JPH05308726A - Power transmission cable - Google Patents

Power transmission cable

Info

Publication number
JPH05308726A
JPH05308726A JP4111411A JP11141192A JPH05308726A JP H05308726 A JPH05308726 A JP H05308726A JP 4111411 A JP4111411 A JP 4111411A JP 11141192 A JP11141192 A JP 11141192A JP H05308726 A JPH05308726 A JP H05308726A
Authority
JP
Japan
Prior art keywords
power
cable
superconducting
cables
superconducting cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4111411A
Other languages
Japanese (ja)
Inventor
Ichiro Toyoda
一郎 豊田
Yasuhiro Iwamura
康弘 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4111411A priority Critical patent/JPH05308726A/en
Publication of JPH05308726A publication Critical patent/JPH05308726A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To maintain a power system stably while reducing construction cost and running cost by buffering the storage of dump power and sudden load fluctuation. CONSTITUTION:A first superconducting cable 2 is arranged in parallel with power cables 1 for power transmission, a second superconducting cable 3 wound in a coil shape so as to include these power cables 1 and superconducting cable 2 is installed, and a cylindrical protective case 4 is mounted outside the cable 3, thus constituting a power transmission cable. Electric insulating layers 5 are set up on the outer circumferential sections of the power cables 1 and the first super conducting cable 2 respectively while a heat-insulating layer 6 is fitted inside the protective case 4. The inside of the protective case 4 is filled with liquid nitrogen 7, and the power cables 1 and the superconducting cables 2, 3 are cooled. The power cables 1 transmitting power and the superconducting cables 2, 3, in which power is stored, are unified in the power transport cable, and power can be stored only by laying.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力貯蔵機能を備えた
電力輸送ケーブル、及び電力輸送システムに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power transportation cable having a power storage function and a power transportation system.

【0002】[0002]

【従来の技術】近年、電力の需要が益々増大し、昼と夜
との電力需要供給のアンバランス対応や急激な負荷変化
への追従、及び大陽光発電、風力発電等の自然環境によ
り発電量が大きく左右される新しいエネルギ源の効率的
な電力系統への組み込みを図っていくことが要求されて
きている。電力の需要と供給とをバランスよく調整して
いくためには、何らかの電力貯蔵システムが必要であ
る。また、電力消費量の増大と発電所と消費地との遠距
離化により、より一層の送電ロスの低減化が必要であ
る。
2. Description of the Related Art In recent years, the demand for electric power has increased more and more, and the amount of power generated by the unbalanced supply and demand of power supply between day and night and the rapid change of load and the natural environment such as solar power generation and wind power generation. It has been required to incorporate new energy sources, which are greatly influenced by the above, into an efficient power system. In order to balance the demand and supply of electric power in a well-balanced manner, some kind of electric power storage system is necessary. Moreover, it is necessary to further reduce power transmission loss by increasing the power consumption and increasing the distance between the power plant and the consuming area.

【0003】電力貯蔵に関しては、揚水発電や各種バッ
テリー等が検討されているが貴重な電力を効率よく運用
する点に関して超伝導電力貯蔵は有効技術の一つであ
る。また、大電力長距離送電における送電ロスの低減化
に向けては、高圧化と低温化が検討されている。
Regarding electric power storage, pumped storage power generation, various batteries, and the like have been studied, but superconducting electric power storage is one of the effective techniques in terms of efficiently operating precious electric power. Further, in order to reduce transmission loss in high-power long-distance transmission, high pressure and low temperature are being studied.

【0004】[0004]

【発明が解決しようとする課題】現在検討されている超
伝導電力貯蔵設備は、一箇所に大電力を蓄えようとする
ものが主流であり、設備設置に大面積が要求されること
と、電磁力を押さえ込むための強度の問題で設置箇所が
制約されてしまうので、用地の確保が問題となる。ま
た、長距離送電における送電ロスの低減化に向けては、
銅線やアルミニウム線、またはその合金線が低温化によ
り電気抵抗が低減する効果を利用する方法や、超伝導線
による大電力輸送が検討されているが、敷設費用と冷却
コストの低減が課題である。
Among the superconducting power storage facilities currently under study, the ones that mainly store a large amount of power in one place are the mainstream, and a large area is required for facility installation, and Since the installation location is restricted due to the problem of strength to hold down the force, securing the site becomes a problem. In addition, in order to reduce transmission loss in long-distance transmission,
A method of utilizing the effect of reducing electrical resistance of copper wire or aluminum wire or its alloy wire due to low temperature, and high power transportation by superconducting wire are being studied, but the issue is to reduce the installation cost and cooling cost. is there.

