portion between the film and the container. On the other hand, even if a defect generated on the membrane surface is small, the separation performance is reduced and a leak of virus, endotoxin and the like is caused, thereby impairing the integrity of the membrane module. This defect can be repaired to produce a membrane module that is less expensive to supply as a complete membrane module. In order to repair a defective membrane module, it is necessary to specify the leak location.

【0003】[0003]

【従来の技術】リーク検査には気体を用い欠陥からリー
クする気体を利用する方法や液の透過性の異常値を利用
する方法などがある。気体を用いる方法として特開昭6
2−140607と特開昭63−84606では水中に
発生する気泡を観察し、特開平5−137977では気
泡発生相当圧下の圧力変化で、特開昭62−14470
5では真空度保持性を測定し、特開平1−307409
では空気残圧を測定し、リークの有無を判断している。
特開昭61−249507の空気通気抵抗からの透過量
の測定法もリーク検出に利用できる。特開昭61−22
0710と特開平3−127614では懸濁微粒子を含
むガスの透過流中の微粒子数をパーテイクルカウンター
で測定してリークの有無を検出している。その他に空気
中に流出する流れを触感で、あるいは屈折率の差、密度
の差、温度差を各種測定器を用いて、または、可視化技
術を応用して検出する方法が考案されている。液体の透
過性の異常値を利用する方法も考案されており、例え
ば、特開昭62−213811は濾液の水質を、特開昭
59−183807は二次側液体の特性値の変動を、特
開昭60−25510は供給液の圧変動を検出して膜リ
ークの有無を検出している。特開平6−182164は
透過水中の濁質を後段の精密濾過膜で濾過し通水抵抗の
増加で、特開平7−248290は透過水の一部を分岐
し、リーク検出用フィルターと圧力計等のリーク検出用
計測器を使用して、特開平5−157654は液を封入
しガス加圧した場合の濾過室の圧力の上昇を利用してリ
ークの有無を判断している。供給する液体に溶質または
懸濁物を添加する方法も考案されており、例えば、特開
平7−243959は磁性体とか導電体の懸濁物のリー
クの有無で、特開昭59−136631は蛍光ラベル化
高分子(FITC−Dxt−T−200)の、特開平6
−254358は食用色素の、特開平7−132215
はウイルスの代替粒子の、透過液物性や濾過性能を測定
してリークを検出している。その他の方法としては、特
開平3−174225が封入部分の透過光の光散乱の強
弱で、特開平3−174226が反射光の強弱で、特開
平3−213129が透過光の偏光の変化で、中空糸封
入部の欠陥を検出しており、特開昭62−136225
は染料を添加したコート層を作り、特開平7−1555
67はパーベーパレーション膜に疎水性または親水性ペ
イントを塗布して、膜の欠陥箇所を特定している。特開
平6−170186の膜の両面の電位差の測定を行う方
法や、特表平5−502164のウィルスの除去率の測
定方法も欠陥の検出に利用できる。
2. Description of the Related Art As a leak test, there are a method of using a gas leaking from a defect using a gas and a method of using an abnormal value of liquid permeability. Japanese Patent Application Laid-Open No.
In Japanese Patent Application Laid-Open Nos. 2-140607 and 63-84606, bubbles generated in water were observed.
In No. 5, the degree of vacuum retention was measured.
Measures the residual air pressure to determine the presence or absence of a leak.
The method for measuring the amount of permeation from the airflow resistance disclosed in Japanese Patent Application Laid-Open No. 61-249507 can also be used for leak detection. JP-A-61-22
0710 and JP-A-3-127614 detect the presence or absence of a leak by measuring the number of fine particles in a permeated flow of a gas containing suspended fine particles with a particle counter. In addition, a method has been devised in which a flow flowing out into the air is sensed by touch, or a difference in refractive index, a difference in density, and a difference in temperature are detected using various measuring instruments or by applying a visualization technique. A method utilizing an abnormal value of liquid permeability has also been devised. For example, Japanese Patent Application Laid-Open No. Sho 62-213811 describes the water quality of the filtrate, and Japanese Patent Application Laid-Open No. Sho 59-183807 describes the characteristic value fluctuation of the secondary liquid. Japanese Patent Application Laid-Open No. 60-25510 detects the presence or absence of a membrane leak by detecting a change in the pressure of the supply liquid. Japanese Patent Application Laid-Open No. Hei 6-182164 discloses a method in which a turbid substance in permeated water is filtered by a microfiltration membrane at a later stage to increase water flow resistance. JP-A-5-157654 determines the presence or absence of a leak by using a rise in the pressure of a filtration chamber when a liquid is sealed and gas is pressurized. A method of adding a solute or a suspension to a liquid to be supplied has also been devised. For example, Japanese Patent Application Laid-Open No. Hei 7-243959 discloses the presence or absence of leakage of a suspension of a magnetic substance or a conductive substance, and Japanese Patent Application Laid-Open No. 59-136631 Japanese Unexamined Patent Publication (Kokai) No. 6 (1994) discloses a labeled polymer (FITC-Dxt-T-200).
-254358 is an edible coloring matter, disclosed in JP-A-7-132215.
Detects leaks by measuring permeate properties and filtration performance of virus substitute particles. As other methods, JP-A-3-174225 describes the intensity of light scattering of transmitted light in the sealed portion, JP-A-3-174226 describes the intensity of reflected light, and JP-A-3-213129 describes the change in polarization of the transmitted light. The defect of the hollow fiber enclosing part is detected.
Has formed a coat layer to which a dye has been added, and disclosed in JP-A-7-1555.
Numeral 67 designates a hydrophobic or hydrophilic paint applied to the pervaporation film to specify a defective portion of the film. The method for measuring the potential difference between both surfaces of the membrane disclosed in JP-A-6-170186 and the method for measuring the virus removal rate described in JP-A-5-502164 can also be used for defect detection.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、気体を
用いる方法では基本的に精密濾過膜の試験方法であっ
て、気泡の発生を応用した方法を逆浸透膜やナノ濾過膜
のリーク検査に使用すると、気泡を発生させるに高圧を
要する。このために変形や損傷を受けるので、逆浸透膜
やナノ濾過膜のリーク検査には応用できない。気体を用
いるその他の方法は本質的にリーク箇所の特定が無理な
方法であって応用できない。気体の透過(リーク)を可
視化する方法は設備が大きくなるのとピンホールでの検
出が困難であって、修復する面積が広くなる欠点を持つ
ので膜モジュールの透過性能を損なう。溶液または懸濁
液を用いる方法は常に膜の閉塞と膜モジュールの汚染を
伴い、また各種の溶質を使う場合には、高濃度にしない
と検出ができず、リーク箇所の特定ができても、膜モジ
ュールの汚染を伴うので、膜モジュールの透過性能を損
なうことが多く、膜モジュールの清潔性と美観と安全性
をも損なう。高分子物質溶液を使用する方法では高分子
が対象となる膜の孔径より大きく、膜汚染の一因となり
易く、リーク検査後の洗浄に手間がかかり、膜性能を損
なうことも多い上に、微小なリークを見逃す欠点を持っ
ている。染料や色素の溶液の場合には膜と反応性があっ
て、染料の検知に比較的高濃度を要するために膜やモジ
ュール構成部材を汚染する場合が多い。以上のように、
膜モジュールを補修するためにはリーク箇所の特定が必
要であるがこれに適する方法は殆ど無かった。
However, the method using gas is basically a test method for a microfiltration membrane, and a method using the generation of air bubbles is used for a leak test of a reverse osmosis membrane or a nanofiltration membrane. High pressure is required to generate air bubbles. Because of this, they are deformed or damaged, so that they cannot be applied to leak inspection of reverse osmosis membranes or nanofiltration membranes. The other method using gas is essentially a method in which the location of the leak cannot be specified and cannot be applied. The method of visualizing the permeation (leak) of gas has the disadvantage that the equipment becomes large, it is difficult to detect with a pinhole, and the area to be repaired becomes large, so that the permeation performance of the membrane module is impaired. The method using a solution or suspension always involves membrane blockage and membrane module contamination, and when using various solutes, it cannot be detected unless the concentration is high, and even if the leak location can be identified, Because of the contamination of the membrane module, the permeability of the membrane module is often impaired, and the cleanliness, aesthetics and safety of the membrane module are also impaired. In the method using a polymer substance solution, the polymer is larger than the pore size of the target membrane, which is likely to contribute to membrane contamination, it takes time and effort to clean after a leak test, and often impairs the membrane performance. It has the disadvantage of overlooking a leak. In the case of a solution of a dye or a dye, the solution is reactive with the film, and the detection of the dye requires a relatively high concentration. As mentioned above,
In order to repair the membrane module, it is necessary to specify the leak location, but there has been almost no suitable method.

