JPH05309375A - Method for repeated thermal hydrolysis treatment of cyan waste solution and apparatus therefor - Google Patents

Method for repeated thermal hydrolysis treatment of cyan waste solution and apparatus therefor

Info

Publication number
JPH05309375A
JPH05309375A JP4137632A JP13763292A JPH05309375A JP H05309375 A JPH05309375 A JP H05309375A JP 4137632 A JP4137632 A JP 4137632A JP 13763292 A JP13763292 A JP 13763292A JP H05309375 A JPH05309375 A JP H05309375A
Authority
JP
Japan
Prior art keywords
cyan
thermal hydrolysis
waste liquid
sludge
hydrolysis treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4137632A
Other languages
Japanese (ja)
Inventor
Akisato Oonishi
彬聡 大西
Atsushi Nakada
淳 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP4137632A priority Critical patent/JPH05309375A/en
Publication of JPH05309375A publication Critical patent/JPH05309375A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To develop excellent effect in the lowering of the concn. of cyan by repeating operation such that a treated waste solution is discharged at every one batch of thermal hydrolysis treatment and batch treatment is performed a specific number of times during a period when the concn. of cyan is kept within a control limit value to discharge sludge. CONSTITUTION:In the thermal hydrolysis treatment of a cyan waste solution, the cyan waste solution W to be treated containing a cyan complex ion is adjusted to its pH at 10 or more, if necessary to be introduced into a pressure container 1 and heated to 140-250 deg.C under predetermined gauge pressure according to a batchwise system to be held to said temp. to decompose the cyan complex ion into ammonia and formate and the heavy metal bonded to cyan is removed as heavy metal oxide sludge. The treated waste solution is discharged out of the pressure container 1 at every one batch of thermal hydrolysis treatment and this thermal hydrolysis treatment is batchwise performed 1-5 times during a period when the concn. of cyan is kept within a predetermined control limit value and, thereafter, sludge is discharged out of the system from the bottom part of the pressure container 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄鋼の軟窒化処理およ
び液体浸炭処理、めっきなどの表面処理工程等において
排出される鉄、銅、ニッケル、亜鉛、カドミウム、マン
ガン、クロム等の重金属のシアン錯イオンを含有する工
業廃液を、熱加水分解処理方法によって、該廃液中のシ
アン濃度を極めて低位まで低減させることの可能な新規
な排水処理方法と、この処理方法を実施するための装置
とに関する。本願発明の以下の説明においては、シアン
イオンおよび/または錯イオンを含む廃液を、場合によ
りシアン含有被処理廃液または単に廃液と略称する。
FIELD OF THE INVENTION The present invention relates to a heavy metal cyanide such as iron, copper, nickel, zinc, cadmium, manganese, chromium, etc., which is discharged in the surface nitriding treatment of steel and liquid carburizing, surface treatment such as plating and the like. The present invention relates to a novel wastewater treatment method capable of reducing the cyanide concentration in an industrial waste liquid containing complex ions to an extremely low level by a thermal hydrolysis treatment method, and an apparatus for carrying out this treatment method. .. In the following description of the present invention, a waste liquid containing cyan ions and / or complex ions is sometimes abbreviated as a cyan-containing treated waste liquid or simply a waste liquid.

【0002】[0002]

【従来の技術】重金属シアン錯塩を含むシアン含有被処
理廃液の処理方法としては、特公昭55−50718号
公報(特願昭47−39405号)に開示された発明が
ある。この発明の方法は、発明の名称が「鉄シアン錯イ
オンを含むシアン廃液の処理方法」と記載されているよ
うに、フェロシアンイオンやフェリシアンイオン等の鉄
シアン錯イオンを含む鉄シアン廃液に限定された発明で
あり、現在では本発明の方法を含み熱加水分解処理法と
呼ばれている方法に属するものである。前記の公報に開
示された発明は、鉄シアン錯イオンを含むシアン廃液
を、廃液中の鉄シアン錯イオン1モル当り2モル以上の
アルカリ金属水酸化物の共存下で140℃以上の温度で
加熱処理することを特徴とするもので、150℃以上の
条件で処理すると処理時間が著しく短縮できると記載さ
れている。
2. Description of the Related Art As a method for treating a cyanide-containing waste liquid containing a heavy metal cyanide complex salt, there is the invention disclosed in Japanese Patent Publication No. 55-50718 (Japanese Patent Application No. 47-39405). The method of the present invention, as the title of the invention is described as “a method for treating a cyan waste liquid containing iron cyan complex ions”, provides an iron cyan waste liquid containing iron cyan complex ions such as ferrocyan ion and ferricyan ion. It is a limited invention and belongs to what is called the thermal hydrolysis treatment method at present including the method of the present invention. The invention disclosed in the above-mentioned publication heats a cyan waste liquid containing iron cyanide complex ions at a temperature of 140 ° C. or higher in the presence of 2 mol or more of alkali metal hydroxide per 1 mol of iron cyanide complex ions in the waste liquid. It is characterized in that it is treated, and it is described that the treatment time can be remarkably shortened when treated at a temperature of 150 ° C. or higher.