【0005】本発明は上記実情に鑑みてなされたもの
で、余剰電力の貯蔵と急激な負荷変動を緩衝して電力系
統を安定に維持できると共に、建設コストと運転コスト
の低減化を図り得る電力輸送ケーブルを提供することを
目的とする。
The present invention has been made in view of the above circumstances, and it is possible to maintain the electric power system stably by buffering the storage of the surplus electric power and the rapid load fluctuation, and to reduce the construction cost and the operating cost. The purpose is to provide a transportation cable.

【0006】また本発明は、電力輸送ケーブル内の超伝
導ケーブルに何らかの原因で異常が生じても送電系統を
生かすことができ、送電システムを安全に確保した上
で、電力貯蔵機能を既存システムに付加していくことが
可能な電力輸送システムを提供することを目的とする。
Further, according to the present invention, even if an abnormality occurs in the superconducting cable in the power transportation cable for some reason, the power transmission system can be utilized, and the power transmission system can be secured safely, and the power storage function can be added to the existing system. The purpose is to provide a power transportation system that can be added.

【0007】[0007]

【課題を解決するための手段】第1の発明に係る電力輸
送ケーブルは、送電を行なうための電力ケーブルと、同
電力ケーブルと並行に配置される第1の超伝導ケーブル
と、これら電力ケーブルと第1の超伝導ケーブルを内包
するコイル状に巻かれた第2の超伝導ケーブルとを備え
たことを特徴とする。
An electric power transportation cable according to a first aspect of the present invention includes an electric power cable for transmitting electric power, a first superconducting cable arranged in parallel with the electric power cable, and these electric power cables. A second superconducting cable wound in a coil shape, which includes the first superconducting cable, is provided.

【0008】第2の発明に係る電力輸送ケーブルは、送
電を行なうための電力ケーブルと、同電力ケーブルを内
包するコイル状に巻かれた第1の超伝導ケーブルと、こ
れら電力ケーブルとコイル状の第1の超伝導ケーブルを
内包するコイル状に巻かれた第2の超伝導ケーブルとを
備えたことを特徴とする。
An electric power transportation cable according to a second aspect of the present invention includes an electric power cable for transmitting electric power, a coil-shaped first superconducting cable including the electric power cable, and the electric power cable and the coil shape. A second superconducting cable wound in a coil shape, which includes the first superconducting cable, is provided.

【0009】第3の発明に係る電力輸送システムは、電
力輸送ケーブルの上流側の電力ケーブルと結合し電力の
分流を行なう分流器と、同分流器に結合され供給された
電力を直流に変換して上記超伝導ケーブルに供給すると
共に上記2つの超伝導ケーブルの上流端同士をバイパス
させる電流バイパス回路を有する第1の電力変換調節器
と、上記輸送ケーブルの下流端の超伝導ケーブル同士を
バイパスさせるバイパス回路を有すると共に超伝導ケー
ブルから供給される電力を上記電力ケーブルの送電形式
に変換する第2の電力変換調節器と、同第2の電力変換
調節器から供給される電力を電力ケーブルの下流端に供
給する結合器とを有することを特徴とする。
In the electric power transport system according to the third aspect of the present invention, a shunt that is coupled to the power cable upstream of the power transport cable to shunt the power and a power that is coupled to the shunt and is supplied to the direct current are converted. The first power conversion controller having a current bypass circuit for supplying the superconducting cable to the superconducting cable and bypassing the upstream ends of the two superconducting cables, and bypassing the superconducting cables at the downstream end of the transportation cable. A second power conversion controller that has a bypass circuit and that converts the power supplied from the superconducting cable into the power transmission format of the power cable, and the power supplied from the second power conversion controller downstream of the power cable. And a coupler for supplying to the end.

【0010】[0010]

【作用】第1及び第2の発明に係る電力輸送ケーブル
は、外周部の超伝導ケーブルにより発生する磁場の方向
は、ケーブル終端部を除き内部の電力ケーブルと平行に
なるため、余分な力が電力ケーブルに働かない構造とな
り、超伝導ケーブルが無限遠形状のソレノイド型を形成
し、外部への磁場の漏れを低く抑えることができる。ま
た、上記電力輸送ケーブルは、送電を行なう電力ケーブ
ルと電力貯蔵を行なう超伝導ケーブルとを一体化したも
のであり、本電力輸送ケーブルを敷設するだけで電力の
貯蔵が可能となる。
In the power transmission cables according to the first and second aspects of the invention, the direction of the magnetic field generated by the superconducting cable at the outer peripheral portion is parallel to the power cable inside except for the cable terminating portion, so that an extra force is generated. The structure does not work for the power cable, and the superconducting cable forms a solenoid type with an infinite shape, which can suppress the leakage of the magnetic field to the outside. Further, the power transportation cable is an integrated power cable for transmitting power and a superconducting cable for power storage, and power can be stored only by laying the power transportation cable.

