JPH05308956A - Preservation of nitric acid bacteria and method for restoration - Google Patents

Preservation of nitric acid bacteria and method for restoration

Info

Publication number
JPH05308956A
JPH05308956A JP5440591A JP5440591A JPH05308956A JP H05308956 A JPH05308956 A JP H05308956A JP 5440591 A JP5440591 A JP 5440591A JP 5440591 A JP5440591 A JP 5440591A JP H05308956 A JPH05308956 A JP H05308956A
Authority
JP
Japan
Prior art keywords
acid
salt
bacteria
nitric acid
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5440591A
Other languages
Japanese (ja)
Other versions
JP3040507B2 (en
Inventor
Hideki Kamiyoshi
秀起 神吉
Masayuki Tabata
雅之 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5440591A priority Critical patent/JP3040507B2/en
Publication of JPH05308956A publication Critical patent/JPH05308956A/en
Application granted granted Critical
Publication of JP3040507B2 publication Critical patent/JP3040507B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable preservation treatment of nitric acid bacteria without requiring operation such as concentration by freezing a solution of the bacteria and to extremely quicken restoration of nitrating ability in restoring the bacteria by culturing nitric acid bacteria in a medium containing a specific organic compound and freezing the bacterium solution. CONSTITUTION:First, nitric acid bacteria are cultured in a solution containing an organic compound selected from pyruvic acid (salt), oxaloacetic acid (salt), citric acid (salt), cisaconitic acid, (salt), isocitric acid, 2-oxoglutaric acid (salt), succinic acid (salt), fumaric acid (salt), malic acid (salt), glyoxylic acid (salt), acetic acid (salt), adenosine triphosphate (salt), D-glucose, D-fructose and a polymer polysaccharides obtained by polymerizing one molecule of alpha-L-rhamnose, one molecule of alpha-L-rhamnose, one molecule of D-glucuronic acid and two molecules of D-glucose as one unit in a straight-chain state. Then the solution of the bacteria is directly frozen and stored or mixed with silica gel and frozen and stored.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水産動物の畜養・輸送設
備、水族館等の閉鎖系循環水に含まれる硝化細菌のうち
硝酸菌の保存と復元方法に関し、廃水、下水およびし尿
処理設備、土壌、海水および河川水など、自然界に広く
分布する硝酸菌の保存と復元としても利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preserving and restoring nitric acid bacteria among nitrifying bacteria contained in closed-system circulating water such as aquatic animal breeding / transportation facilities and aquariums, and wastewater, sewage and night soil treatment facilities, soil. It can also be used for the preservation and restoration of nitric acid bacteria widely distributed in nature such as seawater and river water.

【0002】[0002]

【従来の技術】硝化菌はアンモニアまたは亜硝酸または
硝酸に酸化し、二酸化炭素を唯一の炭素源として菌体成
分を合成する独立栄養細菌であり、有機物が共存すると
硝化菌の硝化反応は阻害されるといわれてきた。
2. Description of the Related Art Nitrifying bacteria are autotrophic bacteria that oxidize to ammonia or nitrous acid or nitric acid, and synthesize bacterial cell components using carbon dioxide as the sole carbon source. It has been said that.

【0003】硝化細菌にはアンモニアを酸化して亜硝酸
塩にするアンモニア酸化細菌(以下「亜硝酸菌」とい
う)と、亜硝酸塩を酸化して硝酸塩にする亜硝酸酸化菌
(以下「硝酸菌という)の2つの細菌群からなる。それ
ぞれの化学反応式はつぎの通りである。
The nitrifying bacteria include ammonia-oxidizing bacteria that oxidize ammonia to nitrite (hereinafter referred to as "nitrite bacteria") and nitrite-oxidizing bacteria that oxidize nitrite to nitrate (hereinafter referred to as "nitrite bacteria"). It consists of two groups of bacteria, whose chemical reaction formulas are as follows.

【0004】(a)亜硝酸菌のアンモニア酸化反応 NH4 + + 3/2O2 → NO2 - +H2 O+39.5k
cal (b)硝酸菌の亜硝酸酸化反応 NO2 - + 1/2O2 → NO3 - +21.6kcal
[0004] (a) ammonia oxidation reaction of nitrifying bacteria NH 4 + + 3 / 2O 2 → NO 2 - + H 2 O + 39.5k
Nitrite oxidation reaction of cal (b) nitric acid bacteria NO 2 - + 1 / 2O 2 → NO 3 - + 21.6kcal

【0005】これらの細菌は従属栄養細菌(有機物の酸
化反応によって生ずるエネルギーを利用して増殖する)
に比べて増殖速度が遅く、硝化反応が十分に現れるだけ
の菌量に達するまでに長期間を要する(この期間を「馴
致期間」という)。
These bacteria are heterotrophic bacteria (proliferate by utilizing energy generated by oxidation reaction of organic matter)
The growth rate is slower than that of, and it takes a long time to reach the amount of bacteria sufficient for the nitrification reaction to appear (this period is referred to as the "acclimation period").

【0006】そこで馴致期間を短縮するためには、別途
準備しておいた多量の硝化菌を種菌として浄化装置など
に加えることが最も効果的である。そのためには適時任
意に用いることができ、復元力が優れた硝化菌の保存方
法が望まれていた。
[0006] Therefore, in order to shorten the acclimatization period, it is most effective to add a large amount of separately prepared nitrifying bacteria as inoculum to a purification device or the like. For that purpose, a method for preserving nitrifying bacteria, which can be arbitrarily used in a timely manner and has excellent resilience, has been desired.