【0003】銅、亜鉛、ニッケル等の各イオンを含む高
濃度シアン含有廃液(例えば、めっき廃液)を熱加水分
解させシアンを分解処理することは、日本工業新聞社発
行の技術雑誌「PPM」1977年、8月号の第58〜
68頁に記載されている通り既に公知の技術である。上
記雑誌に記載されている事項を下記に要約する。熱加水
分解処理の原理は、圧力容器内でシアン化合物を加熱保
持し、シアンをアンモニア(NH)と蟻酸塩(HCO
OK)に分解し無毒化して排出可能にする方法であり、
反応式として最も単純なシアン化カリウムに適用した場
合は、次の反応式(1)で示される。 KCN+2HO→NH+HCOOK (1) 鉄(Fe)、亜鉛(Zn)、ニッケル(Ni)などの金
属シアン錯塩では、反応を進行させるにはアルカリの添
加が必要で、アルカリの存在下で反応が進行しアンモニ
ア、蟻酸塩および金属酸化物と金属水酸化物に加水分解
される。KFe(CN)(黄血塩)を使用した場合
の反応式は、下記の(2)に示されている。 KFe(CN)+12NaOH+66HO+O =36NH+2Fe+12HCOONa+24HCOOK・・(2) 上記の反応式(2)は鉄シアン錯塩としての黄血塩が単
独に存在する廃液に関するものであるが、めっき工場や
鉄鋼の軟窒化処理施設などでは、カリウムは高価なこと
から、カリウムの代わりにナトリウム(Na)が使用さ
れる。鉄シアン錯塩としての黄血塩の代わりに、ナトリ
ウムと鉄のシアン錯塩を対象とする場合は、上記反応式
(2)中のKをNaに読み替えるだけでよい。
The decomposition of cyanide by thermally hydrolyzing a high-concentration cyanide-containing waste liquid (for example, a plating waste liquid) containing each ion such as copper, zinc, and nickel is disclosed in the technical magazine "PPM" 1977 published by Nihon Kogyo Shimbun. 58th of August issue
This is a known technique as described on page 68. The matters described in the above journals are summarized below. The principle of the thermal hydrolysis treatment is that a cyan compound is heated and held in a pressure vessel, and cyan is converted to ammonia (NH 3 ) and formate (HCO).
It is a method of decomposing it into OK) and detoxifying it so that it can be discharged.
When applied to potassium cyanide, which is the simplest reaction formula, it is represented by the following reaction formula (1). KCN + 2H 2 O → NH 3 + HCOOK (1) Metal cyanide complex salts of iron (Fe), zinc (Zn), nickel (Ni), etc. require the addition of an alkali to proceed with the reaction, and react in the presence of an alkali. Progresses and is hydrolyzed to ammonia, formate and metal oxides and metal hydroxides. The reaction formula when K 4 Fe (CN) 6 (yellow blood salt) is used is shown in (2) below. K 4 Fe (CN) 6 + 12NaOH + 66H 2 O + O 2 = 36NH 3 + 2Fe 3 O 4 + 12HCOONa + 24HCOOK (2) The above reaction formula (2) relates to a waste liquid in which the yellow blood salt as an iron-cyan complex salt is present alone. However, in a plating plant or a steel soft nitriding treatment facility, potassium is expensive, so sodium (Na) is used instead of potassium. When a cyanide complex salt of sodium and iron is used instead of the yellow blood salt as the iron cyanide complex salt, K in the above reaction formula (2) may be replaced by Na.

【0004】めっき工場等において鉄以外に使用される
重金属としてはニッケル(Ni)、亜鉛(Zn)、銅
(Cu)、カドミウム(Cd)、金(Au)、銀(A
g)、クロム(Cr)その他数種が挙げられるが、その
中代表的にニッケル、亜鉛、銅、カドミウムの4種とナ
トリウムとの、シアン錯塩のそれぞれの通常の熱加水分
解処理の反応式の例を下記(3)〜(6)に示す。 NaNI(CN)+2NaOH+8HO =4NH+Ni(OH)+4HCOONa・・・・・・(3) NaZn(CN)+2NaOH+8HO =4NH+Zn(OH)+4HCOONa・・・・・・(4) Na3Cu(CN)+NaOH+8HO =4NH+Cu(OH)+4HCOONa・・・・・・・(5) NaCd(CN)+2NaOH+8HO =4NH+Cd(OH)+4HCOONa・・・・・・(6)
Heavy metals other than iron used in a plating plant or the like include nickel (Ni), zinc (Zn), copper (Cu), cadmium (Cd), gold (Au) and silver (A).
g), chromium (Cr), and several other types, of which, typically, four types of nickel, zinc, copper, and cadmium, and sodium are represented by the reaction formulas of the usual thermal hydrolysis treatment of each cyan complex salt. Examples are shown in (3) to (6) below. Na 2 NI (CN) 4 + 2NaOH + 8H 2 O = 4NH 3 + Ni (OH) 2 + 4HCOONa ······ (3) Na 2 Zn (CN) 4 + 2NaOH + 8H 2 O = 4NH 3 + Zn (OH) 2 + 4HCOONa ··· ··· (4) Na3Cu (CN) 4 + NaOH + 8H 2 O = 4NH 3 + Cu (OH) + 4HCOONa ······· (5) Na 2 Cd (CN) 4 + 2NaOH + 8H 2 O = 4NH 3 + Cd (OH) 2 + 4HCOONa ... (6)

【0005】上記の各反応式を対比すれば明白なよう
に、(3)〜(6)までの、それぞれの反応式は互いに
極めて類似し、熱加水分解処理による生成物は、アンモ
ニアと各重金属の水酸化物および蟻酸塩である。従っ
て、これらの重金属シアン錯塩を含む混合廃液は、混合
によって別の反応が進行するようなものではなく、単純
な混合液として取り扱うことができ、上記重金属のそれ
ぞれのシアン錯塩の熱加水分解にも上記の反応式が適用
できる。上記(3)〜(6)の反応式では、各重金属の
水酸化物が生成するものとして示されているが、圧力容
器内は、高温、高圧下なので脱水反応によって重金属の
酸化物が生成する。
As is clear from comparison of the above reaction formulas, the reaction formulas (3) to (6) are very similar to each other, and the products obtained by the thermal hydrolysis treatment are ammonia and heavy metals. Hydroxide and formate. Therefore, the mixed waste liquid containing these heavy metal cyanide complex salts does not cause another reaction to proceed by mixing, and can be handled as a simple mixed liquid, and is also suitable for thermal hydrolysis of the respective cyanide complex salts of the above heavy metals. The above reaction formula can be applied. In the reaction formulas (3) to (6), it is shown that hydroxides of each heavy metal are produced. However, since the pressure vessel is under high temperature and high pressure, a dehydration reaction produces heavy metal oxides. ..