【0011】第3の発明に係る電力輸送システムは、電
流供給量が需要より多く余剰電流が発生した場合、外部
指令信号により第1電力変換調節器が動作し、内蔵して
いる電流バイパス回路が開き、電力ケーブルから分流器
を経由した電力が直流に変換されて超伝導ケーブルに導
かれ、余剰電力として貯蔵される。
In the electric power transportation system according to the third aspect of the present invention, when the current supply amount exceeds the demand and a surplus current is generated, the first power conversion controller operates according to the external command signal, and the built-in current bypass circuit operates. The power that has opened and passed through the shunt from the power cable is converted to direct current, guided to the superconducting cable, and stored as surplus power.

【0012】逆に、電力供給量が需要より下回り電力が
不足した場合には、外部指令信号により第2電力変換調
節器に内蔵された電流バイパス回路が開き、超伝導ケー
ブルに蓄えられた電力が第2電力変換調節器により取り
出され、電力ケーブルの送電形式に変換され、結合器を
経由して電力ケーブルに供給される。
On the contrary, when the power supply amount is lower than the demand and the power is insufficient, the current bypass circuit built in the second power conversion controller is opened by the external command signal, and the power stored in the superconducting cable is released. It is taken out by the second power conversion controller, converted into a power transmission form of the power cable, and supplied to the power cable via the coupler.

【0013】上記第1、第2電力変換調節器による超伝
導ケーブルへの電力貯蔵制御は、電力ケーブルによる送
電とは独立になされるため、超伝導ケーブルに異常を生
じても送電システムとは切り離すことができ、送電シス
テムを安全に確保した上で、電力貯蔵機能を送電システ
ムに付加していくことが可能となる。
Since the power storage control to the superconducting cable by the first and second power conversion controllers is independent of the power transmission by the power cable, even if an abnormality occurs in the superconducting cable, it is disconnected from the power transmission system. It is possible to add a power storage function to the power transmission system after securing the power transmission system safely.

【0014】[0014]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。 (第1実施例)図1は本発明の第1実施例に係る電力輸
送ケーブル10の断面図で、例として2相の場合を示し
ている。同図において、1は送電(交流または直流)を
行なうための2相の電力ケーブルで、この電力ケーブル
1と並行に第1の超伝導ケーブル2を配置し、これら電
力ケーブル1と超伝導ケーブル2を内包するようにコイ
ル状に巻かれた第2の超伝導ケーブル3を設け、更にそ
の外側に円筒状の保護ケース4を設けている。この場
合、電力ケーブル1及び第1の超伝導ケーブル2の外周
部には、それぞれ電気絶縁層5を設けると共に、保護ケ
ース4の内側に熱絶縁層6を設けている。そして、上記
ケース4内に冷媒例えば液体窒素7を充填し、電力ケー
ブル1及び超伝導ケーブル2,3を冷却する。上記電力
ケーブル1は、超伝導ケーブルを用いても、通常の電線
を用いても良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 is a cross-sectional view of a power transport cable 10 according to a first embodiment of the present invention, showing a case of two phases as an example. In the figure, 1 is a two-phase power cable for transmitting power (AC or DC). A first superconducting cable 2 is arranged in parallel with this power cable 1, and these power cable 1 and superconducting cable 2 are arranged. A second superconducting cable 3 wound in a coil so as to enclose it is provided, and a cylindrical protective case 4 is provided outside the second superconducting cable 3. In this case, the electric insulation layer 5 is provided on the outer peripheral portions of the power cable 1 and the first superconducting cable 2, respectively, and the heat insulation layer 6 is provided inside the protective case 4. Then, the case 4 is filled with a refrigerant such as liquid nitrogen 7 to cool the power cable 1 and the superconducting cables 2 and 3. The power cable 1 may be a superconducting cable or an ordinary electric wire.

【0015】上記の電力輸送ケーブル10は、外周部の
超伝導ケーブル3により発生する磁場の方向は、ケーブ
ル終端部を除き内部の電力ケーブル1と平行になるた
め、余分な力が電力ケーブル1に働かない構造となり、
超伝導ケーブル3が無限遠形状のソレノイド型を形成
し、外部への磁場の漏れを低く抑えることができる。
In the above power transmission cable 10, since the direction of the magnetic field generated by the superconducting cable 3 on the outer peripheral portion is parallel to the power cable 1 inside except for the cable terminating portion, an extra force is applied to the power cable 1. It becomes a structure that does not work,
Since the superconducting cable 3 forms a solenoid type having an infinity shape, leakage of a magnetic field to the outside can be suppressed low.