【0005】[0005]

【課題を解決するための手段】本発明者らは鋭意検討に
より以下の新規なリーク検査方法を見い出した。即ち、
選択透過性膜モジュールのリーク検査に際して、分子量
が300から3000である蛍光染料溶液を用いて膜モ
ジュールの欠陥からリークする染料を蛍光で検知してリ
ーク箇所を特定する選択透過性膜モジュールのリーク検
査方法であり、更に、蛍光能を有する水溶性食用色素を
用いて膜モジュールの欠陥からリークする食用色素を蛍
光で検知して、リーク箇所を特定する選択透過性膜モジ
ュールのリーク検査方法である。
Means for Solving the Problems The present inventors have made intensive studies and found the following novel leak inspection method. That is,
In a leak test of a selectively permeable membrane module, a leak test is performed by using a fluorescent dye solution having a molecular weight of 300 to 3000 to detect a dye leaking from a defect of the membrane module with fluorescence to identify a leak portion. The method further includes detecting a food dye leaking from a defect in the membrane module using a water-soluble food dye having a fluorescent ability with fluorescence, and specifying a leak portion of the selectively permeable membrane module.

【0006】以下に本発明に関して詳細に説明する。本
発明において、選択透過性膜モジュールとは物質を分
離、濃縮できる分離膜を分離の主体要素として組み立て
られた膜モジュールであれば何でも良く、好ましくは逆
浸透膜及びナノ濾過膜である。製膜方法としては流延や
コーティング、表面改質、界面重合、湿式紡糸、半湿式
紡糸、乾式紡糸等で製造された均質膜と非対称膜と複合
膜の何れでも良い。均質膜や非対称膜および複合膜の支
持膜の素材としては特に限定するものでは無く、例とし
て挙げれば、各種ポリオレフィン、酢酸セルロース、三
酢酸セルロース、ポリアミド、ポリイミド、ポリアクリ
ロニトリル、ポリスルホン、ポリフルオロエチレン、ポ
リエーテルスルホンとこれらの誘導体等の高分子及びこ
れらの共重合物を用いた物が挙げられる。複合膜の分離
活性層を構成する膜素材も特に限定するもので無く、例
として挙げれば酢酸セルロース、三酢酸セルロース、ポ
リアミド、ポリイミド、ポリアクリロニトリル、ポリス
ルホン、ポリエーテルスルホンとこれらの誘導体等の高
分子及びこれらの共重合物を用いた物がある。好ましい
膜素材としては各種ポリアミドや三酢酸セルロース、酢
酸セルロースが挙げられる。選択透過性膜モジュールは
これらの膜を必要な形状に加工した後に、適当な形状の
容器内に収納して、接着剤等で組み立てられた物であっ
て、膜モジュールの型式としては平膜を使用したスパイ
ラルワインド型とか多層積層型等、中空糸型、管状膜型
等の何れにでも応用できるが、この中でも中空糸型膜モ
ジュールのリーク検査に一番有効である。
Hereinafter, the present invention will be described in detail. In the present invention, the permselective membrane module may be any membrane module assembled with a separation membrane capable of separating and concentrating a substance as a main element of separation, and is preferably a reverse osmosis membrane or a nanofiltration membrane. As a film forming method, any of a homogeneous film, an asymmetric film, and a composite film manufactured by casting, coating, surface modification, interfacial polymerization, wet spinning, semi-wet spinning, dry spinning, or the like may be used. The material of the support membrane of the homogeneous membrane or asymmetric membrane and the composite membrane is not particularly limited, and examples include various polyolefins, cellulose acetate, cellulose triacetate, polyamide, polyimide, polyacrylonitrile, polysulfone, polyfluoroethylene, Polymers such as polyethersulfone and derivatives thereof, and products using these copolymers are exemplified. The membrane material constituting the separation active layer of the composite membrane is not particularly limited, and examples thereof include polymers such as cellulose acetate, cellulose triacetate, polyamide, polyimide, polyacrylonitrile, polysulfone, polyethersulfone and derivatives thereof. And those using these copolymers. Preferred film materials include various polyamides, cellulose triacetate, and cellulose acetate. The perm-permeable membrane module is a product obtained by processing these membranes into a required shape, storing them in a container of an appropriate shape, and assembling them with an adhesive or the like. It can be applied to any of the used spiral wind type, multilayer lamination type, hollow fiber type, tubular membrane type, etc., but is most effective for the leak inspection of the hollow fiber type membrane module.