【0006】例として、ニッケル(Ni)と亜鉛(Z
n)について熱加水分解により酸化物が形成される場合
の反応式を次に示す。 NaNi(CN)+2NaOH+7HO =4NH+NiO+4HCOONa・・・・・・・(7) NaZn(CN)+2NaOH+7HO =4NH+ZnO+4HCOONa・・・・・・・(8) 前記の重金属シアン錯塩の中で、熱加水分解法にとって
処理が困難なのは銅シアン錯塩であり、銅シアン錯塩が
主体となっている廃液の場合は、鉄シアン錯塩の添加に
より反応が進行するようになるが、各種のめっき工場や
鉄鋼の軟窒化処理および液体浸炭処理施設からの混合廃
液を処理する場合には、通常廃液中にかなりの量の鉄シ
アン錯塩が含まれている状態で供給されるので、鉄シア
ン錯塩を特に添加する必要は殆ど無い。
As an example, nickel (Ni) and zinc (Z
The reaction formula for n) when an oxide is formed by thermal hydrolysis is shown below. Na 2 Ni (CN) 4 + 2NaOH + 7H 2 O = 4NH 3 + NiO + 4HCOONa ······· (7) Na 2 Zn (CN) 4 + 2NaOH + 7H 2 O = 4NH 3 + ZnO + 4HCOONa ······· (8) above Among the heavy metal cyanide complex salts, it is the copper cyanide complex salt that is difficult to treat by the thermal hydrolysis method, and in the case of the waste liquid mainly composed of the copper cyanide complex salt, the reaction proceeds due to the addition of the iron cyanide complex salt. When processing mixed waste liquid from various plating plants and steel soft nitriding and liquid carburizing facilities, it is usually supplied in the state that a considerable amount of iron cyanide complex salt is contained in the waste liquid. It is almost unnecessary to add an iron cyanide complex salt.

【0007】この先行技術の具体的な処理法を、図3に
示す。横型の圧力容器31内に原液槽11から自動弁1
2を経由して該廃液を半分程度導入し、図示しないボイ
ラーから蒸気弁14を経由して生蒸気を直接該廃液に吹
き込み、圧力容器31内は、140℃以上の所定の温度
に上げられる。温度のコントロールは、圧力容器31に
設置された温度センサー13の指令による蒸気弁14の
開閉で行われる。また、図示しない制御機構に設けられ
たタイマーの働きにより目的の温度に達してから一定時
間後には、シアンの分解は終了して処理済みで排出可能
な状態(処理済液と称する)になっている。この時点で
圧力容器に設置された自動排出弁15が自動的に開き、
前記の処理済液は図3の排出管の圧力容器内31内の圧
力で次の冷却槽16へ排出される。従来の方法では、前
述した廃液の導入から後の、熱加水分解処理、処理済み
液の排出までの工程を分解処理の1バッチとし、排出が
終了すると次バッチに移り該廃液が圧力容器に入れられ
同様な処理が反復されていた。この場合、前記各反応式
に示された熱加水分解反応によって生成した酸化鉄など
の酸化物や水酸化物は、大部分処理液と一緒に冷却工程
へ排出されるが、一部が残存し、処理回数をふやすに従
って徐々に容器内に溜ってくる。この種の従来の装置に
おいては、これらのスラッジは前記の容器の構造上、排
出が困難なこともあり、処理のバッチ毎、あるいは少数
回のバッチ毎に排出はできず、圧力容器の年1回の法定
点検時に清掃作業員が中に入り、圧力容器から外へ排出
していた。
A concrete processing method of this prior art is shown in FIG. Automatic valve 1 from the stock solution tank 11 in the horizontal pressure vessel 31
About half of the waste liquid is introduced via 2 and raw steam is directly blown into the waste liquid from a boiler (not shown) via the steam valve 14, and the temperature inside the pressure vessel 31 is raised to a predetermined temperature of 140 ° C. or higher. The temperature is controlled by opening and closing the steam valve 14 according to a command from the temperature sensor 13 installed in the pressure vessel 31. In addition, after a certain time after the target temperature is reached by the function of the timer provided in the control mechanism (not shown), the decomposition of cyan is completed, and it is in a state in which it has been processed and can be discharged (called a processed liquid). There is. At this point, the automatic discharge valve 15 installed in the pressure vessel automatically opens,
The treated liquid is discharged to the next cooling tank 16 by the pressure inside the pressure vessel 31 of the discharge pipe of FIG. In the conventional method, the processes from the introduction of the waste liquid to the subsequent thermal hydrolysis treatment and discharge of the treated liquid are regarded as one batch of the decomposition treatment, and when the discharge is completed, the waste liquid is moved to the next batch and put into the pressure vessel. The same process was repeated. In this case, most of the oxides and hydroxides such as iron oxide produced by the thermal hydrolysis reaction shown in the above reaction formulas are discharged to the cooling step together with the treatment liquid, but some remain. , It gradually accumulates in the container as the number of treatments is increased. In the conventional apparatus of this type, these sludges may be difficult to discharge due to the structure of the above-mentioned container, and it is not possible to discharge them in each processing batch or in a small number of batches. At the time of the legal inspection, a cleaning worker entered inside and discharged from the pressure vessel to the outside.

【0008】[0008]

【発明が解決しようとする課題】従来の熱加水分解処理
においては、前記の式に示されているように、重金属イ
オン含有廃液から重金属の酸化物を主とするスラッジが
生成するか、または廃液の種類や反応条件によっては、
重金属の水酸化物を伴うスラッジが生成し、これらのス
ラッジが圧力容器内に一部残存したままの状態で新たに
廃液を入れ、熱加水分解を繰り返した場合に、金属シア
ン錯塩の熱加水分解効率が低下し、処理済液中のシアン
濃度が変動し、その上濃度が高くなる傾向があり、時に
は規制値を越える場合もあった。また、前述したよう
に、処理済液は圧力容器内31内の圧力下でスラッジを
伴った状態で、排出弁15を通過し次工程の冷却槽16
へ排出されていたので、流速がかなり速くなることか
ら、排出液中のスラッジによるエロージョンにより排出
弁15が損傷しやすく交換を必要とする場合が多かっ
た。本発明は、かかるシアン廃液処理方法において、上
記の諸問題を解消する方法と、それに使用する装置を提
供することを課題とするものである。
In the conventional thermal hydrolysis treatment, as shown in the above formula, sludge mainly composed of heavy metal oxides is produced from the waste liquid containing heavy metal ions, or the waste liquid is discharged. Depending on the type and reaction conditions of
When sludge with hydroxides of heavy metals is generated and a new waste liquid is added while some sludge remains in the pressure vessel and thermal hydrolysis is repeated, thermal hydrolysis of the metal cyanide complex salt is performed. There was a tendency for the efficiency to decrease, the cyan concentration in the treated liquid to fluctuate, and the concentration to increase further, and sometimes to exceed the regulation value. In addition, as described above, the treated liquid passes through the discharge valve 15 under the pressure in the pressure vessel 31 along with sludge and passes through the cooling tank 16 of the next step.
However, since the flow velocity is considerably high, the discharge valve 15 is likely to be damaged by erosion due to sludge in the discharged liquid, and needs to be replaced in many cases. SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for solving the above-mentioned various problems in such a cyan waste liquid treatment method and an apparatus used therefor.