【0016】本発明に係る電力輸送ケーブル10は、送
電を行なう電力ケーブル1と電力貯蔵を行なう超伝導ケ
ーブル2,3とを一体化させたものであり、本電力輸送
ケーブル10を敷設するだけで電力貯蔵が可能となる。
The electric power transportation cable 10 according to the present invention is an integrated electric power cable 1 for transmitting electric power and superconducting cables 2, 3 for electric power storage. Electric power can be stored.

【0017】上記電力輸送ケーブル10は、超伝導ケー
ブル3が無限遠ソレノイド型を成すため、単位長さ当た
りの自己インダクタンスL、及び単位長さ当たりの蓄積
エネルギEは次式で表される。 L=μπa2 2 =μAn2 [H/m] …(1) E=(1/2)LI2 [J/m] …(2) ここで、μ:透磁率 真空の場合 4π10-7 n:単位長さ当たりの巻線数 [回/m] a:コイル中心半径 [m] I:電流 [A] A:コイル平均断面積=πa2 [m2 ] 従って、蓄積エネルギEは、電流Iの2乗、及びコイル
断面積Aに比例するため、これらの値が大きいほど大き
な電流貯蔵が可能である。
Since the superconducting cable 3 of the power transmission cable 10 is of the infinite solenoid type, the self-inductance L per unit length and the stored energy E per unit length are expressed by the following equations. L = μπa 2 n 2 = ΜAn 2 [H / m] (1) E = (1/2) LI 2 [J / m] (2) Where, μ: permeability, in the case of vacuum 4π10 -7 n: number of windings per unit length [turns / m] a: coil center radius [m] I: current [A ] A: Average coil cross-sectional area = πa 2 [M 2 Therefore, the stored energy E is proportional to the square of the current I and the coil cross-sectional area A, and the larger these values are, the larger the current can be stored.

【0018】(第2実施例)図2は、本発明の第2実施
例に係る電力輸送ケーブル11を示す断面図である。こ
の実施例に係る電力輸送ケーブル11は、送電を行なう
ための電力ケーブル1に対し、この電力ケーブル1を内
包するようにコイル状に巻かれた第1の超伝導ケーブル
3aを設け、更に、これら電力ケーブル1と第1の超伝
導ケーブル3aを内包するようにコイル状に巻かれた第
2の超伝導ケーブル3とを設けたものである。この場
合、上記2重の超伝導ケーブル3,3aは互いに逆巻き
にし、内部に磁場が形成されるようにしている。すなわ
ち、この実施例に示す電力輸送ケーブル11は、上記図
1における電力輸送ケーブル10の第1の超伝導ケーブ
ル2に代えてコイル状に巻かれた超伝導ケーブル3,3
aを2重に設けたものであり、その他の構成は第1実施
例と同様であるので、同一符号を付して詳細な説明は省
略する。上記第2実施例に示す電力輸送ケーブル11に
おいても、上記図1に示した電力輸送ケーブル10と同
様の効果を得ることができる。
(Second Embodiment) FIG. 2 is a sectional view showing an electric power transport cable 11 according to a second embodiment of the present invention. The power transport cable 11 according to this embodiment is provided with a first superconducting cable 3a wound in a coil shape so as to include the power cable 1 with respect to the power cable 1 for transmitting power. The power cable 1 and the second superconducting cable 3 wound in a coil so as to include the first superconducting cable 3a are provided. In this case, the double superconducting cables 3 and 3a are wound in mutually opposite directions so that a magnetic field is formed inside. That is, the electric power transportation cable 11 shown in this embodiment is replaced with the first superconducting cable 2 of the electric power transportation cable 10 in FIG.
Since a is provided in duplicate and the other structure is the same as that of the first embodiment, the same reference numerals are given and detailed description thereof is omitted. Also in the power transport cable 11 shown in the second embodiment, the same effect as that of the power transport cable 10 shown in FIG. 1 can be obtained.