【0007】従来より細菌の保存方法には継代培養法、
凍結乾燥法およびL−乾燥法などがあるが、このうち亜
硝酸菌の有効な保存法は継代培養法しかなかった。
[0007] Conventionally, a subculture method has been used for the preservation of bacteria,
Although there are freeze-drying method and L-drying method, among them, the subculture method is the only effective preservation method for nitrite.

【0008】なお継代培養法とは、硝化菌を培地に植種
し最適温度で一定期間培養した(硝化菌の場合は通常5
〜7日間)のち、その培養液の一部を別の新鮮培地に直
ちに植種するという操作を繰り返すことによって硝化菌
の保存を図る方法である。
The subculture method means that nitrifying bacteria are inoculated in a medium and cultured at an optimum temperature for a certain period of time (in the case of nitrifying bacteria, it is usually 5
This is a method of preserving nitrifying bacteria by repeating the operation of immediately inoculating a part of the culture solution to another fresh medium after about 7 days).

【0009】[0009]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

(1)継代培養法は操作が煩雑で多くの労力を要する。
また移植を繰り返すうちに変異を起こしやすく、硝化能
力が低下することがある。
(1) The subculture method is complicated and requires a lot of labor.
In addition, mutation is likely to occur during repeated transplantation, resulting in a decrease in nitrification ability.

【0010】(2)細菌を保存処理する際、その細菌濃
度をあらかじめ高めることにより復元効率が大きく向上
する。しかし硝酸菌の菌体収率は0.02〜0.07g
硝酸菌/g除去NO2 −Nと従属栄養細菌に比べて極め
て低く、高い硝酸菌濃度を得るためには長時間を要す
る。したがって従来は硝酸菌培養液を遠心分離機で集菌
し濃縮したのち保存処理していた。この操作は煩雑で、
雑菌にも汚染されやすい。また保存処理していた硝酸菌
を復元させるときは従属栄養細菌に比べて依然として長
時間を要する。
(2) When preserving the bacteria, the restoration efficiency is greatly improved by increasing the bacterial concentration in advance. However, the yield of nitric acid bacteria is 0.02-0.07g.
Nitrate bacteria / g-removed NO 2 -N and extremely low compared to heterotrophic bacteria, and it takes a long time to obtain a high nitrate bacteria concentration. Therefore, conventionally, the nitric acid culture broth was collected by a centrifuge, concentrated, and then stored. This operation is complicated,
Easy to be contaminated by various bacteria. Further, it takes a long time to restore the nitrate bacteria that have been preserved, as compared with the heterotrophic bacteria.

【0011】(3)硝化装置の馴致期間を短縮するため
には、硝化性能を十分に発揮するだけの硝化菌量をあら
かじめ準備しておき、起動時の装置に投入すればよい。
しかし硝化菌は上記のとおり菌体収率が低く増殖が遅い
ため、長時間培養しても低濃度の菌液しか得られないと
いう欠点があった。そのため大量の硝化菌液を運搬する
しかなかった。
(3) In order to shorten the acclimatization period of the nitrification apparatus, the amount of nitrifying bacteria sufficient to sufficiently exert the nitrification performance may be prepared in advance and put into the apparatus at the time of startup.
However, as described above, nitrifying bacteria have a low cell yield and a slow growth rate, so that they have a drawback that only a low-concentration bacterial solution can be obtained even if they are cultured for a long time. Therefore, there was no choice but to transport a large amount of nitrifying bacteria solution.

【0012】(4)硝化装置の馴致が完了した定常運転
に入って後も、系内のなんらかの原因により硝化菌がダ
メージを受け硝化性能が低下することがある。その場合
性能回復に要する時間は有機物廃水浄化装置などに比べ
て長時間を要する。これも硝化菌の菌体収率が低く、増
殖が遅いことによる。性能回復の時間を短縮するために
は、硝化性能を十分に回復するだけの高濃度の硝化菌を
系内に再度供給すればよいが、従来低濃度の硝化菌液し
か得られず実現は難しかった。
(4) Even after the normal operation of the nitrification apparatus is completed, the nitrifying bacteria may be damaged due to some cause in the system and the nitrification performance may be deteriorated. In that case, the time required for performance recovery is longer than that of an organic wastewater purification device. This is also because the cell yield of nitrifying bacteria is low and the growth is slow. In order to shorten the performance recovery time, it is sufficient to re-supply the system with a high-concentration nitrifying bacterium that sufficiently restores the nitrifying performance, but it is difficult to achieve it because only a low-concentration nitrifying bacterium solution can be obtained. It was

【0013】上記の問題点のうち、硝酸菌を保存処理す
る前にあらかじめ高濃度の菌液を短時間で得る方法は既
に提案した(特願平2−325613号)。本発明はさ
らにこれ以外の問題点を解決するために、硝酸菌の有効
な保存と復元方法を提供しようとするものである。
Among the above problems, a method for obtaining a high-concentration bacterial solution in advance in a short time before preserving nitric acid bacteria has already been proposed (Japanese Patent Application No. 2-325613). The present invention further provides an effective method for preserving and restoring nitric acid bacteria in order to solve other problems.

