JPH05309079A - Magnetic resonance imaging device - Google Patents

Magnetic resonance imaging device

Info

Publication number
JPH05309079A
JPH05309079A JP4117206A JP11720692A JPH05309079A JP H05309079 A JPH05309079 A JP H05309079A JP 4117206 A JP4117206 A JP 4117206A JP 11720692 A JP11720692 A JP 11720692A JP H05309079 A JPH05309079 A JP H05309079A
Authority
JP
Japan
Prior art keywords
piston
cylinder
magnetic resonance
resonance imaging
ultrasonic motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4117206A
Other languages
Japanese (ja)
Inventor
Tomotsugu Hirata
智嗣 平田
Hiromichi Shimizu
博道 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4117206A priority Critical patent/JPH05309079A/en
Publication of JPH05309079A publication Critical patent/JPH05309079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To provide a refrigerating machine which can function effectively even in the vicinity of the magnetic resonance imaging device in which a superconductive coil for generating a strong magnetic field is contained. CONSTITUTION:Refrigerant gas of helium, etc., compressed by a compressor is fed into a refrigerating machine 7. An expansion engine is provided with a cylinder 13 having the center shaft in the vertical direction, and a piston 14 which can move vertically in its inside, the piston 14 divides a space in the cylinder 13 into an expansion chamber 15 of the lower side and an ordinary temperature chamber 16 of the upper side, and the lower part of the expansion chamber 15 becomes a cooling stage 17. To the upper end of the piston 14, a rod 18 is attached, and to the cylinder 13, an ultrasonic motor 20 having an output shaft 19 in the horizontal direction is attached as a driving means of the piston 14. By a scotch yoke 11 for converting a rotating motion to a reciprocating motion, a rotation of the ultrasonic motor 20 is converted to the reciprocating motion of the piston 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超伝導コイルを内蔵し
た磁気共鳴イメージング装置(以下MRI装置と呼
ぶ)、特に、超伝導コイルを冷却する冷媒の蒸発量を低
減させる冷凍機の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic resonance imaging apparatus (hereinafter referred to as MRI apparatus) having a built-in superconducting coil, and more particularly to improvement of a refrigerator for reducing the evaporation amount of a refrigerant for cooling the superconducting coil.

【0002】[0002]

【従来の技術】図1にMRI装置の内部構造の概略図を
示す。生体1を静磁場中に配置し、傾斜磁場を印加し、
高周波パルスを照射して、生体内に磁気共鳴現象を生じ
させる。この生体内から発生する磁気共鳴信号をコイル
2により検出し、この信号を用いて生体の磁気共鳴画像
を得るMRI装置が広く用いられている。画像のS/N
比は、静磁場の強度に比例するため出来るだけ強い静磁
場が必要とされ、また高い解像力を達成するためには、
広い領域にわたって高い均一性や安定性が要求されてい
る。この要求に応えるマグネットとして超伝導マグネッ
トが広く用いられている。しかし、超伝導状態を達成・
維持していくには極低温が必要とされ、例えば、超伝導
コイル3を液体ヘリウム4中に浸して、その外側を真空
状態5とし、またその外側を液体窒素6で満たし、さら
にその液体窒素6の蒸発を減じるために冷凍機7を用い
るという幾重もの魔法瓶形式がとられている。冷凍機の
駆動手段として従来は、特開平3−152353 号公報に示さ
れているように、シンクロナスモータなどの電動式モー
タが用いられてきた。
2. Description of the Related Art FIG. 1 shows a schematic diagram of the internal structure of an MRI apparatus. The living body 1 is placed in a static magnetic field, a gradient magnetic field is applied,
Irradiation with a high frequency pulse causes a magnetic resonance phenomenon in the living body. An MRI apparatus is widely used in which a magnetic resonance signal generated from the inside of a living body is detected by a coil 2 and a magnetic resonance image of the living body is obtained using this signal. Image S / N
Since the ratio is proportional to the strength of the static magnetic field, a static magnetic field as strong as possible is required, and in order to achieve high resolution,
High uniformity and stability are required over a wide area. Superconducting magnets are widely used as magnets that meet this demand. However, achieving a superconducting state
A cryogenic temperature is required to maintain the temperature. For example, the superconducting coil 3 is immersed in liquid helium 4 to make a vacuum state 5 on the outer side thereof, and the outer side thereof is filled with liquid nitrogen 6. It takes the form of multiple thermos, which uses a refrigerator 7 to reduce the evaporation of 6. Conventionally, an electric motor such as a synchronous motor has been used as a driving means for a refrigerator, as disclosed in Japanese Patent Laid-Open No. 3-152353.