【0009】[0009]

【課題を解決するための手段】前記の課題を解決するた
めの第1段階として、シアン廃液をバッチ式で熱加水分
解する場合、このバッチ処理を反復すると前記のような
問題が発生する原因を解明した。金属シアン錯塩の熱加
水分解効率が低下し処理済液中のシアン濃度が変動し、
さらにシアン濃度が高くなる原因は、重金属の酸化物ま
たは水酸化物が分解生成物として排出液中に析出し、こ
れらが圧力容器内に一部残存したままの状態で、次回の
廃液処理が繰り返される結果、圧力容器内に残留するス
ラッジの量が漸次増加することによるものと予測され
た。そこで、発明者等は上記の予測に基づき、反応の各
回ごとに反応後のシアン濃度と残留スラッジとの関連
性、すなわち、シアン分解効率と処理回数の関連を検討
した。廃液処理設備を稼働させてから処理回数が少ない
初期の間は、処理済液中のシアン濃度のばらつき(変
動)は少なく、濃度値も規制値の1.0ppm以下にな
るが処理回数が進むにつれて処理液中のシアン濃度はば
らつき、値も高く、しばしば1.0ppmを越えシアン
分解効率が低下した。この時点においては、廃液中には
相当多量のスラッジが混在しており、圧力容器内にスラ
ッジが或る量以上に残留するに伴い、これがシアンの熱
加水分解に急激に悪影響をおよぼすものと判断された。
As a first step for solving the above-mentioned problems, when the cyan waste liquid is thermally hydrolyzed in a batch system, the reason why the above problems occur when the batch treatment is repeated is Clarified. The thermal hydrolysis efficiency of the metal cyanide complex salt decreases and the cyan concentration in the treated liquid changes,
The reason for the higher cyan concentration is that heavy metal oxides or hydroxides are deposited as decomposition products in the discharged liquid, and some of them remain in the pressure vessel, and the next waste liquid treatment is repeated. As a result, it was predicted that the amount of sludge remaining in the pressure vessel gradually increased. Therefore, the inventors examined the relationship between the cyan concentration after the reaction and the residual sludge, that is, the relationship between the cyan decomposition efficiency and the number of treatments, based on the above prediction. During the initial period when the number of treatments is small after operating the waste liquid treatment equipment, there is little variation (fluctuation) in the cyan concentration in the treated liquid, and the concentration value is less than the regulation value of 1.0 ppm, but as the number of treatments progresses The cyan concentration in the treatment liquid varied and had a high value, often exceeding 1.0 ppm, and the cyan decomposition efficiency decreased. At this point, a considerable amount of sludge was mixed in the waste liquid, and as the sludge remained in a certain amount or more in the pressure vessel, it was judged that this had a sharp adverse effect on the thermal hydrolysis of cyanide. Was done.

【0010】そこで、本発明者等は従来の熱加水分解処
理方法では、処理の1バッチ毎には重金属酸化物を主成
分とするスラッジを圧力容器の系外に排出させていなか
ったのに代え、処理1バッチ毎にスラッジを系外に排出
させ、常に圧力容器中に前記スラッジをほとんど残留さ
せない状態で熱加水分解処理を開始できるように設備を
改めた。その結果、廃液の処理が何度繰り返されても、
その分解効率の低減がなく常に効率的にシアンを熱加水
分解させることができ、処理済液中のシアン濃度も規制
値の十分の一である0.1ppm前後まで安定して下げ
られることを見出した。廃液に一定量のスラッジが混在
すると、その廃液に含有するシアンの熱加水分解性を悪
くする理由は、現在の時点では理論的に明確とは言えな
いが、本発明者等はその原因を確認し、その対応手段と
して本発明を成すに至ったのである。以下に本発明の実
施方法の要件について述べる。即ち本発明において、供
給されるシアン錯イオン含有シアン廃液のpHは10以
上が望ましい。pH10以上の場合はそのまま処理し、
pHが10以下の場合には、アルカリを添加してpHを
10以上にアルカリで調整する。次に2.7×10
a程度の圧力で、140℃以上の温度で熱加水分解処理
する。次いで熱加水分解終了後に静置して、該廃液から
析出した重金属酸化物等を主成分とするスラッジを沈降
させ、上澄液を排出し、該容器内を水洗しながらスラッ
ジを系外に排出させるようにする。
In view of the above, the present inventors did not discharge sludge containing a heavy metal oxide as a main component out of the pressure vessel system for each batch of treatment in the conventional thermal hydrolysis treatment method. The equipment was modified so that the sludge was discharged out of the system for each batch of treatment, and the thermal hydrolysis treatment could be started in a state where the sludge hardly remained in the pressure vessel. As a result, no matter how many times the waste liquid is treated,
It was found that cyanide can always be efficiently hydrolyzed without reducing the decomposition efficiency, and the cyan concentration in the treated liquid can be stably reduced to around 0.1 ppm, which is one tenth of the regulation value. It was When a certain amount of sludge is mixed in the waste liquid, the reason why the thermal hydrolyzability of cyan contained in the waste liquid is deteriorated is not theoretically clear at the present time, but the present inventors confirmed the cause. However, the present invention has been accomplished as a means for coping with this. The requirements for the implementation method of the present invention are described below. That is, in the present invention, the pH of the cyan complex ion-containing cyan waste liquid supplied is preferably 10 or more. If the pH is 10 or more, treat it as it is,
When the pH is 10 or less, alkali is added to adjust the pH to 10 or more with the alkali. Next, 2.7 × 10 5 P
Thermal hydrolysis treatment is performed at a pressure of about a and a temperature of 140 ° C. or higher. Then, after the completion of thermal hydrolysis, the mixture is left to stand to settle the sludge mainly composed of heavy metal oxides precipitated from the waste liquid, the supernatant liquid is discharged, and the sludge is discharged to the outside of the system while washing the inside of the container with water. To let