【0007】本発明における蛍光染料とは溶解できる何
らかの溶剤があって、蛍光性を有している物質を言い、
この条件を満たす物質であれば何等拘束されるものでは
ない。具体的には染料の分類のカラーインデクスで表さ
れるC.I.Fluorescent Brightenerナンバーを持つ物が総
て蛍光染料であり、好ましく、代表的なものとして同ナ
ンバーが20、24、30、32、46、48、54、
71、84、85、86、87、152、156、16
6、225、226、260、351、19、21、2
2、23、31、33、35、36、37、40、7
2、90、135である。加えて、一般に染料と分類さ
れる中にも蛍光性を持つ物があって、代表的なものはエ
オシンとローダミンBとこれらの誘導体がこれに相当す
る。その他に、蛍光性を有する食用色素と天然色素があ
り、食用赤色3号、食用赤色104号、食用赤色106
号、鉄クロロフィリンナトリウム、同カリウム等のポル
フィリン誘導体、β−カロチン、ノルビキシン、ビオフ
ラミン誘導体、及び、ビタミンB12誘導体等があっ
て、これらの蛍光性を有する色素も使用できる。
[0007] The fluorescent dye in the present invention refers to a substance which has some solvent which can be dissolved and has fluorescence.
Any substance that satisfies this condition is not restricted at all. Specifically, those having a CI Fluorescent Brightener number represented by the color index of the dye classification are all fluorescent dyes, and are preferably, and the representative numbers are 20, 24, 30, 32, 46, 48, 54,
71, 84, 85, 86, 87, 152, 156, 16
6, 225, 226, 260, 351, 19, 21, 2
2, 23, 31, 33, 35, 36, 37, 40, 7
2, 90 and 135. In addition, some dyes are generally classified as dyes and have fluorescent properties. Representative examples thereof include eosin, rhodamine B, and derivatives thereof. In addition, there are food colors having fluorescence and natural colors, and Food Red No. 3, Food Red No. 104, Food Red No. 106
No. 4, porphyrin derivatives such as sodium and potassium iron chlorophyllins, β-carotene, norbixin, biophoramine derivatives, vitamin B12 derivatives, and the like. Dyes having these fluorescent properties can also be used.

【0008】この中でもより好ましい物は前述の食用色
素、及び、C.I.Fluorescent Brightener 24、C.I.Fl
uorescent Brightener 86、C.I.Fluorescent Bright
ener90、C.I.Fluorescent Brightener 260とエオ
シン及びその誘導体である。最も好ましい物は食用赤色
104号と食用106号、及び、C.I.FluorescentBrigh
tener 24とC.I.Fluorescent Brightener 86、C.
I.Fluorescent Brightener 260の4,4'ージアミノス
チルベン-2,2'-ジスルホン酸誘導体系蛍光染料とエオシ
ン及びその誘導体である。
[0008] Among these, more preferred are the above-mentioned food dyes, CI Fluorescent Brightener 24, and CIFl.
uorescent Brightener 86, CI Fluorescent Bright
ener90, CI Fluorescent Brightener 260, eosin and its derivatives. The most preferred are food red 104 and food 106, and CIFluorescentBrigh
tener 24 and CI Fluorescent Brightener 86, C.
I. Fluorescent Brightener 260 is a 4,4'-diaminostilbene-2,2'-disulfonic acid derivative-based fluorescent dye, eosin and its derivatives.

【0009】膜の蛍光染料阻止能は使用する蛍光染料の
分子サイズに依存する。この分子サイズが小さい場合に
は蛍光染料が膜を透過するので膜モジュールの開口部の
全面から透過が見られてリーク検査にはならず、また、
これが大きすぎる場合にはリークカ所からの漏れる量が
少なくなってリークとして検出ができず、微小な欠陥カ
所が検出できなくなる。膜の蛍光染料阻止能を考慮する
と、蛍光染料の分子量は300から3000程度が有効
であり、好ましくは、450から1800で、最も好ま
しくは分子量が550から1200である。
The ability of the membrane to block the fluorescent dye depends on the molecular size of the fluorescent dye used. If the molecular size is small, the fluorescent dye penetrates the membrane, so the permeation can be seen from the entire surface of the opening of the membrane module, and no leak test can be performed.
If this is too large, the amount of leakage from the leak location will be small, and it will not be possible to detect it as a leak, and it will be impossible to detect a minute defect. Considering the ability of the film to block the fluorescent dye, the molecular weight of the fluorescent dye is effective from about 300 to 3000, preferably from 450 to 1800, and most preferably from 550 to 1200.

【0010】この蛍光染料の検出は紫外線照射で容易に
可視化ができる。即ち、紫外線ランプで発生させた紫外
線で、所望の所を照らせば良い。紫外線を照射して発生
する蛍光は大変に明るいため、使用する蛍光染料は極微
量で良い。リーク箇所を特定する方法は何れの方法でも
良く、流出する流れの中で蛍光染料を蛍光で可視化して
目視によって、また、テレビカメラ等で蛍光をとらえて
画像処理して、リーク箇所を決定しても良い。簡単にで
きるのは、特開平6−254358記載の方法を応用す
ることで、膜モジュールの透過水流出部に検出媒体を取
り付け、欠陥から流出した蛍光染料が検出媒体を染めた
後に、この媒体上の蛍光染料の染着斑が発する蛍光を検
出する方法であり、リーク箇所に相当する位置に蛍光染
色斑として検出できる。蛍光により検出することで染着
で検出するのに比べて250倍検出力が高くなり、例え
ば、20μg/リットルでも検出とリーク箇所の特定が
可能となる。検出用媒体を選定することにより蛍光染料
との親和性を高めることで、リーク箇所を特定すること
が容易となって、膜面の剥離やピンポールの様な微小な
欠陥も検出できる。
The detection of the fluorescent dye can be easily visualized by irradiation with ultraviolet light. That is, a desired place may be illuminated with ultraviolet light generated by an ultraviolet lamp. Since the fluorescence generated by irradiating ultraviolet rays is very bright, only a very small amount of fluorescent dye may be used. Any method may be used to identify the leak location, and the fluorescent dye is visualized with fluorescence in the flowing out stream and visually inspected, and the image is processed by capturing the fluorescence with a television camera or the like to determine the leak location. May be. A simple method is to apply the method described in JP-A-6-254358 to attach a detection medium to the permeated water outflow portion of the membrane module. Is a method for detecting the fluorescence generated by the spots of the fluorescent dye, and can be detected as fluorescent spots at the positions corresponding to the leak locations. Detecting by fluorescence makes the detection power 250 times higher than detecting by dyeing. For example, even at 20 μg / liter, it is possible to detect and specify a leak point. By increasing the affinity with the fluorescent dye by selecting the detection medium, it is easy to identify the leak location, and it is possible to detect minute defects such as peeling of the film surface and pin poles.