【0019】(第3実施例)次に図1に示した電力輸送
ケーブル10を用いた電力輸送システムについて図3に
より説明する。電力輸送ケーブル10の上流側において
は、電力ケーブル1に分流器21を接続し、この分流器
21により分流した電力を第1電力変換調節器22に入
力する。この第1電力変換調節器22は、外部指令信号
25に基づき分流器21からの電力を直流に変換して超
伝導ケーブル2,3に供給する。また、電力輸送ケーブ
ル10の下流側においては、電力ケーブル1に結合器2
3を接続すると共に、超伝導ケーブル2,3に第2電力
変換調節器24を接続する。上記第2電力変換調節器2
4は、外部指令信号25により動作し、超伝導ケーブル
2,3に蓄えた電力を電力ケーブル1の送電形式に変換
し、結合器23を介して電力ケーブル1に合流する。
(Third Embodiment) Next, a power transportation system using the power transportation cable 10 shown in FIG. 1 will be described with reference to FIG. On the upstream side of the power transportation cable 10, a shunt 21 is connected to the power cable 1, and the power shunted by the shunt 21 is input to the first power conversion controller 22. The first power conversion controller 22 converts the power from the shunt 21 into DC based on the external command signal 25 and supplies the DC to the superconducting cables 2 and 3. Further, on the downstream side of the power transport cable 10, the power cable 1 and the coupler 2 are connected.
3 is connected, and the second power conversion controller 24 is connected to the superconducting cables 2 and 3. The second power conversion controller 2
4 operates according to the external command signal 25, converts the power stored in the superconducting cables 2 and 3 into the power transmission format of the power cable 1, and joins the power cable 1 via the coupler 23.

【0020】なお、電力ケーブル1による送電形式は、
超伝導ケーブルとは独立とし直流、交流(2相、3相)
の何れでも良い。しかし、超伝導ケーブル2,3に電力
を供給する場合には、上記のように励磁用の直流に変換
する必要があり、交流→直流、又は、直流→交流→直流
への変換が必要となる。また、送電は、電力ケーブル1
を介して発電所から変電所、変電所間、変電所から消費
地へ送電され、既存システムをそのまま適用できるもの
とする。
The power transmission method using the power cable 1 is as follows.
DC and AC (2 phase, 3 phase) independent of superconducting cable
Any of However, when power is supplied to the superconducting cables 2 and 3, it is necessary to convert to DC for excitation as described above, and conversion from AC to DC or DC to AC to DC is required. .. In addition, power transmission is performed by the power cable 1
Power is transmitted from the power plant to the substation, between the substations, and from the substation to the consumption area via the power plant, and the existing system can be applied as it is.

【0021】上記の構成において、電流供給量が需要よ
り多く余剰電流が発生した場合には、外部指令信号25
により第1電力変換調節器22が動作し、内蔵している
電流バイパス回路22sが開き、電力ケーブル1から分
流器21を経由した電力が直流に変換されて超伝導ケー
ブル2,3に導かれ、余剰電力として超伝導ケーブル3
に貯蔵される。電力の入出力が無く電力貯蔵がなされて
いる間は、第1電力変換調節器22内の電流バイパス回
路22s、及び第2電力変換調節器24内の電流バイパ
ス回路24sが閉じ、閉ループを形成して電力ロスを少
なくする。
In the above structure, when the current supply amount exceeds the demand and the surplus current is generated, the external command signal 25
As a result, the first power conversion controller 22 operates, the built-in current bypass circuit 22s is opened, the power from the power cable 1 is converted to direct current and guided to the superconducting cables 2 and 3, Superconducting cable 3 as surplus power
Stored in. While there is no input / output of electric power and electric power is stored, the current bypass circuit 22s in the first power conversion controller 22 and the current bypass circuit 24s in the second power conversion controller 24 are closed to form a closed loop. Reduce power loss.

【0022】逆に、電力供給量が需要より下回り電力が
不足した場合には、外部指令信号25により第2電力変
換調節器24に内蔵された電流バイパス回路24sが開
き、超伝導ケーブル3に蓄えられた電力が第2電力変換
調節器24により取り出され、電力ケーブル1の送電形
式に変換され、結合器23を経由して電力ケーブル1に
供給される。上記第1、第2電力変換調節器22,24
による超伝導ケーブル3への電力貯蔵制御は、電力ケー
ブル1における送電とは独立になされるため、万が一超
伝導ケーブル3に異常を生じても送電システムとは切り
離すことができ、送電システムを安全に確保した上で、
電力貯蔵機能を送電システムに付加していくことが可能
となる。
On the contrary, when the power supply amount is lower than the demand and the power is insufficient, the external command signal 25 opens the current bypass circuit 24s built in the second power conversion controller 24, and the current is stored in the superconducting cable 3. The obtained electric power is taken out by the second electric power conversion controller 24, converted into a power transmission form of the electric power cable 1, and supplied to the electric power cable 1 via the coupler 23. The first and second power conversion controllers 22 and 24
The electric power storage control to the superconducting cable 3 by means of is independent from the electric power transmission in the electric power cable 1, so that even if an abnormality occurs in the superconducting cable 3, it can be separated from the electric power transmission system, and the electric power transmission system can be made safe. After securing
It becomes possible to add a power storage function to the power transmission system.