【0011】熱加水分解処理の温度範囲は140〜25
0℃が好ましく、より好適には150〜210℃であ
る。この様な温度範囲を選択した理由は、シアン廃液の
熱加水分解処理では140℃以下では反応が起こりにく
く、140℃で反応が起る場合でも150℃とすること
により反応が活発になるためである。特にニッケルや銅
のシアン錯塩の場合には170℃以上とする必要があ
る。また温度の上限を250℃としたのは圧力容器に対
する規制値によるものである。
The temperature range of the thermal hydrolysis treatment is 140 to 25.
0 degreeC is preferable and 150-210 degreeC is more preferable. The reason for selecting such a temperature range is that the reaction is less likely to occur at 140 ° C. or lower in the thermal hydrolysis treatment of the cyan waste liquid, and even if the reaction occurs at 140 ° C., the reaction becomes active by setting the temperature to 150 ° C. is there. Especially in the case of a cyanide complex salt of nickel or copper, it is necessary to set the temperature to 170 ° C. or higher. The upper limit of the temperature is set to 250 ° C. because of the regulation value for the pressure vessel.

【0012】本発明において重要な点は、分解生成物で
ある重金属酸化物等を主成分とするスラッジを圧力容器
内に残留させることなく、水洗などを行い極力丁寧に圧
力容器外に排出させることにある。只単に、シアン排水
規制値(1ppm)以下をクリアすればよいのであれ
ば、必ずしもバッチ毎にスラッジを丁寧に排出させる必
要はないが、シアン分解効率を高めるには、バッチ毎に
スラッジを丁寧に排出する必要がある。
An important point in the present invention is that the sludge containing decomposition products such as heavy metal oxides as the main component is washed with water and discharged out of the pressure vessel as carefully as possible without remaining in the pressure vessel. It is in. It is not always necessary to carefully discharge the sludge in each batch as long as the cyan wastewater regulation value (1 ppm) or less is cleared, but in order to improve the cyanide decomposition efficiency, the sludge in each batch must be carefully discharged. Must be discharged.

【0013】次に本発明の方法を実施する装置について
述べる。分解処理を行うための圧力容器の下部に、廃液
から析出した重金属酸化物および水酸化物を主成分とす
るスラッジを沈降させるための凹部と、圧力容器内に残
留したスラッジを排出させるための水洗手段と、スラッ
ジを排出させやすい構造にした排出装置を設けた点であ
る。具体的には、図1に示すように圧力容器を縦型と
し、圧力容器の底部を凹面とし、水洗手段としては、圧
力容器に残留したスラッジを効果的に排出させるために
水洗スプレー装置を設け、排出口はスラッジを排出し易
い構造とし圧力容器の底部の凹面部の中央部に設けるこ
とが好ましい。圧力容器としては縦型が好適であるが、
図2のように、圧力容器21の底部に適当な凹部21a
を設ければ横型でもよい。それ以外の部分の説明は省略
する。加熱方法としては、圧力容器を外部から直接加熱
する方法もあるが、ある程度以上の規模の工場では、直
接高圧生蒸気を吹き込む方が作業効率と設備の点から好
ましい。
Next, an apparatus for carrying out the method of the present invention will be described. At the bottom of the pressure vessel for decomposing treatment, a recess for sedimenting sludge mainly composed of heavy metal oxides and hydroxides deposited from the waste liquid, and a water wash for discharging sludge remaining in the pressure vessel It is the point that the means and the discharging device having a structure that easily discharges the sludge are provided. Specifically, as shown in FIG. 1, the pressure vessel has a vertical shape, the bottom of the pressure vessel has a concave surface, and a water washing spray device is provided as a water washing means for effectively discharging sludge remaining in the pressure vessel. It is preferable that the discharge port has a structure that allows sludge to be easily discharged, and that the discharge port is provided at the center of the concave portion of the bottom of the pressure vessel. Vertical type is suitable as a pressure vessel,
As shown in FIG. 2, a suitable recess 21a is formed on the bottom of the pressure vessel 21.
If it is provided, it may be a horizontal type. Description of other parts is omitted. As a heating method, there is a method of directly heating the pressure vessel from the outside, but in a factory of a certain size or more, it is preferable to directly blow high-pressure live steam from the viewpoint of work efficiency and equipment.

【0014】[0014]