【0011】具体的には、酢酸セルロースまたは三酢酸
セルロースよりなる選択透過性膜モジュールのリーク検
査には、ジアミノスチルベンジスルホン酸誘導体の1種
または2種以上の混合物よりなる蛍光染料溶液を用い
て、膜モジュールの欠陥からリークする染料を蛍光で検
知してリーク箇所を特定するリーク検査方法であり、更
に、選択透過性膜の分離活性層が主成分としてピペラジ
ンとトリメシン酸残基よりなる重合体である選択透過性
膜モジュールのリーク検査には、食用赤色104号また
は食用赤色106号の溶液を用いて、または、エオシン
及び/またはその誘導体である染料溶液を用いて、膜モ
ジュールの欠陥から漏洩する染料を蛍光で検知してリー
ク箇所を特定するリーク検査方法である。
More specifically, a leak test of a permselective membrane module made of cellulose acetate or cellulose triacetate is performed by using a fluorescent dye solution made of one or a mixture of two or more diaminostilbene disulfonic acid derivatives. This is a leak test method in which a dye leaking from a defect in a membrane module is detected by fluorescence to identify a leak location.Furthermore, the separation active layer of the selectively permeable membrane is made of a polymer composed of piperazine and trimesic acid residues as main components. Leak testing of certain perm-permeable membrane modules involves using a solution of Food Red 104 or Food Red 106 or a dye solution that is eosin and / or a derivative thereof to leak from membrane module defects. This is a leak inspection method in which a dye is detected by fluorescence to specify a leak location.

【0012】リーク箇所を特定した欠陥部分の補修方法
は膜モジュールの形式によって異なり、何等決まった方
法はなく、公知の方法を応用すれば良い。例えば、何れ
の形式の膜モジュールに対してもリーク部分に接着剤や
封止剤等を塗布する、リーク部分に不透過性のシートを
張り付ける、中空糸型等に対してはリーク部分に接着性
を改善するため削る等の加工を施した後に封止剤で封鎖
加工を行う、同じく、中空糸型や管状型の場合に、不透
過性部材で開口部を閉栓を行う等があり、何れの方法を
使用しても良い。
The method of repairing the defective portion specifying the leak location differs depending on the type of the membrane module. There is no fixed method, and a known method may be applied. For example, apply an adhesive or sealant to the leak part for any type of membrane module, attach an impermeable sheet to the leak part, adhere to the leak part for the hollow fiber type etc. After performing processing such as shaving to improve the sealing property, sealing is performed with a sealant.Similarly, in the case of a hollow fiber type or a tubular type, there is, for example, closing an opening with an impermeable member. May be used.

【0013】[0013]

【実施例】以下に実施例をあげて本発明を説明する。The present invention will be described below with reference to examples.

【0014】(実施例1) 膜モジュールの性能評価方法I 図1に示す膜モジュール評価装置で透過水と濃縮水を原
水槽に返送する循環する評価系を用いた。一定温度に保
つために温調装置を取り付け、規定した温度にコントロ
ールした。操作条件は食塩1500mg/リットル水溶
液を、25℃で、30kg/cm2で供給し、回収率RCが7
5%になるようにバルブを調整した。原則として加圧後
2時間後に透水量と水質を測定した。水質の測定には電
気伝導度を測定して、食塩濃度として求めた。膜モジュ
ールの透水量FRと脱塩率RJを次式で定義した。 (式1) RC=Qp /Qf ×100 (%) (式2) FR=Qp ×1.44 (m3 /日) (式3) RJ=(Cf −Cp )/Cf ×100 (%) ここで、Qf (=Qp +Qb )は膜モジュールへの供給
水量(リットル/分)、Qp は透過水量(リットル/
分)、Qb は濃縮水量(リットル/分)であって、Cf
は供給水の食塩濃度(mg/リットル)、Cp は透過水
の食塩濃度(mg/リットル)である。
Example 1 Membrane Module Performance Evaluation Method I A circulating evaluation system for returning permeated water and concentrated water to a raw water tank using the membrane module evaluation apparatus shown in FIG. 1 was used. A temperature controller was attached to maintain a constant temperature, and the temperature was controlled to a specified value. The operating conditions were as follows: a 1500 mg / liter aqueous solution of sodium chloride was supplied at 25 ° C. and 30 kg / cm 2 , and the recovery rate RC was 7%.
The valve was adjusted to 5%. In principle, the water permeability and the water quality were measured 2 hours after pressurization. For the measurement of water quality, the electric conductivity was measured, and the value was determined as the salt concentration. The water permeability FR and the desalination rate RJ of the membrane module were defined by the following equations. (Formula 1) RC = Qp / Qf × 100 (%) (Formula 2) FR = Qp × 1.44 (m 3 / day) (Formula 3) RJ = (Cf−Cp) / Cf × 100 (%) Qf (= Qp + Qb) is the amount of water supplied to the membrane module (liter / minute), and Qp is the amount of permeated water (liter / minute).
Min), Qb is the amount of concentrated water (liter / min), and Cf
Is the salt concentration of the feed water (mg / liter), and Cp is the salt concentration of the permeate water (mg / liter).