【0003】[0003]

【発明が解決しようとする課題】MRI装置の高度化に
伴い、より強い静磁場強度が採用される傾向にあり、2
T(テスラ)程度以上の静磁場強度を有するMRI装置
では漏洩磁束が相当に強くなる。従来の電動式モータで
は、このような漏洩磁束による影響を無くすために大量
の鉄シールドを施さなければ正常な動作が困難であり、
その鉄シールドにより磁場の均一性が乱されるという問
題があった。
With the sophistication of MRI systems, stronger static magnetic field strength tends to be adopted.
In an MRI apparatus having a static magnetic field strength of about T (Tesla) or more, the leakage magnetic flux becomes considerably strong. With conventional electric motors, normal operation is difficult unless a large amount of iron shield is applied in order to eliminate the effects of such leakage magnetic flux.
There was a problem that the iron shield disturbed the uniformity of the magnetic field.

【0004】本発明の目的は、強い磁界が要求される磁
気共鳴イメージング装置の近傍でも、鉄シールドするこ
となく有効に機能し得る冷凍機を提供することにある。
An object of the present invention is to provide a refrigerator that can effectively function without magnetic shielding even in the vicinity of a magnetic resonance imaging apparatus which requires a strong magnetic field.

【0005】[0005]

【課題を解決するための手段】本発明では、上記目的を
達成するために、冷凍機の駆動源として超音波モータを
使用する。
In order to achieve the above object, the present invention uses an ultrasonic motor as a drive source of a refrigerator.

【0006】[0006]

【作用】超音波モータは非磁性体で構成されており、ま
たその駆動方法に磁気的なメカニズムを含まないので、
磁界の影響を受けることがない。よって強い磁界が要求
される磁気共鳴イメージング装置の近傍でも、有効に機
能し得る冷凍機を提供することができる。また、超音波
モータは電動モータに比べ回転音が小さいので、冷凍機
の動作音を軽減することが可能となる。
[Operation] Since the ultrasonic motor is made of non-magnetic material and its driving method does not include a magnetic mechanism,
Not affected by magnetic field. Therefore, it is possible to provide a refrigerator that can effectively function even in the vicinity of a magnetic resonance imaging apparatus that requires a strong magnetic field. Further, since the ultrasonic motor has a smaller rotation sound than the electric motor, it is possible to reduce the operation sound of the refrigerator.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図2は、本発明が適用された一実施例であるMR
I装置用冷凍機のブロック図である。コンプレッサ10
で圧縮されたヘリウム等の冷媒ガスは冷凍機7に送り込
まれる。この冷凍機7は、上下方向の中心軸を有するシ
リンダ13と、その内部に上下運動可能なピストン14
とを備え、このピストン14はシリンダ13内の空間を
下側の膨張室15と上側の常温室16とに区分してお
り、この膨張室15の下部が冷却ステージ17となって
いる。ピストン14の上端にはロッド18が取り付けら
れ、シリンダ13の上部にはピストン14の駆動手段と
して水平方向の出力軸19を有する超音波モータ20が
取り付けられている。出力軸19とロッド18の上端と
は、回転運動を往復運動に変換するスコッチヨーク11
により連結されており、超音波モータ20の回転により
ピストン14を往復運動させるようになされている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows an MR to which the present invention is applied.
It is a block diagram of the refrigerator for I apparatuses. Compressor 10
The refrigerant gas such as helium compressed by is sent to the refrigerator 7. The refrigerator 7 includes a cylinder 13 having a vertical center axis and a piston 14 capable of moving vertically in the cylinder 13.
The piston 14 divides the space inside the cylinder 13 into a lower expansion chamber 15 and an upper room temperature chamber 16, and the lower part of the expansion chamber 15 serves as a cooling stage 17. A rod 18 is attached to the upper end of the piston 14, and an ultrasonic motor 20 having a horizontal output shaft 19 as a drive means of the piston 14 is attached to the upper part of the cylinder 13. The output shaft 19 and the upper end of the rod 18 are provided with a Scotch yoke 11 that converts rotational movement into reciprocating movement.
The piston 14 is reciprocated by the rotation of the ultrasonic motor 20.