【実施例】以下図1を参照して、本発明の第1実施例の
実施に使用した装置と、熱加水分解処理の具体的な方法
と、それによって得られた結果とを説明する。図1に示
されているように、圧力容器1は縦型で底部1aは凹曲
面を形成し、内部にはスラッジを排出させるための手段
として水洗スプレー2、およびスラッジ排出手段として
の排出口3と排出用の自動弁4が設けられている。適度
の水圧でスプレー2から水を吹き付けることにより圧力
容器の内部に沈降したスラッジを効果的に排出する。次
ぎに、図1に示した前記の装置を使用した熱加水分解処
理方法について説明する。最初に原液槽11から圧力容
器1内にシアン錯イオン含有廃液Wを水中ポンプ17等
を用いて導入する。そして、該容器を熱加水分解の所定
の温度および圧力(通常は、ほぼその温度の水の飽和蒸
気圧)にするため、図示しないボイラーから高圧生蒸気
Sを直接吹き込んだ。その工程でシアン錯イオンは、前
述の反応式に示されたようにアンモニア、重金属酸化物
等のスラッジおよび蟻酸塩に分解する。ここで、生成さ
れた重金属酸化物等のスラッジは一部該容器内に蓄積す
る。
EXAMPLES The apparatus used for carrying out the first example of the present invention, the specific method for the thermal hydrolysis treatment, and the results obtained thereby will be described below with reference to FIG. As shown in FIG. 1, the pressure vessel 1 has a vertical shape and a bottom portion 1a has a concave curved surface, and a water washing spray 2 as a means for discharging sludge therein and a discharge port 3 as a sludge discharging means. And an automatic valve 4 for discharging is provided. The sludge settled inside the pressure vessel is effectively discharged by spraying water from the spray 2 with an appropriate water pressure. Next, a thermal hydrolysis treatment method using the apparatus shown in FIG. 1 will be described. First, the cyan complex ion-containing waste liquid W is introduced into the pressure vessel 1 from the stock solution tank 11 by using the submersible pump 17 or the like. Then, in order to bring the container to a predetermined temperature and pressure for thermal hydrolysis (usually, the saturated vapor pressure of water at approximately that temperature), high-pressure raw steam S was blown directly from a boiler (not shown). In the process, the cyan complex ion is decomposed into sludge such as ammonia, heavy metal oxides and formate as shown in the above reaction formula. Here, a part of the generated sludge such as heavy metal oxides is accumulated in the container.

【0015】実施例 1 図1に示した耐圧容器内に、全シアン濃度7000〜9
000ppmでpHが10.3〜10.8の廃液を水中
ポンプ17で投入した。次に、該容器を熱加水分解の所
定温度並びに圧力にするために、直接高圧生蒸気を吹き
込み、加熱温度を170℃±1℃にし、3時間その温度
に保持して熱加水分解処理し、続いて、処理済液を静置
させ、重金属酸化物を主成分とするスラッジを沈降さ
せ、その上澄液を静かに排出するまでの操作を1バッチ
とし、さらに、前記の分解処理の1バッチ毎に該容器内
を水洗し、スラッジを丁寧に排出し終わるまでの操作を
1サイクルとして反復し、次に新たな熱加水分解処理を
開始する操作以降を次サイクルとした。前記廃液の熱加
水分解を27サイクル行い、分解処理後の全シアン濃度
をそれぞれ測定した結果、平均値で0.09ppm(最
大値で0.13ppm、最小値で0.04pm)という
極めて低濃度の結果が得られた。
Example 1 In the pressure-resistant container shown in FIG.
A waste liquid having a pH of 10.3 to 10.8 at 000 ppm was introduced by the submersible pump 17. Next, in order to bring the container to a predetermined temperature and pressure for thermal hydrolysis, high-pressure live steam is directly blown into the container, the heating temperature is set to 170 ° C. ± 1 ° C., and the temperature is maintained for 3 hours for thermal hydrolysis treatment, Subsequently, the treated liquid is allowed to stand, the sludge containing heavy metal oxide as the main component is allowed to settle, and the operation of gently discharging the supernatant liquid is defined as one batch, and further one batch of the decomposition treatment is carried out. The operation of washing the inside of the container each time with water and carefully discharging the sludge was repeated as one cycle, and the operation after starting a new thermal hydrolysis treatment was the next cycle. The thermal lysis of the waste liquid was carried out for 27 cycles, and the total cyan concentration after the decomposition treatment was measured. As a result, the average value was 0.09 ppm (maximum value 0.13 ppm, minimum value 0.04 pm), which was extremely low. Results were obtained.

【0016】比較例 1 図3の横型圧力容器1内に実施例1と同じ廃液を使用
し、従来法と同様に水洗操作を行うことなく1カ月間に
23回処理を行い、各回毎に処理済液の全シアン濃度を
測定した。その結果、平均値として、2.14ppm
(最大値2.8ppm、最小値0.83ppm)とな
り、かなり多数のバッチ(回分)の処理済液が規制値で
ある1.0ppmを上回り好ましくない結果となった。
Comparative Example 1 The same waste liquid as in Example 1 was used in the horizontal pressure vessel 1 shown in FIG. 3, and treatment was performed 23 times in one month without washing operation as in the conventional method, and treatment was performed each time. The total cyan concentration of the finished solution was measured. As a result, as an average value, 2.14 ppm
(Maximum value is 2.8 ppm, minimum value is 0.83 ppm), and a considerably large number of batches (batch) of the treated liquid exceeds the regulation value of 1.0 ppm, which is an unfavorable result.

【0017】比較例 2 比較例1から、処理後に圧力容器内に残留する重金属酸
化物を主成分とするスラッジの蓄積が熱加水分解処理に
悪影響を及ぼすことが認められた。このことを実施例1
に使用した本発明の装置を使用した場合について確認す
るために、実施例1と同じ装置と同じ廃液を使用し、処
理の各バッチ毎に水洗するというスラッジの排出操作を
一切行なわず容器内にスラッジの一部が残り累積するよ
うにして測定した。10回のバッチ処理後の処理水の全
シアン濃度は、平均値が0.82ppm、最大値1.9
ppm、最小値0.09ppmであり、明らかに、実施
例1と比べて悪い結果を示した。この理由は、次のよう
に考えられる。すなわち本発明を実施するために使用し
た図1の装置中の圧力容器1は、縦型で底部1aはスラ
ッジを沈降させるための凹曲面として形成されている。
そのために、バッチ処理の都度スラッジの排出を行なわ
ない場合には、スラッジは従来の耐圧容器(横型)と同
様に残留しやすくなり、その重金属酸化物などのスラッ
ジが残留物熱加水分解反応の効率を低下させたと考えら
れる。
Comparative Example 2 From Comparative Example 1, it was confirmed that the accumulation of sludge containing a heavy metal oxide as a main component remaining in the pressure vessel after the treatment had a bad influence on the thermal hydrolysis treatment. This is shown in Example 1.
In order to confirm the case of using the device of the present invention used for, the same waste liquid as the same device as in Example 1 was used, and the sludge discharge operation of washing with water for each batch of treatment was not performed in the container. The measurement was performed so that a part of the sludge remained and accumulated. The total cyanide concentration of the treated water after the batch treatment of 10 times has an average value of 0.82 ppm and a maximum value of 1.9.
ppm, the minimum value was 0.09 ppm, clearly showing a bad result as compared with Example 1. The reason for this is considered as follows. That is, the pressure vessel 1 in the apparatus of FIG. 1 used for carrying out the present invention is of a vertical type and the bottom portion 1a is formed as a concave curved surface for allowing sludge to settle.
Therefore, if sludge is not discharged every time batch processing is performed, sludge tends to remain as in the conventional pressure vessel (horizontal type), and sludge such as heavy metal oxides remains as a residue in the thermal hydrolysis reaction. Is considered to have decreased.