【0014】[0014]

【課題を解決するための手段】本発明者は、 (1)硝酸菌を保存する方法において、硝酸菌をピルビ
ン酸もしくはその塩、オキサル酢酸もしくはその塩、ク
エン酸もしくはその塩、シスアコニット酸もしくはその
塩、イソクエン酸もしくはその塩、2−オキソグルタル
酸もしくはその塩、コハク酸もしくはその塩、フマル酸
もしくはその塩、リンゴ酸もしくはその塩、グリオキシ
ル酸またはその塩、酢酸もしくはその塩、アデノシン3
リン酸またはその塩、D−グルコース、D−フルクトー
ス、α−L−ラムノース、α−L−ラムノース1分子と
D−グルクロン酸1分子およびD−グルコース2分子を
1ユニットとし該ユニットが直鎖状に重合した高分子多
糖類のうち少なくとも1種類以上の有機化合物を含む液
で硝酸菌を培養した菌液をそのままかまたはシリカゲル
と混合後、凍結保存することを特徴とする硝酸菌の保存
方法。
Means for Solving the Problems The present inventor has (1) a method for preserving nitric acid bacteria, wherein the nitric acid bacteria are pyruvic acid or a salt thereof, oxalacetic acid or a salt thereof, citric acid or a salt thereof, cisaconitic acid or Its salts, isocitric acid or its salts, 2-oxoglutaric acid or its salts, succinic acid or its salts, fumaric acid or its salts, malic acid or its salts, glyoxylic acid or its salts, acetic acid or its salts, adenosine 3
Phosphoric acid or a salt thereof, D-glucose, D-fructose, α-L-rhamnose, one molecule of α-L-rhamnose, one molecule of D-glucuronic acid and two molecules of D-glucose as one unit, and the unit is linear. A method for preserving nitric acid bacteria, characterized in that the nitric acid bacterium is cultivated in a liquid containing at least one kind of organic compound among the polymerized polysaccharides as described above, or the mixture is frozen and stored as it is or after mixing with silica gel.

【0015】(2)上記1の凍結保存した亜硝酸菌を復
元する方法において、上記1の有機化合物、乳酸もしく
はその塩、L−グルタミン酸もしくはその塩、L−アス
パラギン酸もしくはその塩、L−セリンもしくはその塩
のうち1種類以上の有機化合物を含む培地で培養するこ
とを特徴とする硝酸菌の復元方法。である。
(2) In the method for restoring frozen nitrite bacteria as described in 1 above, the organic compound of 1 above, lactic acid or a salt thereof, L-glutamic acid or a salt thereof, L-aspartic acid or a salt thereof, L-serine. Alternatively, a method for restoring a nitric acid bacterium, which comprises culturing in a medium containing one or more kinds of organic compounds among salts thereof. Is.

【0016】[0016]

【作用】 (1)硝酸菌にダメージを与えることなく保存すること
ができる。 (2)保存していた硝酸菌を復元するとき、特定有機化
合物によって硝酸菌の増殖または硝化作用が促進され、
従来の方法では得られなかった高濃度の硝酸菌液または
硝化能力の復元が比較的短時間で得られる。
[Operation] (1) It can be stored without damaging the nitric acid bacteria. (2) When the stored nitric acid bacteria are restored, specific organic compounds promote the growth or nitrification of nitric acid bacteria,
High-concentration nitric acid bacterium solution or restoration of nitrification capacity, which could not be obtained by conventional methods, can be obtained in a relatively short time.

【0017】なお特定の有機化合物による硝酸菌増殖ま
たは硝化作用の促進のメカニズムはまだ不明である。お
そらくこれらの特定有機化合物は従属栄養細菌では他の
有機化合物から容易に生合成されるが、硝酸菌では代謝
経路の違いからその生合成に相当の時間を要するのでは
ないかと考えられる。
The mechanism of the growth of nitric acid bacteria or the promotion of nitrification by a specific organic compound is still unknown. Probably, these specific organic compounds are easily biosynthesized from other organic compounds in heterotrophic bacteria, but in nitric acid bacteria, it is considered that the biosynthesis takes a considerable time due to the difference in metabolic pathway.

【0018】[0018]

【実施例】【Example】

(実施例1)以下に硝酸菌の代表菌株(Nitrobacter ag
ilis ATCC 14123)を例にとって、本発明の一実施例を説
明する。
(Example 1) Below, representative strains of nitric acid bacteria (Nitrobacter ag
ilis ATCC 14123) will be described as an example of the present invention.

【0019】なお実施例での硝酸菌の培養は表1に示す
高圧滅菌した培地(Lewis, R.F. and D.Pramer, 1958,
"Isolation of Nitrosomonas in pure culture", J.Bac
teriol., 76, 524-528) (以下「P培地」という)を用
いて、すべて無菌的に操作した。
The culture of nitric acid bacteria in Examples was carried out by autoclaving the medium shown in Table 1 (Lewis, RF and D. Pramer, 1958,
"Isolation of Nitrosomonas in pure culture", J. Bac
teriol., 76, 524-528) (hereinafter referred to as "P medium"), and all were operated aseptically.

【表1】 [Table 1]