【0008】コンプレッサ10と冷凍機7とは冷媒配管
8によって接続されている。冷媒配管8は、コンプレッ
サ10の吐出側に接続された高圧配管8aと吸込側に接
続された低圧配管8bとから成り、高圧配管8aの途中
には高圧切替バルブ21aが、低圧配管8bの途中には
低圧切替バルブ21bが、それぞれ設置されている。高
圧配管8aの下流端と低圧配管8bの上流端とは合流さ
れ、この合流部と膨張室15とは蓄冷器12を介して連
通されている。また、合流部と蓄冷器12との間の配管
8cには配管8dの一端が接続され、この配管の他端は
常温室16に連通している。そして超音波モータ20を
作動させてピストン14を往復運動させ、かつそのピス
トン14の動作と同期して高圧切替バルブ21aおよび
低圧切替バルブ21bを交互に開閉することにより、コ
ンプレッサ10からの高圧冷媒ガスを冷凍機7に給排す
る。
The compressor 10 and the refrigerator 7 are connected by a refrigerant pipe 8. The refrigerant pipe 8 is composed of a high-pressure pipe 8a connected to the discharge side of the compressor 10 and a low-pressure pipe 8b connected to the suction side. A high-pressure switching valve 21a is provided in the middle of the high-pressure pipe 8a, and a low-pressure pipe 8b is provided in the middle of the low-pressure pipe 8b. The low pressure switching valves 21b are installed respectively. The downstream end of the high-pressure pipe 8a and the upstream end of the low-pressure pipe 8b join together, and the joining part and the expansion chamber 15 communicate with each other via the regenerator 12. Further, one end of a pipe 8d is connected to the pipe 8c between the merging portion and the regenerator 12, and the other end of this pipe communicates with the room temperature chamber 16. Then, the ultrasonic motor 20 is operated to reciprocate the piston 14, and the high pressure switching valve 21a and the low pressure switching valve 21b are alternately opened and closed in synchronization with the operation of the piston 14, whereby the high pressure refrigerant gas from the compressor 10 is discharged. Is supplied to and discharged from the refrigerator 7.

【0009】ピストン14を上昇させ、かつ高圧切替バ
ルブ21aを開き、低圧切替バルブ21bを閉じた時に
は、高圧冷媒ガスを蓄冷器12を介して膨張室15に供
給する。一方、ピストン14を降下させ、かつ高圧切替
バルブ21aを閉じ、低圧切替バルブ21bを開いた時
には、膨張室15内の冷媒ガスを蓄冷器12を通してコ
ンプレッサ10に戻す。この間の冷媒ガスの断熱膨張に
より冷却ステージ17に寒冷を発生させるようになされ
ている。
When the piston 14 is raised and the high pressure switching valve 21a is opened and the low pressure switching valve 21b is closed, the high pressure refrigerant gas is supplied to the expansion chamber 15 via the regenerator 12. On the other hand, when the piston 14 is lowered, the high pressure switching valve 21a is closed, and the low pressure switching valve 21b is opened, the refrigerant gas in the expansion chamber 15 is returned to the compressor 10 through the regenerator 12. Adiabatic expansion of the refrigerant gas during this time causes the cooling stage 17 to generate cold.