【0018】実施例 2 実施例1と同じ縦型装置(図1)と同じ廃液を使用し、
実施例1のように処理の各バッチ毎に水洗してスラッジ
を排出する代わりに、2バッチ毎に水洗を伴う1回のス
ラッジ排出を行うようにし、合計で20バッチ、スラッ
ジの排出10回の試験を行い、排出液については排出ご
とに全シアン濃度を測定した。その結果、全シアン濃度
の平均値は0.42ppm、最大値は0,82ppmで
最小値は0,06ppmであった。最大値を含むサンプ
ル群はスラッジを排出後2回の熱加水分解を反復した直
後の値であり、最小値を含むサンプル群はスラッジを排
出した直後の熱加水分解での結果である。
Example 2 Using the same vertical apparatus as in Example 1 (FIG. 1) and the same waste liquid,
Instead of rinsing with water for each batch of treatment as in Example 1, sludge is discharged once with two batches of water, for a total of 20 batches and 10 times of sludge discharge. A test was conducted, and the total cyan concentration of the discharged liquid was measured at each discharge. As a result, the average value of all cyan densities was 0.42 ppm, the maximum value was 0.82 ppm, and the minimum value was 0.06 ppm. The sample group including the maximum value is the value immediately after repeating the thermal hydrolysis twice after discharging the sludge, and the sample group including the minimum value is the result after the thermal hydrolysis immediately after discharging the sludge.

【0019】[0019]

【発明の効果】本発明の熱加水分解処理法により、熱加
水分解処理の1バッチ毎にスラッジを排出することによ
り、シアン錯イオン含有廃液の全シアン濃度を効果的に
分解させ、約0.1ppmまで低減させることが可能に
なるので、従来の処理方法と比較して、シアン濃度の低
下に優れた効果を発揮する。本発明を実施するための装
置としては、圧力容器の底部にスラッジを沈降させるた
めの凹部と、沈降したスラッジを水洗排出するためのス
プレーと、スラッジを排出し易い構造にした排出口と排
出弁とを設けることにより上記の効果が達成できる。
EFFECTS OF THE INVENTION By the thermal hydrolysis treatment method of the present invention, sludge is discharged for each batch of the thermal hydrolysis treatment to effectively decompose the total cyanide concentration of the cyan complex ion-containing waste liquid, and the total cyanide concentration of about 0. Since it can be reduced to 1 ppm, it exhibits an excellent effect of lowering the cyan density as compared with the conventional processing method. The apparatus for carrying out the present invention includes a recess for sludge settling at the bottom of a pressure vessel, a spray for washing and discharging the settled sludge, a discharge port and a discharge valve having a structure for easily discharging sludge. By providing and, the above effect can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するために縦型圧力容器を使用し
た熱加水分解処理装置の系統図である。
FIG. 1 is a system diagram of a thermal hydrolysis treatment apparatus using a vertical pressure vessel to carry out the present invention.

【図2】本発明を実施するために横型圧力容器を使用し
た熱加水分解処理装置の系統図である。
FIG. 2 is a systematic diagram of a thermal hydrolysis treatment apparatus using a horizontal pressure vessel to carry out the present invention.

【図3】横型圧力容器を使用した従来の熱加水分解処理
装置の系統図である。
FIG. 3 is a system diagram of a conventional thermal hydrolysis treatment apparatus using a horizontal pressure vessel.

【符号の説明】[Explanation of symbols]

1、21、圧力容器 1a、21a 圧力容器の底部 2 水洗スプレー槽 3、23 スラッジ排出口 4 スラッジ排出弁 11 原液槽 12、14、15 自動弁 13 温度センサー 16 冷却槽 17 水中ポンプ S 蒸気 W 廃液 1, 21, pressure vessel 1a, 21a bottom of pressure vessel 2 water washing spray tank 3, 23 sludge discharge port 4 sludge discharge valve 11 stock solution tank 12, 14, 15 automatic valve 13 temperature sensor 16 cooling tank 17 submersible pump S vapor W waste liquid