【0023】上記電力ケーブル1による送電が交流で行
なわれる場合には、第1電力変換調節器22は交流−直
流変換機能を、第2電力変換調節器24は直流−交流変
換機能を具備したものとし、電力送電が直流にて行なわ
れる場合には、第1、第2電力変換調節器22,24
は、直流−交流−直流変換機能を具備したものを使用す
るものとする。また、第1、第2電力変換調節器22,
24に内蔵する電流バイパス回路22s,24sは、超
伝導スイッチまたはバイパス用サイリスタにより構成
し、超伝導ケーブル3にて電力貯蔵が成されている間
は、超伝導ケーブル2,3同士が結合された状態で電力
貯蔵状態を維持する。
When the power transmission by the power cable 1 is performed by AC, the first power conversion controller 22 has an AC-DC conversion function and the second power conversion controller 24 has a DC-AC conversion function. When the power transmission is DC, the first and second power conversion controllers 22 and 24
Shall have a DC-AC-DC conversion function. In addition, the first and second power conversion regulators 22,
The current bypass circuits 22s and 24s built in 24 are configured by superconducting switches or bypass thyristors, and the superconducting cables 2 and 3 are coupled to each other while electric power is stored in the superconducting cable 3. The state maintains the power storage state.

【0024】上記のように電力輸送ケーブル10は、電
力送電用の電力ケーブル1とは別に電力貯蔵用の超伝導
ケーブル2,3を設けているので、電力送電量の急激な
変化に対しても容易に対応することができる。
As described above, since the power transmission cable 10 is provided with the superconducting cables 2 and 3 for power storage in addition to the power cable 1 for power transmission, even if the power transmission amount changes suddenly. It can be dealt with easily.

【0025】また、電力輸送ケーブルに電力貯蔵機能を
付加した構造とすることにより、建設コストと運転コス
ト(冷却システム)の低減を図ることができ、かつ、電
力貯蔵設備として特別な用地確保を必要としない。
Further, by constructing the structure in which the electric power storage function is added to the electric power transportation cable, the construction cost and the operating cost (cooling system) can be reduced, and it is necessary to secure a special site for the electric power storage facility. Not.

【0026】更に、電力貯蔵機能を分散でき、万一事故
が発生した場合でも、回りの環境への被害が殆どない。
即ち、事故により開放された貯蔵電力は冷媒としての液
体窒素の潜熱で吸収され、液体窒素が蒸発するが、その
蒸発量が少ないため問題はない。また、本発明の電力ケ
ーブルが敷設された場合には、交流−直流、直流−交流
変換を介して電力貯蔵を行なうため、50Hzと60H
z地域間の電力送電が可能となる。
Furthermore, the power storage function can be distributed, and even if an accident should occur, there is almost no damage to the surrounding environment.
That is, the stored power released due to the accident is absorbed by the latent heat of liquid nitrogen as a refrigerant, and the liquid nitrogen evaporates, but there is no problem because the amount of evaporation is small. Further, when the power cable of the present invention is laid, the power is stored through AC-DC and DC-AC conversion, so that 50 Hz and 60 H are used.
Electric power can be transmitted between the z areas.

【0027】なお、上記第3実施例では、図1に示した
電力輸送ケーブル10を用いた場合について説明した
が、図2に示した電力輸送ケーブル11を用いた場合で
あっても同様にして実施することができる。この電力輸
送ケーブル11を用いた場合には、超伝導ケーブル3,
3a同士が結合された状態として電力貯蔵状態を維持す
る。
In the third embodiment described above, the case of using the power transport cable 10 shown in FIG. 1 has been described, but the same applies to the case of using the power transport cable 11 shown in FIG. Can be implemented. When this power transport cable 11 is used, the superconducting cable 3,
The power storage state is maintained as a state in which 3a are coupled to each other.

【0028】次に本発明による試算例として、100
[km]に亘り電力輸送ケーブル10,11を敷設した場
合を示す。電力輸送ケーブル10,11内の超伝導ケー
ブル3のコイル中心半径:a=0.15[m],単位長
さ当たりの巻線数:n=1000[回/m]で形成した
場合には、上記(1)式より単位長さ当たりの自己イン
ダクタンスは、L=0.09[H/m]となるため、超
伝導ケーブル3への電流Iを1000[A]流した場合
には、上記(2)式より100[km]電力輸送ケーブル
で4.5GJの電力、電流Iが10000[A]では最
大450GJの電力を蓄えることができる。
Next, as an example of trial calculation according to the present invention, 100
The case where the power transmission cables 10 and 11 are laid over [km] is shown. When the coil center radius of the superconducting cable 3 in the power transport cables 10 and 11 is a = 0.15 [m] and the number of windings per unit length is n = 1000 [turns / m], Since the self-inductance per unit length is L = 0.09 [H / m] from the above formula (1), when the current I to the superconducting cable 3 is 1000 [A], the above ( From the equation (2), it is possible to store 4.5 GJ of electric power with a 100 [km] electric power transportation cable and 450 GJ of electric power at a maximum current I of 10000 [A].