【0015】膜モジュールの性能評価方法II 上記の評価方法に準じて、操作条件を硫酸マグネシウム
500mg/リットル水溶液、25℃、5kg/cm2、回収
率RCを50%に変更して実施した。
Method II for Evaluating Membrane Module Performance According to the above evaluation method, the operating conditions were changed to a 500 mg / liter aqueous solution of magnesium sulfate, 25 ° C., 5 kg / cm 2 , and a recovery rate RC of 50%.

【0016】大腸菌除去性テスト 装置と操作条件は膜モジュール性能評価方法に準じて実
施した。運転が安定化に要する時間:2時間が経過後に
予め培養、保存して置いた大腸菌培養液を加え、更に、
その20時間経過後に等量を加えた、その後2時間が経
過した後、透過水と供給水を採取した。大腸菌培養液は
Escherichia coli、K−12株(IFO3206)をB
HI液体培地中で36℃、2日以上培養を行った。添加
は300リットルの原水に対して20ミリリットルずつ
2回、前述の時刻に行った。
The E. coli removal test apparatus and operating conditions were performed according to the membrane module performance evaluation method. Time required for the operation to stabilize: After 2 hours, add the Escherichia coli culture solution that has been cultured and stored in advance.
After the elapse of 20 hours, an equal amount was added. After the elapse of 2 hours, permeated water and feed water were collected. E. coli culture
Escherichia coli, K-12 strain (IFO3206)
The cells were cultured in an HI liquid medium at 36 ° C. for 2 days or more. The addition was performed twice at a time of 20 ml per 300 l of raw water at the above-mentioned time.

【0017】大腸菌数の測定 採取した試料は、できれば直ちに、できない時は5℃以
下で冷蔵保存後24時間以内に測定を行った。この測定
はJIS K0102-1993 工場排水の試験方法の大腸
菌群数に準じて行った。
Measurement of Escherichia coli Number The collected sample was measured as soon as possible, and when not possible, at 24 ° C. or less after refrigerated storage at 5 ° C. or less. This measurement was performed in accordance with JIS K0102-1993, the number of coliform bacteria in the test method for factory wastewater.

【0018】逆浸透膜として三酢酸セルロース中空糸膜
モジュール(商品名HOLLOSEP HA5330、
東洋紡製)を製造し、膜特性が規格外のものを選定し、
リーク検査に使用した。この膜モジュールの透過性能は
膜モジュールの評価方法Iでの評価でFR28.4m3
/日、RJ90.2%で大腸菌の除去性テストの結果は
原水300万個/cm3 以上に対して、透過水1200個
/cm3 であった。蛍光染料、C.I.Fluorescent Brighten
er 24の1g/リットル水溶液20cm3 を500リ
ットルの原水槽に溶解し(蛍光染料濃度は0.04mg/
リットル)、この膜モジュールの開口面にリーク検出媒
体として定性濾紙を挿入して、10kg/cm2、20から2
5℃で1時間運転した。運転終了後、この濾紙を取り出
し、蛍光ランプで照らし蛍光を発生させてリーク箇所を
調べた。蛍光染着斑、即ち、リーク箇所数は43箇所が
確認できた。リーク箇所に相当する膜モジュールの開口
面をドリルで削り、エポキシ系封止剤で封じた。封止剤
が硬化した後に膜モジュールを再度評価して、FR2
4.8m3/日、RJ93.1%で、大腸菌の除去性は原
水300万個/cm3 以上に対して、透過水0個/cm3
なった。この後、膜モジュールを解体してみたが膜が染
着された場所や汚れは見られ無かった。
As a reverse osmosis membrane, a cellulose triacetate hollow fiber membrane module (trade name: HOLLOSEP HA5330,
Manufactured by Toyobo Co., Ltd.
Used for leak inspection. The permeability of this membrane module was evaluated by the evaluation method I of the membrane module by FR28.4 m 3.
As a result of the E. coli removal test at 90.2% RJ / day, the permeated water was 1200 cells / cm 3 for the raw water of 3 million cells / cm 3 or more. Fluorescent dye, CI Fluorescent Brighten
er24 was dissolved in a 1 g / liter aqueous solution (20 cm 3) in a 500 liter raw water tank (fluorescent dye concentration was 0.04 mg / liter).
Liter), a qualitative filter paper is inserted as a leak detection medium into the opening surface of this membrane module, and 10 kg / cm 2 , 20 to 2
Operated at 5 ° C. for 1 hour. After the operation was completed, the filter paper was taken out, illuminated with a fluorescent lamp to generate fluorescent light, and the leak was examined. Fluorescent spots, that is, 43 leak locations were confirmed. The opening surface of the membrane module corresponding to the leak location was cut with a drill and sealed with an epoxy sealant. After the sealant was cured, the membrane module was evaluated again and the FR2
At 4.8 m 3 / day, RJ 93.1%, the removal of E. coli was 3 million raw water / cm 3 or more and 0 permeated water / cm 3 . After this, the membrane module was disassembled, but no spots or stains were found on the membrane.

【0019】(実施例2)蛍光染料にC.I.Fluorescent
Brightener 86を用いた以外は実施例1と同様に実施
した。結果を表1に示す。
Example 2 CI Fluorescent was used as a fluorescent dye.
The procedure was performed in the same manner as in Example 1 except that Brightener 86 was used. Table 1 shows the results.

【0020】(実施例3)蛍光染料にC.I.Fluorescent
Brightener 260を用いた以外は実施例1と同様に実
施した。結果を表1に示す。
Example 3 CI Fluorescent was used as a fluorescent dye.
The procedure was performed in the same manner as in Example 1 except that Brightener 260 was used. Table 1 shows the results.

【0021】(比較例1)蛍光染料に食用青色2号5m
g/リットルを用い、検出媒体にイオン交換濾紙DEA
E(東洋濾紙製)を用い、蛍光ではなく染着斑を目視
で、それ以外は実施例1と同様に実施した。結果を表1
に示す。この方法では透水量FRの大きな減少と解体し
た中空糸膜に顕著な暗青色の着色がみられた。
(Comparative Example 1) Food dye No. 2 5m in fluorescent dye
g / liter and ion exchange filter paper DEA as the detection medium
Using E (manufactured by Toyo Roshi Kaisha), dyeing spots were visually observed instead of fluorescence, and the other steps were carried out in the same manner as in Example 1. Table 1 shows the results
Shown in In this method, the water permeability FR was greatly reduced, and the disassembled hollow fiber membrane was remarkably colored dark blue.