【0020】ピルビン酸ナトリウムが10mM、オキサ
ル酢酸が10mM、クエン酸三ナトリウム2水和物が1
mM、シスアコニット酸水和物が10mM、イソクエン
酸三ナトリウム2水和物が10mM、2−オキソグルタ
ル酸が5mM、コハク酸ナトリウム6水和物が1mM、
フマル酸一ナトリウムが10mM、L−リンゴ酸二ナト
リウムが10mM、グルオキシル酸一水和物が10m
M、酢酸ナトリウムが10mM、アデノシン3リン酸
(ATP)二ナトリウムが5mg/リットル、D−グル
コースが5mM、D−フルクトースが10mM、α−L
−ラムノースが10mM、α−L−ラムノース1分子と
D−グルクロン酸1分子およびD−グルコース2分子を
1ユニットとし、該ユニットが直鎖状に重合した高分子
多糖類(以下これを「ゲランガム」という)が0.1%
となるようにそれぞれ別個の培地(表1)30mlに加
え、培地(表1)であらかじめ3日間前培養しておいた
硝酸菌3mlを植種した。この液を30℃、120rp
mで5日間回転培養した。
Sodium pyruvate 10 mM, oxalacetic acid 10 mM, trisodium citrate dihydrate 1
mM, cisaconitic acid hydrate 10 mM, trisodium isocitrate dihydrate 10 mM, 2-oxoglutarate 5 mM, sodium succinate hexahydrate 1 mM,
Fumarate monosodium is 10 mM, L-malate disodium is 10 mM, and gluoxylic acid monohydrate is 10 m.
M, sodium acetate 10 mM, adenosine triphosphate (ATP) disodium 5 mg / liter, D-glucose 5 mM, D-fructose 10 mM, α-L
-Rhamnose is 10 mM, 1 molecule of α-L-rhamnose, 1 molecule of D-glucuronic acid and 2 molecules of D-glucose are set as one unit, and the polymerized polysaccharide in which the unit is linearly polymerized (hereinafter referred to as "gellan gum"). Is 0.1%
Each of them was added to 30 ml of a separate medium (Table 1) so that 3 ml of nitric acid bacteria pre-cultured in the medium (Table 1) for 3 days was inoculated. This liquid at 30 ℃, 120 rp
The cells were cultivated at m.

【0021】またこれと並行して添加物質を含まない培
地(コントロール)について同様に5日間回転培養し、
これらの培養液の菌数を直接計数した。その結果表2に
示す。
In parallel with this, a culture medium containing no added substance (control) was similarly subjected to rotary culture for 5 days,
The numbers of bacteria in these cultures were counted directly. The results are shown in Table 2.

【0022】ピルビン酸およびグルコースを除くいずれ
の添加培地でも最終菌濃度が7.0×108 cells/ml以
上となったが、無添加培地(コントロール)の最終菌濃
度は2.6×108 cells/mlにとどまった。
The final bacterial concentration was 7.0 × 10 8 cells / ml or more in any of the supplemented media except pyruvic acid and glucose, but the final bacterial concentration of the non-supplemented medium (control) was 2.6 × 10 8 Stayed at cells / ml.

【表2】 [Table 2]

【0023】表2のうち最終菌濃度が最高のゲランガム
添加培地で増菌した菌液(2.0×109 cells/ml)、
最終菌濃度が最低のグルコース添加培地で増菌した菌液
(1.0×109 cells/ml)および無添加培地(コント
ロール)の菌液を以下の保存試験に供した。
Bacterial fluid (2.0 × 10 9 cells / ml) enriched with gellan gum-containing medium having the highest final bacterial concentration in Table 2,
The bacterial solution (1.0 × 10 9 cells / ml) enriched with the glucose-containing medium having the lowest final bacterial concentration and the bacterial solution of the additive-free medium (control) were subjected to the following storage test.

【0024】なお無添加培地(コントロール)の菌液は
遠心分離(9000×0.5分間)により集菌したのち
5倍濃縮となるように培地(表1)で再懸濁した液(こ
のときの菌濃度は2.0×109 cells/ml)を使った。
The bacterial solution of the additive-free medium (control) was collected by centrifugation (9000 × 0.5 minutes) and then resuspended in the medium (Table 1) so as to be 5 times concentrated. The bacterial concentration was 2.0 × 10 9 cells / ml).

【0025】まず無色シリカゲルを水洗後乾燥し、その
0.4gを試験管にいれて180℃、2時間乾熱滅菌し
た。それを氷冷しながら上記3種類の菌液1mlを滴下
し、ディープフリーザー(−80℃)で凍結保存した。
また上記3種類の菌液1mlをそのままディープフリー
ザー(−80℃)で凍結保存した。以上の操作と同様に
してコントロールも保存処理した。
First, colorless silica gel was washed with water and dried, and 0.4 g thereof was put into a test tube and sterilized by dry heat at 180 ° C. for 2 hours. While cooling with ice, 1 ml of the above-mentioned three kinds of bacterial solutions was added dropwise and frozen and stored in a deep freezer (-80 ° C).
In addition, 1 ml of the above-mentioned three kinds of bacterial solutions was directly frozen and stored in a deep freezer (-80 ° C). The control was also preserved in the same manner as the above operation.

【0026】これらの保存菌を24時間後に培地(表
1)10mlに懸濁し、30℃、120rpmで培養
し、その硝化能力の復元を試みた。硝化能力は発現は培
養中の亜硝酸濃度を定量することにより観察した。その
結果を表3に示す。
After 24 hours, these preserved bacteria were suspended in 10 ml of a medium (Table 1) and cultured at 30 ° C. and 120 rpm to try to restore the nitrifying ability. The expression of nitrification ability was observed by quantifying the nitrite concentration in the culture. The results are shown in Table 3.

【表3】 [Table 3]

【0027】これよりいずれの添加または無添加培地で
も凍結またはシリカゲル凍結保存によれば遅くとも4日
後に硝酸菌は亜硝酸を消費した。
From these results, the nitric acid bacteria consumed nitrite after 4 days at the latest after freezing or silica gel cryopreservation in any added or non-added medium.

【0028】なおピルビン酸、オキサル酢酸、クエン
酸、イソクエン酸、2−オキソグルタル酸、コハク酸、
フマル酸、リンゴ酸、グリオキシル酸、酢酸、ATP、
グルコース、フルクトース、ラムノースおよびゲランガ
ム添加培地についても、表3と同じ結果が得られた。
Pyruvate, oxalacetic acid, citric acid, isocitric acid, 2-oxoglutaric acid, succinic acid,
Fumaric acid, malic acid, glyoxylic acid, acetic acid, ATP,
The same results as in Table 3 were obtained for the medium supplemented with glucose, fructose, rhamnose and gellan gum.