【0029】[0029]

【発明の効果】以上詳記したように本発明によれば、送
電を行なう電力ケーブルと電力貯蔵を行なう超伝導ケー
ブルとを一体化させた電力輸送ケーブルであり、現在の
送電システムを出来るだけ維持しつつ送電機能に電力貯
蔵機能を付加させることができるため、余剰電力の貯蔵
と急激な負荷変動を緩衝させ電力系統を安定に維持させ
ていくことが可能となる。また、本発明による電力輸送
ケーブルの敷設だけで電力貯蔵が可能となるため、送電
と電力貯蔵設備を個別に設置するのに比べ、建設コスト
と運転コストの低減化が図れる。また、本発明は、送電
と貯蔵を別系統とするため、万が一にも超伝導ケーブル
が何らかの原因で異常が生じても送電系統は生かすこと
ができるため、送電システムを安全に確保した上で、電
力貯蔵機能を既存システムに付加していくことが可能と
なる。
As described above in detail, according to the present invention, there is provided a power transmission cable in which a power cable for power transmission and a superconducting cable for power storage are integrated, and the current power transmission system is maintained as much as possible. Since a power storage function can be added to the power transmission function, it is possible to maintain a stable power system by buffering the storage of surplus power and abrupt load changes. Further, since electric power can be stored only by laying the electric power transportation cable according to the present invention, the construction cost and the operating cost can be reduced as compared with the case where the electric power transmission and the electric power storage facility are separately installed. Further, since the present invention uses the power transmission and the storage as separate systems, the power transmission system can be utilized even if the superconducting cable is abnormal due to some cause, so that the power transmission system can be secured safely. It is possible to add a power storage function to existing systems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る電力輸送ケーブルの
断面図。
FIG. 1 is a cross-sectional view of a power transportation cable according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る電力輸送ケーブルの
断面図。
FIG. 2 is a cross-sectional view of a power transportation cable according to a second embodiment of the present invention.

【図3】本発明の第3実施例に係る電力輸送システムを
示す構成図。
FIG. 3 is a configuration diagram showing an electric power transportation system according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…電力ケーブル、2,3a…第1の超伝導ケーブル、
3…第2の超伝導ケーブル、4…外側保護ケース、5…
電気絶縁層、6…熱絶縁層、7…液体窒素、10,11
…電力輸送ケーブル、21…分流器、22…第1電力変
換調節器、23…結合器、24…第2電力変換調節器。
1 ... power cable, 2, 3a ... first superconducting cable,
3 ... second superconducting cable, 4 ... outer protective case, 5 ...
Electrical insulation layer, 6 ... Thermal insulation layer, 7 ... Liquid nitrogen, 10, 11
... power transport cable, 21 ... shunt, 22 ... first power conversion controller, 23 ... combiner, 24 ... second power conversion controller.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 送電を行なうための電力ケーブルと、同
電力ケーブルと並行に配置される第1の超伝導ケーブル
と、これら電力ケーブルと第1の超伝導ケーブルを内包
するコイル状に巻かれた第2の超伝導ケーブルとからな
ることを特徴とする電力輸送ケーブル。
1. A power cable for transmitting power, a first superconducting cable arranged in parallel with the power cable, and a coil wound around the power cable and the first superconducting cable. A power transport cable comprising a second superconducting cable.
【請求項2】 送電を行なうための電力ケーブルと、同
電力ケーブルを内包するコイル状に巻かれた第1の超伝
導ケーブルと、これら電力ケーブルとコイル状の第1の
超伝導ケーブルを内包するコイル状に巻かれた第2の超
伝導ケーブルとからなることを特徴とする電力輸送ケー
ブル。
2. A power cable for transmitting power, a coil-shaped first superconducting cable that encloses the power cable, and the power cable and the coil-shaped first superconducting cable. An electric power transportation cable comprising a second superconducting cable wound in a coil shape.
【請求項3】 請求項1または請求項2記載の電力輸送
ケーブルの上流側の電力ケーブルと結合し電力の分流を
行なう分流器と、同分流器に結合され供給された電力を
直流に変換して上記超伝導ケーブルに供給すると共に上
記2つの超伝導ケーブルの上流端同士をバイパスさせる
電流バイパス回路を有する第1の電力変換調節器と、上
記輸送ケーブルの下流端の超伝導ケーブル同士をバイパ
スさせるバイパス回路を有すると共に超伝導ケーブルか
ら供給される電力を上記電力ケーブルの送電形式に変換
する第2の電力変換調節器と、同第2の電力変換調節器
から供給される電力を電力ケーブルの下流端に供給する
結合器とを有する電力輸送システム。
3. A shunt that couples to the power cable upstream of the power transport cable according to claim 1 or 2 for shunting the power, and power that is coupled to the shunt and supplied to the shunt. The first power conversion controller having a current bypass circuit for supplying the superconducting cable to the superconducting cable and bypassing the upstream ends of the two superconducting cables, and bypassing the superconducting cables at the downstream end of the transportation cable. A second power conversion controller that has a bypass circuit and that converts the power supplied from the superconducting cable into the power transmission format of the power cable, and the power supplied from the second power conversion controller downstream of the power cable. A power transfer system having a coupler supplying an end.
JP4111411A 1992-04-30 1992-04-30 Power transmission cable Withdrawn JPH05308726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4111411A JPH05308726A (en) 1992-04-30 1992-04-30 Power transmission cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4111411A JPH05308726A (en) 1992-04-30 1992-04-30 Power transmission cable