【0022】(比較例2)蛍光染料に特開昭59−13
6631の方法で合成した蛍光ラベル化高分子(FIT
C−Dxt−T−200)を合成したものを用い、検出
媒体にイオン交換濾紙CM(東洋濾紙製)を用いた以外
は実施例1と同様に実施した。結果を表1に示す。蛍光
染着斑の検出が良くないため、デキストランの濃度とし
て200mg/リットルとなり、透水量FRのかなり大
きな減少が見られた。
Comparative Example 2 JP-A-59-13 was used as a fluorescent dye.
6631, a fluorescently labeled polymer (FIT)
C-Dxt-T-200) was used, and the same operation as in Example 1 was performed except that ion-exchange filter paper CM (manufactured by Toyo Roshi) was used as a detection medium. Table 1 shows the results. Since the detection of fluorescent spots was not good, the concentration of dextran was 200 mg / liter, and the water permeation amount FR was significantly reduced.

【0023】(実施例4)比較例2で使用した膜モジュ
ールを用いて、蛍光染料をC.I.Fluorescent Brightener
86、0.04mg/リットル水溶液を使用して、そ
れ以外は実施例1と同様に実施した。微小な蛍光染色斑
が13カ所が残っており、比較例2では検出力が不足で
ある事が分かり、再度の補修を実施した。結果を表1に
示す。
Example 4 Using the membrane module used in Comparative Example 2, a fluorescent dye was used as a CI Fluorescent Brightener.
86, using a 0.04 mg / liter aqueous solution, except that the procedure was the same as in Example 1. Thirteen minute fluorescent spots remained, indicating that the detection power was insufficient in Comparative Example 2, and repair was performed again. Table 1 shows the results.

【0024】[0024]

【表1】 [Table 1]

【0025】(実施例5)ナノ濾過膜としてポリスルホ
ン中空糸多孔膜(内径200μm、外径300μm)上
にアミン成分としてピペラジンとトリエチレンジアミン
(モル比99:1)、酸成分としてトリメシン酸クロラ
イドを使用して界面重合を行い複合中空糸選択透過性膜
を製造し、有効長さ185mmで中空糸本数6000本
の複合中空糸選択透過性膜モジュールを組み立てた。膜
モジュールの評価方法IIを用いて評価を行った。この中
より透過性能が良くない膜モジュール(予想性能FR:
250リットル/日、RJ:70%に対して、FR:2
70リットル/日以上、RJ:55%以下)を選定し
た。リーク検査前の透過性能等はFR:285リットル
/日、RJ:44.0%、大腸菌数は原水300万個/
cm3 以上、透過水2800/cm3 個の物を使用し、
染料として食用赤色106号を用い、リーク検出媒体と
してイオン交換濾紙DEAE(東洋濾紙製)を用い、そ
れ以外は実施例1と同様に実施した。結果は表2に示
す。
(Example 5) On a polysulfone hollow fiber porous membrane (inner diameter 200 µm, outer diameter 300 µm) as a nanofiltration membrane, piperazine and triethylenediamine (molar ratio 99: 1) were used as amine components, and trimesic acid chloride was used as an acid component. Then, interfacial polymerization was performed to produce a composite hollow fiber selectively permeable membrane, and a composite hollow fiber selectively permeable membrane module having an effective length of 185 mm and 6000 hollow fibers was assembled. The evaluation was performed using the evaluation method II of the membrane module. Among them, a membrane module having a lower permeation performance (expected performance FR:
250 liters / day, RJ: 70%, FR: 2
70 L / day or more, RJ: 55% or less). Permeability before leak test: FR: 285 liters / day, RJ: 44.0%, E. coli count: 3 million raw water /
cm 3 or more, using the permeate 2800 / cm 3 of Objects,
Food red No. 106 was used as the dye, and ion-exchange filter paper DEAE (manufactured by Toyo Roshi) was used as the leak detection medium. The results are shown in Table 2.

【0026】(実施例6)染料を食用赤色104号を用
い、それ以外は実施例5と同様に実施した。結果を表2
に示す。
(Example 6) The same procedure as in Example 5 was carried out except that Edible Red No. 104 was used as the dye. Table 2 shows the results
Shown in

【0027】(比較例3)染料を食用赤色3号を用い、
それ以外は実施例5と同様に実施した。結果を表2に示
す。食用赤色3号は検出力が不足であり、膜モジュール
を汚染した。
Comparative Example 3 An edible red No. 3 dye was used.
Other than that, it carried out similarly to Example 5. Table 2 shows the results. Edible Red No. 3 lacked detection power and contaminated the membrane module.

【0028】(実施例7)染料をエオシンを用い、それ
以外は実施例5と同様に実施した。結果を表2に示す。
Example 7 The same procedure as in Example 5 was carried out except that eosin was used as the dye. Table 2 shows the results.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【作用】染料を蛍光で検出することで検出が容易にな
り、使用する染料が低濃度でも良くなる。検査した選択
透過性膜モジュールの膜とか部材とかの汚染が減少し、
皆無にできる。
The detection is facilitated by detecting the dye by fluorescence, and the dye used can be reduced in concentration. The contamination of the membrane and members of the permselective membrane module that was inspected was reduced,
You can do nothing.

【0031】[0031]

【発明の効果】このために、リーク検査を行った、選択
透過性膜モジュールの透水量が低下することも無く、選
択透過性膜モジュールの美観が保たれ、更に、この選択
透過性膜モジュールを使った時、汚染した染料が残留す
ることが無く、衛生的で安全な透過水を得ることができ
る様になる。膜モジュールの透水性が損なわれることが
無く修復を行えるので、欠陥が無い高透水性の膜モジュ
ールを安価に製造できる様になる。
As a result, the water permeability of the permselective membrane module subjected to the leak test is not reduced, the aesthetic appearance of the permselective membrane module is maintained, and the permselective membrane module is further improved. When used, contaminated dye does not remain, and sanitary and safe permeated water can be obtained. Since the repair can be performed without impairing the water permeability of the membrane module, a highly water-permeable membrane module having no defect can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の評価装置のフローシートを示す。FIG. 1 shows a flow sheet of the evaluation device of the present invention.