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シアン錯イオンを含有する被処理シアン
廃液を、必要に応じて、pH10以上に調整して圧力容
器に導入し、バッチ方式により該廃液を所定のゲージ圧
で、140〜250℃の温度に加熱保持して、シアンな
らびに錯シアンをアンモニアと蟻酸塩とに分解させ、シ
アンと結合していた重金属を、主として重金属酸化物ス
ラッジとして除去するシアン廃液の熱加水分解処理方法
において、 前記熱加水分解処理の1バッチ毎に、処理済み排出液を
前記圧力容器の外に排出する工程と、前記処理済み排出
液のシアン濃度が所定の管理限界値内に維持される間、
前記熱加水分解処理のバッチを1〜5回行った後、前記
のスラッジを耐圧力容器の底部から系外に排出する工程
と、を反復することを特徴とするシアン廃液の反復熱加
水分解処理方法。
1. A treated cyan waste liquid containing a cyan complex ion is adjusted to pH 10 or higher, if necessary, and introduced into a pressure vessel, and the waste liquid is batch-processed at a predetermined gauge pressure at 140 to 250 ° C. In the thermal hydrolysis treatment method of the cyan waste liquid, which is heated and maintained at a temperature of 10 to decompose cyan and complex cyan into ammonia and formate, and the heavy metal bound to cyan is mainly removed as heavy metal oxide sludge, Discharging the treated effluent out of the pressure vessel for each batch of thermal hydrolysis treatment, and while maintaining the cyan concentration of the treated effluent within a predetermined control limit value,
Repeating the thermal hydrolysis treatment batch 1 to 5 times, and then discharging the sludge from the bottom of the pressure-resistant container to the outside of the system. Repeated thermal hydrolysis treatment of a cyan waste liquid. Method.
【請求項2】 前記のスラッジを圧力容器外へ排出する
に際し、前記圧力容器内を水洗することを特徴とする請
求項1記載のシアン廃液の反復熱加水分解処理方法。
2. The method for iterative thermal hydrolysis treatment of cyan waste liquid according to claim 1, wherein the inside of the pressure vessel is washed with water when the sludge is discharged to the outside of the pressure vessel.
【請求項3】 シアン錯イオンを含有する被処理シアン
廃液を貯留する原液槽と、前記の被処理シアン廃液を受
入れ、所定の温度に所定の時間保持しバッチ方式により
熱加水分解処理を行う圧力容器と、この圧力容器から処
理液を排出する排出装置と、を有するシアン廃液の処理
装置であって、前記圧力容器はその底部に前記熱加水分
解処理により前記の被処理シアン廃液中に析出した重金
属酸化物などのスラッジの捕集を容易にするための凹部
と、この凹部の上方に設けられ沈降したスラッジを水洗
する水洗装置と、水洗されたスラッジを系外に排出し易
い構造にされた排出装置と、を有することを特徴とする
シアン廃液の反復熱加水分解処理装置。
3. A stock solution tank for storing a treated cyan waste liquid containing cyan complex ions, and a pressure for receiving the treated cyan waste liquid, holding the same at a predetermined temperature for a predetermined time, and performing thermal hydrolysis treatment by a batch method. A cyan waste liquid treatment device having a container and a discharge device for discharging the treatment liquid from the pressure container, wherein the pressure container is deposited on the bottom portion of the cyan waste liquid by the thermal hydrolysis treatment. A recess for facilitating the collection of sludge such as heavy metal oxides, a washing device provided above the recess for washing the settled sludge with water, and a structure for easily discharging the washed sludge out of the system And a discharge device, and a repeated thermal hydrolysis treatment device for a cyan waste liquid.
【請求項4】 前記圧力容器が縦型であり前記の凹部は
凹曲面として形成され、前記の水洗装置は加圧水を使用
するスプレー装置であることを特徴とする請求項3記載
のシアン廃液の反復熱加水分解処理装置。
4. The repeated cyan waste liquid according to claim 3, wherein the pressure vessel is a vertical type, the concave portion is formed as a concave curved surface, and the water washing device is a spray device using pressurized water. Thermal hydrolysis treatment equipment.
JP4137632A 1992-05-01 1992-05-01 Method for repeated thermal hydrolysis treatment of cyan waste solution and apparatus therefor Pending JPH05309375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4137632A JPH05309375A (en) 1992-05-01 1992-05-01 Method for repeated thermal hydrolysis treatment of cyan waste solution and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4137632A JPH05309375A (en) 1992-05-01 1992-05-01 Method for repeated thermal hydrolysis treatment of cyan waste solution and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH05309375A true JPH05309375A (en) 1993-11-22

Family

ID=15203187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4137632A Pending JPH05309375A (en) 1992-05-01 1992-05-01 Method for repeated thermal hydrolysis treatment of cyan waste solution and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH05309375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103224272A (en) * 2012-01-30 2013-07-31 中国科学院生态环境研究中心 Method for removing heavy metal cyanogen complex in waste water based on double-effect polymerization of aluminum chloride
CN109970315A (en) * 2019-03-08 2019-07-05 同济大学 A kind of High Efficiency Thermal hydrolysis apparatus and method of municipal sludge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103224272A (en) * 2012-01-30 2013-07-31 中国科学院生态环境研究中心 Method for removing heavy metal cyanogen complex in waste water based on double-effect polymerization of aluminum chloride
CN109970315A (en) * 2019-03-08 2019-07-05 同济大学 A kind of High Efficiency Thermal hydrolysis apparatus and method of municipal sludge

Similar Documents

Publication Publication Date Title
CN108996642B (en) Treatment method of chlorine-containing wastewater
EP0140444A2 (en) A process for removing of heavy metals from water in particular from waste water
US5573676A (en) Process and a device for the decomposition of free and complex cyanides, AOX, mineral oil, complexing agents, cod, nitrite, chromate, and separation of metals in waste waters
CN102030432A (en) Method for treating sewage through catalytic oxidation
CN105132932A (en) Reclaiming treatment method of galvanized-part backwashing waste acid liquor
CN101285196B (en) Processing technology for surface oxide skin of aviation tubes
CN109607880A (en) Maintaining method suitable for containing sulfate radicals use in waste water treatment seperation film
CN101144143A (en) Processing technique of plating auxiliary agent for hot galvanizing
US5164015A (en) Method for cleaning a vessel
JPH05309375A (en) Method for repeated thermal hydrolysis treatment of cyan waste solution and apparatus therefor
CN101100328A (en) Comprehensive treatment method for cuprous cyanide technique waste water
KR101204707B1 (en) Corrosion product chemical dissolution process
USH1126H (en) Treatment of sodium nitrite-containing boiler wastewater
BG64538B1 (en) Method for the treatment of organic materials
JPH0765204B2 (en) Method for dissolving and removing iron oxide
JPH067782A (en) Treatment of heavy metal ion-containing waste solution
US5264041A (en) Method for cleaning a vessel
JP4041977B2 (en) Method and apparatus for processing solution containing selenium
JPS59196796A (en) Treatment of liquid waste
US20240092669A1 (en) Ozone treatment of mining effluents.
JPH06170355A (en) Method for treating waste water containing hydrogen peroxide in semiconductor manufacturing process
JPH06170382A (en) Method and apparatus for thermally hydrolyzing cyanide waste solution
JPS5854629B2 (en) Method for treating waste liquid containing heavy metal complex salts
JPH11319804A (en) Treatment of waste water containing ammonia
JPH04349990A (en) Processing of waste liquid containing high concentration of metal ion