Publications (1)

Publication Number Publication Date
JPH05308726A true JPH05308726A (en) 1993-11-19

Family

ID=14560485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4111411A Withdrawn JPH05308726A (en) 1992-04-30 1992-04-30 Power transmission cable

Country Status (1)

Country Link
JP (1) JPH05308726A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088815A1 (en) * 2003-03-31 2004-10-14 Mayekawa Mfg. Co., Ltd. Coal energy utilization system by superconducting power transmission
WO2012013880A1 (en) * 2010-07-30 2012-02-02 Nexans Power transmission element, in particular a cable, provided with a device for storing electrical power
WO2023002880A1 (en) * 2021-07-21 2023-01-26 国立大学法人九州大学 Superconducting cable, and electric power transmission system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088815A1 (en) * 2003-03-31 2004-10-14 Mayekawa Mfg. Co., Ltd. Coal energy utilization system by superconducting power transmission
US7602085B2 (en) 2003-03-31 2009-10-13 Mayekawa Mfg. Co., Ltd. Coal energy utilization system having superconducting power transmission
WO2012013880A1 (en) * 2010-07-30 2012-02-02 Nexans Power transmission element, in particular a cable, provided with a device for storing electrical power
FR2963474A1 (en) * 2010-07-30 2012-02-03 Nexans ENERGY TRANSFER ELEMENT, IN PARTICULAR CABLE, EQUIPPED WITH A DEVICE FOR STORING ELECTRIC ENERGY
WO2023002880A1 (en) * 2021-07-21 2023-01-26 国立大学法人九州大学 Superconducting cable, and electric power transmission system

Similar Documents

Publication Publication Date Title
Chen et al. Integrated SMES technology for modern power system and future smart grid
JP3597473B2 (en) Electric utility system with superconducting magnetic energy storage
US20130199821A1 (en) Fixation structure of superconducting cable and fixation structure of superconducting cable line
Hsu et al. Superconducting magnetic energy storage for power system applications
US20060180328A1 (en) Super-conductive cable operation method and super-conductive cable system
Nakayama et al. Micro power grid system with SMES and superconducting cable modules cooled by liquid hydrogen
EP1528650A1 (en) Method and system for providing voltage support to a load connected to a utility power network
US9525214B2 (en) Power transmission systems and components for direct current applications
JPH05308726A (en) Power transmission cable
Zelingher et al. Convertible static compensator project-hardware overview
EP3648123B1 (en) Dual winding superconducting magnetic energy storage
Schauder The unified power flow controller-a concept becomes reality
US20040114290A1 (en) Low impedance transmission line with a power flow controller
JP2023549483A (en) Suspended superconducting transmission line
Ishigohka A feasibility study on a world-wide-scale superconducting power transmission system
Duan et al. Application Prospects of the Superconducting Dynamic Synchronous Condenser
Jin Emerging SMES technology into energy storage systems and smart grid applications
JP4096360B2 (en) Superconducting cable terminal structure and superconducting cable line
CN215990201U (en) Flexible direct current system based on novel resistance type high-temperature superconducting current limiter
Kelley et al. HTS cable system demonstration at Detroit Edison
Balachandran et al. 4 Superconducting Machines and Cables
Fingers et al. Implications of high temperature superconductors for power generation
JPH01238425A (en) Dc power transmission
Eastham et al. An assessment of superconductive energy storage for Canadian freight railways
JPH0536312A (en) Superconductive cable

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706