【0010】従来のMRI装置で用いられてきた電動モ
ータの一例を挙げると、例えば、液体窒素槽の容積が2
00l、窒素の蒸発量が0.8l/hr(冷凍機使用時)
程度の場合、トルクが18kg・cm、回転数が60rpm 程
度のシンクロナスモータが使用されている。超音波モー
タとしては現在までに、圧電素子の縦振動の一部をねじ
り結合器によりねじり振動に変換し、縦振動とねじり振
動を組み合わせることによって、回転数120rpm,ト
ルク13kg・cm,効率80%のものが考案されており、
MRI装置用冷凍機に必要な性能を満たしえる。
As an example of an electric motor used in a conventional MRI apparatus, for example, the volume of a liquid nitrogen tank is 2
00l, nitrogen evaporation 0.8l / hr (when using refrigerator)
In the case of the above, a synchronous motor having a torque of 18 kg · cm and a rotation speed of about 60 rpm is used. To date, as an ultrasonic motor, a part of the longitudinal vibration of the piezoelectric element is converted into a torsional vibration by a torsion coupler, and by combining the longitudinal vibration and the torsional vibration, a rotational speed of 120 rpm, a torque of 13 kg · cm, an efficiency of 80%. Has been devised,
It can meet the performance required for refrigerators for MRI equipment.

【0011】実施例では、回転運動を行う超音波モータ
を用いた例を示したが、直線運動を行う超音波モータを
用いることによって、直接ピストンを上下運動させる場
合にも同様の効果が得られる。
In the embodiment, an example of using an ultrasonic motor that makes a rotary motion is shown, but by using an ultrasonic motor that makes a linear motion, the same effect can be obtained when the piston is directly moved up and down. ..

【0012】実施例では窒素の冷却について述べたが、
ヘリウムについても同様な構成が成立するのは明らかで
ある。
Although the cooling of nitrogen is described in the embodiment,
It is clear that a similar structure holds for helium.

【0013】[0013]

【発明の効果】本発明によれば、強い磁界が要求される
磁気共鳴イメージング装置の近くでも、有効に機能し得
る冷凍機を提供することができる。
According to the present invention, it is possible to provide a refrigerator which can effectively function even near a magnetic resonance imaging apparatus which requires a strong magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁気共鳴イメージング装置の内部構造を示すブ
ロック図。
FIG. 1 is a block diagram showing the internal structure of a magnetic resonance imaging apparatus.

【図2】本発明の実施例を示す冷凍機のブロック図。FIG. 2 is a block diagram of a refrigerator showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

7…冷凍機、8a…高圧配管、8b…低圧配管、10…
コンプレッサ、11…スコッチヨーク、12…蓄冷器、
13…シリンダ、14…ピストン、15…膨張室、17
…冷却ステージ、18…ロッド、19…出力軸、20…
超音波モータ、21a…高圧バルブ、21b…低圧バル
ブ。
7 ... Refrigerator, 8a ... High-pressure piping, 8b ... Low-pressure piping, 10 ...
Compressor, 11 ... Scotch yoke, 12 ... Regenerator,
13 ... Cylinder, 14 ... Piston, 15 ... Expansion chamber, 17
... cooling stage, 18 ... rod, 19 ... output shaft, 20 ...
Ultrasonic motor, 21a ... High pressure valve, 21b ... Low pressure valve.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 8203−2G G01R 33/22 S ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location 8203-2G G01R 33/22 S

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】静磁場発生用の超伝導コイルを内蔵した磁
気共鳴イメージング装置において、超伝導コイルを冷却
する冷媒の低温状態を維持するために用いる冷凍機に関
して、この冷凍機の駆動源として超音波モータを用いた
ことを特徴とする磁気共鳴イメージング装置。
1. A magnetic resonance imaging apparatus having a built-in superconducting coil for generating a static magnetic field, wherein the refrigerator is used for maintaining a low temperature state of a refrigerant for cooling the superconducting coil. A magnetic resonance imaging apparatus using a sound wave motor.
JP4117206A 1992-05-11 1992-05-11 Magnetic resonance imaging device Pending JPH05309079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4117206A JPH05309079A (en) 1992-05-11 1992-05-11 Magnetic resonance imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4117206A JPH05309079A (en) 1992-05-11 1992-05-11 Magnetic resonance imaging device

Publications (1)

Publication Number Publication Date
JPH05309079A true JPH05309079A (en) 1993-11-22

Family

ID=14706019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4117206A Pending JPH05309079A (en) 1992-05-11 1992-05-11 Magnetic resonance imaging device

Country Status (1)

Country Link
JP (1) JPH05309079A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244038A (en) * 2008-03-31 2009-10-22 Railway Technical Res Inst Energization characteristic testing apparatus for evaluation sample
CN104795198A (en) * 2014-01-21 2015-07-22 西门子(深圳)磁共振有限公司 Cooling device and method for magnetic resonance imaging system and magnetic resonance imaging system
CN112568870A (en) * 2020-12-10 2021-03-30 中国科学院深圳先进技术研究院 Photoacoustic imaging apparatus and driving device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244038A (en) * 2008-03-31 2009-10-22 Railway Technical Res Inst Energization characteristic testing apparatus for evaluation sample
CN104795198A (en) * 2014-01-21 2015-07-22 西门子(深圳)磁共振有限公司 Cooling device and method for magnetic resonance imaging system and magnetic resonance imaging system
WO2015110389A1 (en) * 2014-01-21 2015-07-30 Siemens Plc Cooling device and method for a magnetic resonance imaging system
CN112568870A (en) * 2020-12-10 2021-03-30 中国科学院深圳先进技术研究院 Photoacoustic imaging apparatus and driving device
CN112568870B (en) * 2020-12-10 2024-05-28 中国科学院深圳先进技术研究院 Photoacoustic imaging apparatus and driving device

Similar Documents

Publication Publication Date Title
CN1307784C (en) Control system for a linear vibration motor
JP2008035604A (en) Gm freezer, pulse tube freezer, cryopump, mri device, super-conductive magnet system, nmr device, and freezer for cooling of semiconductor
JP3728833B2 (en) Pulse tube refrigerator
JP4247099B2 (en) Power unit, refrigerator using it, and applied equipment
JPH05309079A (en) Magnetic resonance imaging device
JP6209160B2 (en) Compressor device, cooling device comprising a compressor device, and cooling unit comprising a compressor device
JP2007194260A (en) Superconductive electromagnet
JP2014526012A5 (en)
JP3403446B2 (en) Gas pressure vibration generating method and apparatus, and refrigerator provided with pressure vibration generating apparatus
CN1957212A (en) Pulse tube low temperature cooler with mean pressure variations
JP2790102B2 (en) Linear motor type compressor
JP2001272126A (en) Pulse tube refrigerating machine, and superconductive magnet device using pulse tube refrigerating machine
JPS61210276A (en) Reciprocation type compressor
JPH031053A (en) Refrigerating machine
JP2004294001A (en) Pulse pipe refrigerator
JP2001238864A (en) Superconductive magnetic resonance imaging apparatus
JPH07294035A (en) Superconducting magnet apparatus
JPH0674584A (en) Cryogenic refrigerator and operating method thereof
JP2002295366A (en) Linear vibration actuator
JP2741875B2 (en) Cryostat with refrigerator
JP2003151822A (en) Cooling device for superconductive coil
JP4943640B2 (en) Superconducting device
CA2561038A1 (en) Resonant linear motor driven cryocooler system
JPS61180862A (en) Cryogenic refrigerator
JPH05322341A (en) Cryogenic freezing system