【符号の説明】[Explanation of symbols]

1 膜モジュール 2 供給水配管 3 透過水配管 4 濃縮水配管 11 原水槽 12 ポンプ 13 バルブ類 DESCRIPTION OF SYMBOLS 1 Membrane module 2 Supply water piping 3 Permeated water piping 4 Concentrated water piping 11 Raw water tank 12 Pump 13 Valves

フロントページの続き Fターム(参考) 2G051 AB04 AB20 BA05 CB01 GA10 2G067 AA41 BB15 BB17 CC16 DD10 4D006 GA03 GA07 HA01 KE11P KE19P LA03 MA01 MA06 MC18X MC22 MC30 MC39 MC54X MC58 MC62X MC63 PA01 PB02 PB08 Continued on the front page F term (reference) 2G051 AB04 AB20 BA05 CB01 GA10 2G067 AA41 BB15 BB17 CC16 DD10 4D006 GA03 GA07 HA01 KE11P KE19P LA03 MA01 MA06 MC18X MC22 MC30 MC39 MC54X MC58 MC62X MC63 PA01 PB02 PB08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 選択透過性膜モジュールのリーク検査に
際して、分子量が300から3000である蛍光染料溶
液を用いて膜モジュールの欠陥からリークする染料を蛍
光で検知してリーク箇所を特定する選択透過性膜モジュ
ールのリーク検査方法。
1. In a leak test of a selectively permeable membrane module, a selectively dyeable portion is identified by detecting a dye leaking from a defect of the membrane module with fluorescence using a fluorescent dye solution having a molecular weight of 300 to 3000 to detect a leak location. Leak inspection method for membrane modules.
【請求項2】 選択透過性膜モジュールが中空糸選択透
過性膜モジュールである請求項1記載の方法。
2. The method according to claim 1, wherein the permselective membrane module is a hollow fiber permselective membrane module.
【請求項3】 蛍光染料が蛍光能を有する水溶性食用色
素である請求項1または2記載の方法。
3. The method according to claim 1, wherein the fluorescent dye is a water-soluble food dye having a fluorescent ability.
【請求項4】 選択透過性膜モジュールが酢酸セルロー
スまたは三酢酸セルロースよりなり、蛍光染料がジアミ
ノスチルベンジスルホン酸誘導体の1種または2種以上
の混合物である請求項1または2記載の方法。
4. The method according to claim 1, wherein the permselective membrane module is made of cellulose acetate or cellulose triacetate, and the fluorescent dye is one or a mixture of two or more diaminostilbene disulfonic acid derivatives.
【請求項5】 選択透過性膜の分離活性層が主成分とし
てピペラジンとトリメシン酸残基よりなる重合体であ
り、蛍光染料が食用赤色104号及び/または食用赤色
106号である請求項1または2記載の方法。
5. The method according to claim 1, wherein the separation active layer of the permselective membrane is a polymer composed mainly of piperazine and trimesic acid residues, and the fluorescent dye is Food Red No. 104 and / or Food Red No. 106. 2. The method according to 2.
【請求項6】選択透過性膜の分離活性層が主成分として
ピペラジンとトリメシン酸残基よりなる重合体であり、
蛍光染料がエオシン及び/またはその誘導体である請求
項1または2記載の方法。
6. The separation active layer of the permselective membrane is a polymer comprising piperazine and trimesic acid residues as main components,
3. The method according to claim 1, wherein the fluorescent dye is eosin and / or a derivative thereof.
JP28241098A 1998-10-05 1998-10-05 Method for inspecting leak of selectively permeable membrane module Expired - Fee Related JP4058657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28241098A JP4058657B2 (en) 1998-10-05 1998-10-05 Method for inspecting leak of selectively permeable membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28241098A JP4058657B2 (en) 1998-10-05 1998-10-05 Method for inspecting leak of selectively permeable membrane module

Publications (2)

Publication Number Publication Date
JP2000107575A true JP2000107575A (en) 2000-04-18
JP4058657B2 JP4058657B2 (en) 2008-03-12

Family

ID=17652056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28241098A Expired - Fee Related JP4058657B2 (en) 1998-10-05 1998-10-05 Method for inspecting leak of selectively permeable membrane module

Country Status (1)

Country Link
JP (1) JP4058657B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003082447A1 (en) 2002-03-28 2003-10-09 Nalco Company Method of monitoring membrane separation processes
JP2004507340A (en) * 2000-06-02 2004-03-11 ビバンデイ・ユニベルサル Nanofiltration module or reverse osmosis module, or method of checking the system integrity of such a module
JP2006231289A (en) * 2005-02-28 2006-09-07 Toyobo Co Ltd Method for detecting leak in hollow fiber membrane module and leak detection apparatus
JP2006258764A (en) * 2005-03-18 2006-09-28 Kurita Water Ind Ltd Leak inspection method for separation membrane
JP2009078243A (en) * 2007-09-27 2009-04-16 Toray Ind Inc Method for specifying damaged membrane in immersion type hollow fiber membrane module
JP2009229466A (en) * 2008-03-21 2009-10-08 Xerox Corp System and method of optically monitoring contamination of machinery
JP2010051966A (en) * 2002-03-28 2010-03-11 Nalco Co System of monitoring membrane separation processes
JP2011038937A (en) * 2009-08-13 2011-02-24 Fujitsu Ltd Liquid supply system
DE102012001591A1 (en) * 2012-01-27 2013-08-01 Sartorius Stedim Biotech Gmbh Method for detecting defects in an ultrafiltration membrane
JP2015510451A (en) * 2012-11-21 2015-04-09 エルジー・ケム・リミテッド High flow rate water treatment separation membrane with excellent chlorine resistance
JP2015072267A (en) * 2013-10-01 2015-04-16 ザ・ボーイング・カンパニーTheBoeing Company Leak detection in composite structures
KR101555682B1 (en) * 2014-12-09 2015-10-01 (주)가온인더스트리 Leakage detecting apparatus
KR101555681B1 (en) * 2014-07-25 2015-10-01 (주)가온인더스트리 Leakage detecting apparatus
JP2016512473A (en) * 2013-01-16 2016-04-28 ゼネラル・エレクトリック・カンパニイ Integrated apparatus and method for continuously forming and processing ion exchange membranes
CN108136333A (en) * 2015-08-31 2018-06-08 波里费拉公司 Water purification system and method with pressurized reactor effluent stream
CN110639367A (en) * 2019-10-25 2020-01-03 华南理工大学 Method and device for measuring permeation quantity of non-contact hollow fiber membrane
JP2020124690A (en) * 2019-02-05 2020-08-20 三菱ケミカル・クリンスイ株式会社 Water purifier displaying method and water purifier displaying device
JP2021512784A (en) * 2018-05-10 2021-05-20 エルジー・ケム・リミテッド Reverse osmosis membrane, its manufacturing method and water treatment module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2748057T3 (en) 2015-07-20 2020-03-12 Ecolab Usa Inc Membrane conditioning methods