【0029】(比較例1)実施例1の3種類の保存用亜
硝酸菌液各1mlをアンプルに入れ、真空乾燥機によっ
て室温下で減圧しながら水分を除去(この方法はL−乾
燥と呼ばれている)した。
(Comparative Example 1) 1 ml of each of the three kinds of storage nitrite bacteria solution of Example 1 was placed in an ampoule, and water was removed by depressurizing at room temperature with a vacuum dryer (this method is called L-drying). Has been done).

【0030】またこれは並行して3種類の保存用亜硝酸
菌液各mlをアンプルに入れ、ドライアイス−アセトン
で予備凍結後、真空乾燥機によって減圧下で水分を除去
した。
Further, in parallel, three ml of each of the three types of nitrite bacteria solution for storage were placed in an ampoule, preliminarily frozen with dry ice-acetone, and then water was removed under reduced pressure by a vacuum dryer.

【0031】これらの保存菌を24時間後に培地(表
1)10mlに懸濁し、30℃、120rpmで培養
し、実施例1と同様にそ硝化能力の復元を試みた。硝化
能力の発現は培養液中の亜硝酸濃度を定量することによ
り観察した。その結果を表4に示す。
After 24 hours, these preserved bacteria were suspended in 10 ml of the medium (Table 1) and cultured at 30 ° C. and 120 rpm to try to restore the nitrification ability in the same manner as in Example 1. The expression of nitrification ability was observed by quantifying the nitrite concentration in the culture solution. The results are shown in Table 4.

【表4】 [Table 4]

【0032】これよりいずれの添加培地または無添加培
地でもL−乾燥によれば5日後に硝酸菌の硝化反応が発
現してくるが、凍結乾燥ではまったく復元が遅かった。
From these results, the nitrification reaction of nitric acid bacteria was developed after 5 days by L-drying in any of the added medium and the non-added medium, but the reconstitution was slow in freeze-drying.

【0033】なおL−乾燥において3%のL−グルタミ
ン酸ソーダ溶液に懸濁した場合も表4と同様の結果が得
られた。
The same results as in Table 4 were obtained when the product was suspended in a 3% L-sodium glutamate solution in L-drying.

【0034】この比較例1と実施例1を比較すれば、硝
酸菌の保存は凍結保存またはシリカゲル凍結保存の方が
優れていることが分かる。
Comparing this Comparative Example 1 with Example 1, it can be seen that the preservation of the nitric acid bacterium is superior to the cryopreservation or the silica gel cryopreservation.

【0035】(実施例2)実施例1と同様に、ラムノー
スおよびグルコース添加培地で増菌した亜硝酸菌液を1
0カ月間シリカゲル凍結保存した。この保存菌液1ml
ずつを、ピルビン酸ナトリウムが10mM、オキサル酢
酸が10mM、クエン酸三ナトリウム2水和物が1m
M、シスアコニット酸水和物が10mM、イソクエン酸
三ナトリウム2水和物が10mM、2−オキソグルタル
酸が5mM、コハク酸ナトリウム6水和物が1mM、フ
マル酸一ナトリウムが10mM、L−リンゴ酸二ナトリ
ウムが10mM、グルオキシル酸一水和物が10mM、
酢酸ナトリウムが10mM、アデノシン3リン酸(AT
P)二ナトリウムが5mg/リットル、D−グルコース
が5mM、D−フルクトースが10mM、α−L−ラム
ノースが10mM、ゲランガムが0.1%、乳酸ナトリ
ウムが1mM、L−グルタミン酸ナトリウムが1mg/
l、L−アスパラギン酸ナトリウムが5mg/l、L−
セリンが10mg/lとなるようにそれぞれ添加した培
地(表1)10mlに懸濁し、30℃、120rpmで
培養し、その硝化能力の復元を試みた。硝化能力の発現
は実施例1と同様に培養液中の亜硝酸濃度を定量するこ
とにより観察した。その結果を表5に示す。
(Example 2) In the same manner as in Example 1, 1 part of the nitrite bacterium solution enriched with a medium supplemented with rhamnose and glucose was used.
It was stored frozen for 0 months on silica gel. 1 ml of this preserved bacterial solution
Sodium pyruvate 10 mM, oxalacetic acid 10 mM, trisodium citrate dihydrate 1 m
M, cisaconitic acid hydrate 10 mM, trisodium isocitrate dihydrate 10 mM, 2-oxoglutarate 5 mM, sodium succinate hexahydrate 1 mM, monosodium fumarate 10 mM, L-malic acid 10 mM disodium, 10 mM gluoxylic acid monohydrate,
Sodium acetate 10 mM, adenosine triphosphate (AT
P) Disodium 5 mg / liter, D-glucose 5 mM, D-fructose 10 mM, α-L-rhamnose 10 mM, gellan gum 0.1%, sodium lactate 1 mM, sodium L-glutamate 1 mg /
l, L-sodium aspartate 5 mg / l, L-
The cells were suspended in 10 ml of a medium (Table 1) added with serine at 10 mg / l and cultured at 30 ° C. and 120 rpm to restore the nitrification ability. The expression of nitrification ability was observed by quantifying the nitrite concentration in the culture solution as in Example 1. The results are shown in Table 5.

【表5】 [Table 5]

【0036】これより添加培地の場合は、無添加培地に
比べて硝酸菌の硝化性能の発現が速く、復元が速くなる
ことがわかる。
From this, it can be seen that the nitrification performance of nitric acid bacteria is expressed faster and the restoration is faster in the supplemented medium than in the non-supplemented medium.

【0037】[0037]

【発明の効果】【The invention's effect】

(1)本発明では硝酸菌を比較的短時間の培養で高濃度
化できるため保存処理するに際し菌液をそのまま保存処
理でき、濃縮などの操作が不要となる。
(1) In the present invention, it is possible to increase the concentration of nitric acid bacteria by culturing for a relatively short period of time, and therefore, the bacterial solution can be preserved as it is when it is preserved, and operations such as concentration are unnecessary.

【0038】(2)シリカゲル凍結保存により保存期間
を大幅に長くできるため、継代培養法のように多くの労
力を要せず、しかも移植に伴う変異の発生を最小限に防
ぐことができる。
(2) Since the storage period can be significantly extended by cryopreserving silica gel, it does not require much labor as in the subculture method, and furthermore, the occurrence of mutations associated with transplantation can be minimized.

【0039】(3)シリカゲル凍結保存していた亜硝酸
菌を復元させるとき、従来の無機化合物(亜硝酸)によ
る培養に比べて硝化能力の復元が著しく速められる。
(3) When restoring the nitrite bacteria that have been frozen and stored on silica gel, the restoration of the nitrification ability is remarkably accelerated as compared with the conventional culture with an inorganic compound (nitrite).

【0040】(4)以上の効果に加えて、硝化装置の馴
致またはトラブル対策用の植種菌として、従来に比べて
少容量の硝化菌液量で、短時間のうちに硝化性能が発揮
または回復させられる。
(4) In addition to the above effects, as an inoculum for acclimatizing the nitrification apparatus or for troubleshooting, a nitrifying performance is recovered or recovered within a short time with a smaller volume of nitrifying bacterium solution compared to the conventional one. To be made.

【手続補正書】[Procedure amendment]

【提出日】平成3年4月30日[Submission date] April 30, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】 硝化菌はアンモニアまたは亜硝酸を亜
硝酸または硝酸に酸化し、二酸化炭素を唯一の炭素源と
して菌体成分を合成する独立栄養細菌であり、有機物が
共存すると硝化菌の硝化反応は阻害されるといわれてき
た。
2. Description of the Related Art Nitrifying bacteria use ammonia or nitrous acid
It is an autotrophic bacterium that oxidizes to nitric acid or nitric acid and synthesizes bacterial components using carbon dioxide as the sole carbon source, and it has been said that the nitrification reaction of nitrifying bacteria is inhibited when organic substances coexist.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】 またこれと並行して添加物質を含まない
培地(コントロール)について同様に5日間回転培養
し、これらの培養液の菌数を直接計数した。その結果を
表2に示す。
In parallel with this, a culture medium (control) containing no added substance was similarly subjected to rotary culture for 5 days, and the number of bacteria in these culture solutions was directly counted. The results are shown in Table 2.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】表2[Name of items to be corrected] Table 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【表2】 [Table 2]

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】 なお無添加培地(コントロール)の菌液
は遠心分離(9,000×G,5分間)により集菌した
のら5倍濃縮となるように培地(表1)で再懸濁した液
(このときの菌濃度は2.0×10cells/m
l)を使った。
In addition, the bacterial solution of the additive-free medium (control) was resuspended in the medium (Table 1) so as to be concentrated 5 times after collecting the cells by centrifugation (9000 × G, 5 minutes). (The bacterial concentration at this time was 2.0 × 10 9 cells / m 2.
l) was used.

【手続補正6】[Procedure Amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】 これらの保存菌を24時間後に培地(表
1)10mlに懸濁し、30℃、120rpmで培養
し、その硝化能力の復元を試みた。硝化能力の発現は培
養中の亜硝酸濃度を定量することにより観察した。その
結果を表3に示す。
After 24 hours, these preserved bacteria were suspended in 10 ml of a medium (Table 1) and cultured at 30 ° C. and 120 rpm to try to restore the nitrifying ability. The expression of nitrification ability was observed by quantifying the nitrite concentration in the culture. The results are shown in Table 3.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0030】 またこれは並行して3種類の保存用亜硝
酸菌液各1mlをアンプルに入れ、ドライアイス−アセ
トンで予備凍結後、真空乾燥機によって減圧下で水分を
除去した。
In addition, in parallel, 1 ml of each of the three types of storage nitrite bacteria solution for preservation was placed in an ampoule, preliminarily frozen with dry ice-acetone, and then water was removed under reduced pressure by a vacuum dryer.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】 これらの保存菌を24時間後に培地(表
1)10mlに懸濁し、30℃、120rpmで培養
し、実施例1と同様にその硝化能力の復元を試みた。硝
化能力の発現は培養液中の亜硝酸濃度を定量することに
より観察した。その結果を表4に示す。
After 24 hours, these preserved bacteria were suspended in 10 ml of a medium (Table 1), cultured at 30 ° C. and 120 rpm, and an attempt was made to restore their nitrification ability in the same manner as in Example 1. The expression of nitrification ability was observed by quantifying the nitrite concentration in the culture solution. The results are shown in Table 4.

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0032】 これよりいずれの添加培地または無添加
培地でもL−乾燥によれば5日後に硝酸菌の硝化反応が
発現してくるが、凍結乾燥では復元が遅かった。
From these results, nitrification reaction of nitric acid bacteria appeared after 5 days by L-drying in any addition medium or non-additional medium, but by lyophilization, reconstitution was slow.

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0035[Correction target item name] 0035

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0035】 (実施例2) 実施例1と同様に、ラム
ノースおよびグルコース添加培地で増菌した硝酸菌液
10カ月間シリカゲル凍結保存した。この保存菌液1m
lずつを、ピルビン酸ナトリウムが10mM、オキサル
酢酸が10mM、クエン酸三ナトリウム2水和物が1m
M、シスアコニット酸水和物が10mM、イソクエン酸
三ナトリウム2水和物が10mM、2−オキソグルタル
酸が5mM、コハク酸ナトリウム6水和物が1mM、フ
マル酸−ナトリウムが10mM、L−リンゴ酸二ナトリ
ウムが10mM、グルオキシル酸−水和物が10mM、
酢酸ナトリウムが10mM、アデノシン3リン酸(AT
P)二ナトリウムが5mg/l、D−グルコースが5m
M、D−フルクトースが10mM、α−L−ラムノース
が10mM、ゲランガムが0.1%、乳酸ナトリウムが
1mM、L−グルタミン酸ナトリウムが1mg/l、L
−アスパラギン酸ナトリウムが5mg/l、L−セリン
が10mg/lとなるようにそれぞれ添加した培地(表
1)10mlに懸濁し、30℃、120rpmで培養
し、その硝化能力の復元を試みた。硝化能力の発現は実
施例1と同様に培養液中の亜硝酸濃度を定量することに
より観察した。その結果を表5に示す。
Example 2 As in Example 1, a nitric acid solution supplemented with a medium containing rhamnose and glucose was cryopreserved for 10 months on silica gel. This preserved bacterial solution 1m
1m each, sodium pyruvate 10 mM, oxalacetic acid 10 mM, trisodium citrate dihydrate 1 m
M, cisaconitic acid hydrate 10 mM, trisodium isocitrate dihydrate 10 mM, 2-oxoglutarate 5 mM, sodium succinate hexahydrate 1 mM, fumaric acid-sodium 10 mM, L-malic acid 10 mM disodium, 10 mM glyoxylic acid hydrate,
Sodium acetate 10 mM, adenosine triphosphate (AT
P) disodium 5 mg / l , D-glucose 5 m
M, D-fructose 10 mM, α-L-rhamnose 10 mM, gellan gum 0.1%, sodium lactate 1 mM, sodium L-glutamate 1 mg / l, L
-Suspension in 10 ml of a medium (Table 1) supplemented with sodium aspartate at 5 mg / l and L-serine at 10 mg / l, and the suspension was cultured at 30 ° C and 120 rpm to restore its nitrification ability. The expression of nitrification ability was observed by quantifying the nitrite concentration in the culture solution as in Example 1. The results are shown in Table 5.

【手続補正11】[Procedure Amendment 11]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0039[Correction target item name] 0039

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0039】 (3)シリカゲル凍結保存していた硝酸
を復元させるとき、従来の無機化合物(亜硝酸)によ
る培養に比べて硝化能力の復元が著しく速められる。
(3) Nitric acid stored in a frozen state on silica gel
When the bacteria are restored, the restoration of nitrification ability is remarkably accelerated as compared with the conventional culture using an inorganic compound (nitrite).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 //(C12N 1/04 C12R 1:01) ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area // (C12N 1/04 C12R 1:01)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 硝酸菌を保存する方法において、硝酸菌
をピルビン酸もしくはその塩、オキサル酢酸もしくはそ
の塩、クエン酸もしくはその塩、シスアコニット酸もし
くはその塩、イソクエン酸もしくはその塩、2−オキソ
グルタル酸もしくはその塩、コハク酸もしくはその塩、
フマル酸もしくはその塩、リンゴ酸もしくはその塩、グ
リオキシル酸またはその塩、酢酸またはその塩、アデノ
シン3リン酸またはその塩、D−グルコース、D−フル
クトース、α−L−ラムノース、α−L−ラムノース1
分子とD−グルクロン酸1分子およびD−グルコース2
分子を1ユニットとし該ユニットが直鎖状に重合した高
分子多糖類のうち少なくとも1種類以上の有機化合物を
含む液で硝酸菌を培養した菌液をそのままかまたはシリ
カゲルと混合後、凍結保存することを特徴とする硝酸菌
の保存方法。
1. A method for preserving nitric acid bacteria, wherein the nitric acid bacteria are pyruvic acid or a salt thereof, oxalacetic acid or a salt thereof, citric acid or a salt thereof, cisaconic acid or a salt thereof, isocitric acid or a salt thereof, and 2-oxoglutar. Acid or its salt, succinic acid or its salt,
Fumaric acid or its salt, malic acid or its salt, glyoxylic acid or its salt, acetic acid or its salt, adenosine triphosphate or its salt, D-glucose, D-fructose, α-L-rhamnose, α-L-rhamnose. 1
Molecule and D-glucuronic acid molecule and D-glucose 2
A nitric acid bacterium is cultivated in a liquid containing at least one organic compound of a high molecular polysaccharide in which the molecule is used as one unit and the unit is linearly polymerized, and the bacterium liquid is stored as it is or after mixing with silica gel and then frozen. A method for preserving nitric acid bacteria, which is characterized in that
【請求項2】 上記請求項1の凍結保存した亜硝酸菌を
復元する方法において、上記請求項1の有機化合物、乳
酸もしくはその塩、L−グルタミン酸もしくはその塩、
L−アスパラギン酸もしくはその塩、L−セリンもしく
はその塩のうち1種類以上の有機化合物を含む培地で培
養することを特徴とする硝酸菌の復元方法。
2. The method for restoring frozen nitrite bacteria according to claim 1, wherein the organic compound according to claim 1, lactic acid or a salt thereof, L-glutamic acid or a salt thereof,
A method for restoring a nitric acid bacterium, which comprises culturing in a medium containing at least one organic compound selected from L-aspartic acid or a salt thereof and L-serine or a salt thereof.
JP5440591A 1991-03-19 1991-03-19 How to preserve and restore nitric acid bacteria Expired - Lifetime JP3040507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5440591A JP3040507B2 (en) 1991-03-19 1991-03-19 How to preserve and restore nitric acid bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5440591A JP3040507B2 (en) 1991-03-19 1991-03-19 How to preserve and restore nitric acid bacteria

Publications (2)

Publication Number Publication Date
JPH05308956A true JPH05308956A (en) 1993-11-22
JP3040507B2 JP3040507B2 (en) 2000-05-15

Family

ID=12969790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5440591A Expired - Lifetime JP3040507B2 (en) 1991-03-19 1991-03-19 How to preserve and restore nitric acid bacteria

Country Status (1)

Country Link
JP (1) JP3040507B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1493806A1 (en) * 2003-07-02 2005-01-05 Chr. Hansen A/S Use of compounds involved in biosynthesis of nucleic acids as cryoprotective agents
CN1301216C (en) * 2005-04-11 2007-02-21 北京科技大学 Method for preparing calcium carbonate nano wire
KR100987949B1 (en) * 2010-06-15 2010-10-18 주식회사 유니셀바이오 Cell-preserving solution
US9289003B2 (en) 2003-07-02 2016-03-22 Chr. Hansen A/S Use of compounds involved in biosynthesis of nucleic acids as cryoprotective agents
MD4474C1 (en) * 2016-07-15 2017-10-31 Институт Микробиологии И Биотехнологии Академии Наук Молдовы Protective medium for lyophilization and long-term storage of Streptomyces canosus CNMN-Ac-02 strain
EP2250886B1 (en) * 2005-01-11 2018-06-13 Medtronic, Inc. Methods for processing biological tissue

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1493806A1 (en) * 2003-07-02 2005-01-05 Chr. Hansen A/S Use of compounds involved in biosynthesis of nucleic acids as cryoprotective agents
WO2005003327A1 (en) * 2003-07-02 2005-01-13 Chr. Hansen A/S Use of compounds involved in biosynthesis of nucleic acids as cryoprotective agents
JP2007506411A (en) * 2003-07-02 2007-03-22 セーホーエル.ハンセン アクティーゼルスカブ Use of compounds relating to biosynthesis of nucleic acids as cryoprotectants
EP2239317A1 (en) 2003-07-02 2010-10-13 Chr. Hansen A/S Use of compounds involved in biosynthesis of nucleic acids as cryoprotective agents
US9289003B2 (en) 2003-07-02 2016-03-22 Chr. Hansen A/S Use of compounds involved in biosynthesis of nucleic acids as cryoprotective agents
EP2250886B1 (en) * 2005-01-11 2018-06-13 Medtronic, Inc. Methods for processing biological tissue
CN1301216C (en) * 2005-04-11 2007-02-21 北京科技大学 Method for preparing calcium carbonate nano wire
KR100987949B1 (en) * 2010-06-15 2010-10-18 주식회사 유니셀바이오 Cell-preserving solution
MD4474C1 (en) * 2016-07-15 2017-10-31 Институт Микробиологии И Биотехнологии Академии Наук Молдовы Protective medium for lyophilization and long-term storage of Streptomyces canosus CNMN-Ac-02 strain

Also Published As

Publication number Publication date
JP3040507B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
Premaratne et al. Development of an improved chemically defined minimal medium for Listeria monocytogenes
CN108117992B (en) Normal-temperature preservation method of denitrifying bacteria
Robinson et al. The effect of salts on the growth of Micrococcus halodenitrificans n. sp.
JPH05308956A (en) Preservation of nitric acid bacteria and method for restoration
BR9912416B1 (en) processes for preparing a lactic acid bacterial starter culture and a fermented product, and uses for a porphyrin compound and a lactic starter culture.
JP3040506B2 (en) How to preserve and restore nitrite
US3936355A (en) Microorganism growth media and the stabilization thereof
CN103773684B (en) A kind of method for preserving of denitrifying bacterium
CN103773685B (en) A kind of method for preserving of Nitrosomas
Whelton et al. Assimilation of glucose and related compounds by growing cultures of Pseudomonas saccharophila
JPH0440888A (en) Production of fungus containing polymerized selenium
Kawahara et al. Effect of glycine betaine, an osmoprotective compound on the growth of Brevibacterium lactofermentum
JP2989258B2 (en) Nitrite bacteria culture solution and high concentration culture method of the bacteria
CN113684152A (en) Bacteria preservation culture medium and preparation method thereof
CN108117993B (en) Preservation method of denitrifying bacteria
NIOH et al. Growth of bacteria in the heat-killed cell suspensions of the same bacteria
JP2989257B2 (en) Nitric acid bacteria culture solution and high concentration culture method of the same
JPS637776A (en) Cultivation of sulfate-reducing bacterium
CN108728362B (en) Protective agent for rhodopseudomonas palustris liquid preparation and application thereof
CN114686392B (en) Normal temperature preservation method of nitrifying bacteria
CN115072883B (en) Biological floc particles and activation method and application thereof
JP3040502B2 (en) Method for accelerating nitrification of nitrite bacteria
JP2017163900A (en) Liquid bacterium
CN116790380A (en) Bacterial preservation solution, preparation method and application thereof
Sugio et al. Utilization of amino acids as a sole source of nitrogen by obligate chemolithoautotroph Thiobacillus ferrooxidans

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000201