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507340A (en) * 2000-06-02 2004-03-11 ビバンデイ・ユニベルサル Nanofiltration module or reverse osmosis module, or method of checking the system integrity of such a module
US7216529B2 (en) * 2000-06-02 2007-05-15 Veolia Eau - Compagnie Generale Des Eaux Method for controlling the integrity of a nanofiltration or reverse osmosis module, or module system
JP2010046668A (en) * 2002-03-28 2010-03-04 Nalco Co System for monitoring membrane separation process
EP1490161A1 (en) 2002-03-28 2004-12-29 Nalco Company Method of monitoring membrane separation processes
EP1490161A4 (en) * 2002-03-28 2005-07-20 Nalco Co Method of monitoring membrane separation processes
JP2005527348A (en) * 2002-03-28 2005-09-15 ナルコ カンパニー Membrane separation process monitoring system
EP2322269A1 (en) 2002-03-28 2011-05-18 Nalco Company Method of Monitoring Membrane Separation Processes
WO2003082447A1 (en) 2002-03-28 2003-10-09 Nalco Company Method of monitoring membrane separation processes
JP2010051966A (en) * 2002-03-28 2010-03-11 Nalco Co System of monitoring membrane separation processes
JP4538732B2 (en) * 2005-02-28 2010-09-08 東洋紡績株式会社 Hollow fiber membrane module leak detection method and leak detection device
JP2006231289A (en) * 2005-02-28 2006-09-07 Toyobo Co Ltd Method for detecting leak in hollow fiber membrane module and leak detection apparatus
JP2006258764A (en) * 2005-03-18 2006-09-28 Kurita Water Ind Ltd Leak inspection method for separation membrane
JP4586977B2 (en) * 2005-03-18 2010-11-24 栗田工業株式会社 Separation membrane leak inspection method
JP2009078243A (en) * 2007-09-27 2009-04-16 Toray Ind Inc Method for specifying damaged membrane in immersion type hollow fiber membrane module
JP2009229466A (en) * 2008-03-21 2009-10-08 Xerox Corp System and method of optically monitoring contamination of machinery
JP2011038937A (en) * 2009-08-13 2011-02-24 Fujitsu Ltd Liquid supply system
DE102012001591A1 (en) * 2012-01-27 2013-08-01 Sartorius Stedim Biotech Gmbh Method for detecting defects in an ultrafiltration membrane
DE102012001591B4 (en) * 2012-01-27 2018-10-18 Sartorius Stedim Biotech Gmbh Method for detecting defects in an ultrafiltration membrane
DE102012001591A8 (en) * 2012-01-27 2013-10-17 Sartorius Stedim Biotech Gmbh Method for detecting defects in an ultrafiltration membrane
JP2015510451A (en) * 2012-11-21 2015-04-09 エルジー・ケム・リミテッド High flow rate water treatment separation membrane with excellent chlorine resistance
JP2016512473A (en) * 2013-01-16 2016-04-28 ゼネラル・エレクトリック・カンパニイ Integrated apparatus and method for continuously forming and processing ion exchange membranes
JP2015072267A (en) * 2013-10-01 2015-04-16 ザ・ボーイング・カンパニーTheBoeing Company Leak detection in composite structures
KR101555681B1 (en) * 2014-07-25 2015-10-01 (주)가온인더스트리 Leakage detecting apparatus
KR101555682B1 (en) * 2014-12-09 2015-10-01 (주)가온인더스트리 Leakage detecting apparatus
CN108136333A (en) * 2015-08-31 2018-06-08 波里费拉公司 Water purification system and method with pressurized reactor effluent stream
US20180243693A1 (en) * 2015-08-31 2018-08-30 Porifera, Inc. Water purification systems and methods having pressurized draw stream
US10464021B2 (en) * 2015-08-31 2019-11-05 Porifera, Inc. Water purification systems and methods having pressurized draw stream
US11173452B2 (en) 2015-08-31 2021-11-16 Porifera, Inc. Water purification systems and methods having pressurized draw stream
US11779883B2 (en) 2015-08-31 2023-10-10 Porifera, Inc. Water purification systems and methods having pressurized draw stream
JP2021512784A (en) * 2018-05-10 2021-05-20 エルジー・ケム・リミテッド Reverse osmosis membrane, its manufacturing method and water treatment module
JP7009707B2 (en) 2018-05-10 2022-01-26 エルジー・ケム・リミテッド Reverse osmosis membrane, its manufacturing method and water treatment module
JP2020124690A (en) * 2019-02-05 2020-08-20 三菱ケミカル・クリンスイ株式会社 Water purifier displaying method and water purifier displaying device
JP7217163B2 (en) 2019-02-05 2023-02-02 三菱ケミカル・クリンスイ株式会社 Display method of water purifier
CN110639367A (en) * 2019-10-25 2020-01-03 华南理工大学 Method and device for measuring permeation quantity of non-contact hollow fiber membrane
CN110639367B (en) * 2019-10-25 2023-10-13 华南理工大学 Method and device for measuring permeation quantity of non-contact hollow fiber membrane

Also Published As

Publication number Publication date
JP4058657B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
JP4058657B2 (en) Method for inspecting leak of selectively permeable membrane module
US7698928B2 (en) Method for testing separation modules
CA2478380C (en) Method of monitoring membrane separation processes
JP5464989B2 (en) Membrane separation process monitoring system
CN101646482B (en) Method of membrane separation and membrane separation apparatus
Kramer et al. Quantifying defects in ceramic tight ultra-and nanofiltration membranes and investigating their robustness
JPH06254358A (en) Detection of defect of reverse osmosis membrane
CN104399374B (en) A kind of method detecting complex reverse osmosis membrane desalination layer integrity and detection device thereof
WO2023127810A1 (en) Diagnosis method for separation membrane module and deterioration diagnosis device for separation membrane module
JPH06182164A (en) Membrane separation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees