JPH05308556A - Method and device for automatic focusing - Google Patents

Method and device for automatic focusing

Info

Publication number
JPH05308556A
JPH05308556A JP4108291A JP10829192A JPH05308556A JP H05308556 A JPH05308556 A JP H05308556A JP 4108291 A JP4108291 A JP 4108291A JP 10829192 A JP10829192 A JP 10829192A JP H05308556 A JPH05308556 A JP H05308556A
Authority
JP
Japan
Prior art keywords
focus
calculated
distance
high frequency
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4108291A
Other languages
Japanese (ja)
Other versions
JP3227666B2 (en
Inventor
Koji Kaneko
好司 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Optical Co Ltd filed Critical Fuji Photo Optical Co Ltd
Priority to JP10829192A priority Critical patent/JP3227666B2/en
Priority to US08/051,095 priority patent/US5432332A/en
Publication of JPH05308556A publication Critical patent/JPH05308556A/en
Application granted granted Critical
Publication of JP3227666B2 publication Critical patent/JP3227666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To enable surely and quickly focusing by estimating appropriate focus displacement amount from the focus displacement amount calculated by a focal voltage through a band pass filter and a membership function corre sponding to the band pass filter based on fuzzy inference. CONSTITUTION:The three values of the focus displacement amount are obtained from the focal voltage detected through band pass filters 2, 3, and 4. These three values are A/D converted 44, a fuzzy set is found from the membership functions by an arithmetic processing circuit 20, and fuzzy inference for deciding the centroid of the set as the focus deviation amount is performed. The frequency components for a plurality of different high frequency bands a are extracted from video signals from a video element 30 as a plurality of focusing voltages, the moving distances of a part of an optical system up to respective focal positions are calculated based on them, adaptation is decided by the moving distances and the membership functions having the high frequency bands the as variables, the representative value of the set of the adaptation is defined as the distance to the focal position, so that the appropriate estimate can be performed based on the fuzzy inference and the focusing can be performed surely and quickly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はオートフォーカス方法及
び装置に係り、特にCCD等の撮像素子より得られる映
像信号から高域周波数成分を焦点電圧として抽出し、そ
の焦点電圧が最大レベルになるように自動的にピント合
わせを行うオートフォーカス方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an autofocus method and device, and more particularly to extracting a high frequency component as a focus voltage from a video signal obtained from an image pickup device such as a CCD so that the focus voltage becomes the maximum level. The present invention relates to an autofocus method and apparatus for automatically focusing on a subject.

【0002】[0002]

【従来の技術】従来から被写体を撮影することによって
得られる映像信号の高域周波数成分の電圧レベルが画像
の精細度に対応していることに着目し、映像信号からの
高域周波数成分を焦点電圧として抽出し、この焦点電圧
が最大レベルになるようにフォーカスレンズを駆動さ
せ、レンズの位置を合焦位置に調節するオートフォーカ
ス装置がある。
2. Description of the Related Art Focusing on the fact that the voltage level of the high frequency component of a video signal obtained by photographing a subject conventionally corresponds to the definition of the image, the high frequency component from the video signal is focused. There is an autofocus device that extracts the voltage and drives the focus lens so that the focus voltage becomes the maximum level, and adjusts the lens position to the in-focus position.

【0003】この種のオートフォーカス装置には、2点
での焦点電圧を逐次レベル比較していき、焦点電圧の大
小関係でピントずれの有無、及びレンズ移動方向を検出
することによりレンズを移動させて行く方式と、任意の
位置での焦点電圧の微分値より合焦位置までの距離を算
出し、その算出値に基づいてレンズ駆動する方式とがあ
る。前者は山登りサーボ方式として知られ、NHK技術
研究報告昭40.第17巻.第1号通巻第86号第21
ページ、あるいは昭和57年11月発表のテレビジョン
学会技術報告ED第675ページ7等の文献に詳細に説
明されている。また、後者は特開昭62−272217
号公報、特開昭62−272218号公報等で記述され
ている。
In this type of autofocus device, the focus voltages at two points are successively compared in level, and the lens is moved by detecting the presence or absence of focus deviation and the lens moving direction depending on the magnitude of the focus voltage. There is a method of moving the lens, and a method of calculating the distance to the in-focus position from the differential value of the focus voltage at an arbitrary position and driving the lens based on the calculated value. The former is known as a mountain climbing servo system, and NHK Technical Research Report 40. Volume 17: Vol. 1, No. 86, No. 21
Page, or the literature such as the Technical Report of the Television Society of Japan published in November 1982, ED page 675, page 7 and the like. The latter is disclosed in JP-A-62-272217.
JP-A-62-272218 and the like.

【0004】即ち、CCD等の撮像素子より得られる映
像信号から高域周波数成分を抽出し、これを検波した電
圧(以下、焦点電圧という)をEsとし、フォーカスレ
ンズの合焦位置Pまでの距離をxとすると、焦点電圧E
sと距離xとの関係は、次式、 Es(x)=b・exp{−(ax)2} …(1) 但し、a:焦点電圧Esの曲線傾きを決定する係数 b:焦点電圧Esの曲線の最大値を決定する係数 によって近似できることが知られており、この(1)式
に基づいて合焦位置までの距離xが算出される。
That is, a high frequency component is extracted from a video signal obtained from an image pickup device such as a CCD, and a voltage (hereinafter referred to as a focus voltage) obtained by detecting the high frequency component is set as Es, and a distance to a focus position P of a focus lens is set. Where x is the focal voltage E
The relationship between s and the distance x is expressed by the following equation: Es (x) = b · exp {− (ax) 2 } (1) where a: a coefficient that determines the curve slope of the focus voltage Es b: focus voltage Es It is known that this can be approximated by a coefficient that determines the maximum value of the curve of, and the distance x to the focus position is calculated based on this equation (1).

【0005】[0005]

【発明が解決しようとする課題】ところで、前者の山登
りサーボ方式の場合には、焦点電圧の傾きを逐次検出
し、レンズを移動させながら焦点電圧のピーク(合焦位
置)を探すため、合焦位置に達するまでに時間が長くか
かるという問題がある。一方、後者は、映像信号からの
高域周波数成分を焦点電圧として抽出し、この焦点電圧
に基づいて合焦位置までの距離を演算するが、その演算
結果は実際の被写体状態に左右される。従って、一つの
周波数成分から得られる焦点電圧に基づく演算結果によ
っては合焦位置までの距離が許容錯乱円に入るまでに、
フォーカスレンズの移動とレンズ移動後における合焦位
置までの距離の演算とを多数回繰り返し実行しなければ
ならない場合が生じる。
In the case of the former hill-climbing servo system, the focus voltage gradient is sequentially detected, and the peak (focus position) of the focus voltage is searched while moving the lens. There is a problem that it takes a long time to reach the position. On the other hand, the latter extracts a high frequency component from the video signal as a focus voltage and calculates the distance to the in-focus position based on this focus voltage, but the calculation result depends on the actual subject state. Therefore, depending on the calculation result based on the focus voltage obtained from one frequency component, until the distance to the in-focus position falls within the permissible circle of confusion,
There may be a case where the movement of the focus lens and the calculation of the distance to the in-focus position after the movement of the lens have to be repeated many times.

【0006】本発明はこのような事情に鑑みてなされた
もので、ファジイ的推論に基づいて適正な焦点ずれ量を
推定し、これにより確実かつ迅速にフォーカシングを行
うことができるオートフォーカス方法及び装置を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and an autofocus method and apparatus capable of estimating an appropriate defocus amount based on fuzzy reasoning and thereby performing focusing reliably and quickly. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明は前記目的を達成
するために、被写体像を光学系を介して撮像素子上に結
像させ、該撮像素子より得られる映像信号からそれぞれ
異なる複数の高周波帯域別の周波数成分を複数の焦点電
圧として抽出し、該複数の焦点電圧に基づいて合焦位置
までの前記光学系の一部の移動すべき距離を演算し、該
演算した距離だけ前記光学系の一部を光軸方向に移動さ
せて被写体に合焦させるオートフォーカス方法であっ
て、前記移動すべき距離の演算は、複数の焦点電圧に基
づいてそれぞれ合焦位置までの複数の移動すべき距離を
演算し、前記演算した複数の移動すべき距離と前記複数
の高周波帯域を変数とするメンバーシップ関数とから複
数の適合度を決定し、この複数の適合度の集合の代表値
を合焦位置までの距離として算出するようにしたことを
特徴としている。
In order to achieve the above-mentioned object, the present invention forms a subject image on an image pickup device through an optical system, and outputs a plurality of different high frequencies from video signals obtained from the image pickup device. A frequency component for each band is extracted as a plurality of focus voltages, a distance to move a part of the optical system to a focus position is calculated based on the plurality of focus voltages, and the optical system is moved by the calculated distance. Is an autofocus method for moving a part of the optical axis in the optical axis direction to focus on a subject, and the calculation of the distance to be moved should be performed based on a plurality of focus voltages. A distance is calculated, a plurality of conformances are determined from the calculated plurality of distances to be moved and a membership function having the plurality of high frequency bands as variables, and a representative value of a set of the plurality of conformances is focused. Distance to position It is characterized in that calculated as the.

【0008】[0008]

【作用】本発明によれば、撮像素子より得られる映像信
号からそれぞれ異なる複数の高周波帯域別の周波数成分
を複数の焦点電圧として抽出し、この複数の焦点電圧に
基づいてそれぞれ合焦位置までの光学系の一部の移動す
べき距離を演算する。そして、この演算した複数の移動
すべき距離と前記複数の高周波帯域を変数とするメンバ
ーシップ関数とから複数の適合度を決定し、この複数の
適合度の集合の代表値を合焦位置までの距離として算出
するようにしている。このようにして、合焦位置までの
距離を演算し、その演算結果に基づいて光学系の一部を
光軸方向に移動させて被写体に合焦させるようにしてい
る。
According to the present invention, frequency components for a plurality of different high frequency bands, which are different from each other, are extracted from a video signal obtained from an image pickup device as a plurality of focus voltages, and based on the plurality of focus voltages, a focus position up to a focus position is obtained. The distance to be moved of a part of the optical system is calculated. Then, a plurality of goodness-of-fits is determined from the calculated plurality of distances to be moved and a membership function having the plurality of high-frequency bands as variables, and a representative value of a set of the plurality of goodness-of-fits is set to a focus position. It is calculated as a distance. In this way, the distance to the focus position is calculated, and based on the calculation result, a part of the optical system is moved in the optical axis direction to focus on the subject.

【0009】[0009]

【実施例】以下添付図面に従って本発明に係るオートフ
ォーカス方法及び装置の好ましい実施例を詳述する。図
1は本発明に係るオートフォーカス装置を備えた電子カ
メラの一実施例を示すブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of an autofocus method and apparatus according to the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a block diagram showing an embodiment of an electronic camera equipped with an autofocus device according to the present invention.

【0010】同図に示すように、撮影レンズ10はリア
フォーカスタイプのズームレンズであり、前群レンズ1
0A及び後群レンズ10Bを有している。これらのレン
ズ群を、ズームモータ12及びフォーカスモータ14に
よって適宜移動させることによりズーミング及びフォー
カシングが行われる。尚、前群レンズ10A及び後群レ
ンズ10Bの位置は、それぞれズーム位置検出器16及
びフォーカス位置検出器18によって検出され、これら
の位置データは演算処理回路20に加えられるようにな
っている。また、絞り22はアイリスモータ24によっ
て駆動され、その絞り位置は、絞り位置検出器26によ
って検出されている。
As shown in the figure, the photographing lens 10 is a rear focus type zoom lens, and the front lens group 1
It has 0A and a rear lens group 10B. Zooming and focusing are performed by appropriately moving these lens groups by the zoom motor 12 and the focus motor 14. The positions of the front lens group 10A and the rear lens group 10B are detected by the zoom position detector 16 and the focus position detector 18, respectively, and these position data are added to the arithmetic processing circuit 20. The diaphragm 22 is driven by an iris motor 24, and the diaphragm position is detected by a diaphragm position detector 26.

【0011】被写体からの光は、上記撮影レンズ10を
介して撮像素子(CCD)30の受光面に入射され、C
CD30の各センサで光の強さに応じた信号電荷を有す
る映像信号に変換される。このCCD30で変換された
映像信号は、順次読み出され、プリアンプ32で適宜増
幅されたのち、図示しない信号処理回路に加えられると
ともに、AF回路40に加えられる。尚、CCD30は
同期信号発生回路34からの同期信号に同期して所定の
サンプリング周期(60分の1秒)毎に1フィールド分
の映像信号を出力し、また演算処理回路20も上記同期
信号に同期して演算処理を実行する。
The light from the subject is incident on the light receiving surface of the image pickup device (CCD) 30 through the taking lens 10 and C
Each sensor of the CD 30 converts into a video signal having a signal charge according to the intensity of light. The video signal converted by the CCD 30 is sequentially read out, appropriately amplified by the preamplifier 32, and then added to a signal processing circuit (not shown) and the AF circuit 40. The CCD 30 outputs a video signal for one field in every predetermined sampling period (1/60 second) in synchronization with the sync signal from the sync signal generation circuit 34, and the arithmetic processing circuit 20 outputs the sync signal as well. The arithmetic processing is executed in synchronization.

【0012】AF回路40は、ゲート回路42、n個の
バンドパスフィルタ(BPF1,BPF2,…,BPF
n)、n個の焦点電圧検出回路(DET1,DET2,
…DETn)及びA/D変換器44から構成されてい
る。ゲート回路42は入力する1フィールド分の映像信
号のうち、所定の測定範囲内の映像信号のみを通過させ
るもので、演算処理回路20から所定の測定範囲を示す
信号を入力すると、その入力している間だけ映像信号を
BPF1,BPF2,…,BPFnに出力する。BPF
1,BPF2,…,BPFnは入力する映像信号のう
ち、それぞれ異なる高周波帯域別の周波数成分を通過さ
せ、これらをDET1,DET2,…DETnに出力す
る。
The AF circuit 40 includes a gate circuit 42 and n band-pass filters (BPF1, BPF2, ..., BPF).
n), n focus voltage detection circuits (DET1, DET2,
... DETn) and an A / D converter 44. The gate circuit 42 allows only a video signal within a predetermined measurement range to pass among the video signals for one field to be input. When a signal indicating a predetermined measurement range is input from the arithmetic processing circuit 20, the input signal is input. The video signal is output to BPF1, BPF2, ..., BPFn only during the period. BPF
1, BPF2, ..., BPFn pass the frequency components of different high frequency bands in the input video signal and output them to DET1, DET2 ,.

【0013】DET1,DET2,…DETnは例えば
検波回路からなり、入力する高域周波数成分の信号を検
波して得た電圧信号を、焦点電圧として出力する。尚、
図4(A)は被写体の周波数成分やレンズ絞り等によっ
て上記係数aが変化した場合の各焦点電圧の特性曲線を
示しており、図4(B)は被写体のコントラストや増幅
系の利得等によって上記係数bが変化した場合の各焦点
電圧の特性曲線を示している。
DET1, DET2, ... DETn are composed of detection circuits, for example, and output a voltage signal obtained by detecting an input high frequency component signal as a focus voltage. still,
FIG. 4A shows a characteristic curve of each focus voltage when the coefficient a changes due to the frequency component of the object, the lens diaphragm, etc., and FIG. 4B shows the characteristic curve of the object due to the contrast of the object and the gain of the amplification system. The characteristic curve of each focus voltage when the coefficient b is changed is shown.

【0014】このようにして検出されたn個の焦点電圧
は、A/D変換器44によってディジタル信号に変換さ
れたのち、演算処理回路20に出力される。次に、演算
処理回路20の作用について図2に示すフローチャート
を参照しながら説明する。先ず、演算処理回路20は、
現在の後群レンズ10A(以下、フォーカスレンズとい
う)の移動位置におけるn個の焦点電圧を入力する(ス
テップ100)。
The n focus voltages thus detected are converted into digital signals by the A / D converter 44 and then output to the arithmetic processing circuit 20. Next, the operation of the arithmetic processing circuit 20 will be described with reference to the flowchart shown in FIG. First, the arithmetic processing circuit 20
N focus voltages at the current movement position of the rear lens group 10A (hereinafter referred to as focus lens) are input (step 100).

【0015】次に、ルール1による焦点電圧の検定を行
う(ステップ102)。 『ルール1』〔焦点電圧の検定〕各BPFを通過した映
像信号の周波数成分から検出した各焦点電圧値が所定値
以上の場合にはステップ104を、所定値以下の場合に
は、ステップ104を実行させる。
Next, the focus voltage is verified according to rule 1 (step 102). [Rule 1] [Verification of focus voltage] If the focus voltage value detected from the frequency component of the video signal passing through each BPF is equal to or higher than a predetermined value, step 104 is performed. If the focus voltage value is equal to or lower than the predetermined value, step 104 is performed. Let it run.

【0016】ステップ104では、ルール2によるR+
+R- <0の検定を実行する。 『ルール2』〔R+ +R- <0の検定〕即ち、図5に示
すように合焦位置Pから距離x0 離れた位置における焦
点電圧をEs0 とし、位置x0 からそれぞれ前後に微小
距離dx離れた位置(x0 +dx),(x0 −dx)における
焦点電圧をそれぞれEs+ 及びEs- とすると、E
+,Es0 及びEs- は、前述した(1)式から、 Es+=b・exp −{a(x0+dx)}2 …(2) Es0=b・exp{−(ax0 2} …(3) Es-=b・exp −{a(x0−dx)}2 …(4) と表すことができる。上記(2)〜(4)式から、焦点
電圧Es0 に対する焦点電圧Es+ 及びEs- の比率を
求めると、次式、 Es+/Es0=exp{−a2dx(2x0+dx)} …(5) Es-/Es0=exp{a2dx(2x0−dx)} …(6) となる。(5)及び(6)式において、両辺の自然対数
をとり、これらをそれぞれR+ ,R- とすると、R+
- は、次式、 R+=LN(Es+/Es0)=−a2dx(2x0+dx) …(7) R-=LN(Es-/Es0)=a2dx(2x0−dx) …(8) となる。そして、(7)及び(8)式からR+ とR-
の和と差をとると、 R++R-=−2・(adx)2 …(9) R+−R-=−4・a2dxx0 …(10) となる。上記(9)式からも明らかなように、(R+
- )は常に負となるが、焦点電圧の測定値によっては
(R+ +R- )の計算値が正になる場合がある。この場
合は、焦点電圧の測定値に誤りがあったと判定する。
In step 104, R + according to rule 2 is used.
Perform a test of + R <0. “Rule 2” [verification of R + + R <0] That is, as shown in FIG. 5, the focus voltage at a position away from the in-focus position P by distance x 0 is set to Es 0, and a small distance forward and backward from position x 0. Let Es + and Es be the focus voltages at positions (x 0 + dx) and (x 0 −dx) separated by dx, respectively.
s + , Es 0 and Es are Es + = b · exp- {a (x 0 + dx)} 2 (2) Es 0 = b · exp {-(ax 0 ) 2 } (3) Es = b · exp− {a (x 0 −dx)} 2 (4) When the ratios of the focus voltages Es + and Es to the focus voltage Es 0 are obtained from the above equations (2) to (4), the following equation is obtained: Es + / Es 0 = exp {−a 2 dx (2x 0 + dx)} (5) Es / Es 0 = exp {a 2 dx (2x 0 −dx)} (6) (5) and (6), taking the natural logarithm of both sides, these respectively R +, R - if that, R +,
R is the following equation: R + = LN (Es + / Es 0 ) = − a 2 dx (2x 0 + dx) (7) R = LN (Es / Es 0 ) = a 2 dx (2x 0 -Dx) (8) Then, from the expressions (7) and (8), the sum and the difference of R + and R are calculated. R + + R = −2 · (adx) 2 (9) R + −R = −4 · a 2 dxx 0 (10) As is clear from the above equation (9), (R + +
R ) is always negative, but the calculated value of (R + + R ) may be positive depending on the measured value of the focus voltage. In this case, it is determined that the measured value of the focus voltage has an error.

【0017】従って、R+ +R- <0の場合にはステッ
プ106を、R+ +R- ≧0の場合にはステップ116
を実行させる。ステップ106では、ルール3による算
出値の検定を実行する。 『ルール3』〔算出値の検定〕上記(9)及び(10)
式から係数aを消去し、x0 についてまとめると、 x0=dx(R+−R- )/2(R++R- ) …(11) となる。
Therefore, when R + + R <0, step 106 is performed, and when R + + R ≧ 0, step 116 is performed.
To run. In step 106, the test of the calculated value according to rule 3 is executed. "Rule 3" [Test of calculated value] Above (9) and (10)
When the coefficient a is deleted from the equation and x 0 is summarized, x 0 = dx (R + −R ) / 2 (R + + R ) ... (11)

【0018】従って、焦点電圧Es+ ,Es0 及びEs
- を測定し、これらの焦点電圧Es + ,Es0 及びEs
- に基づいて(7)及び(8)式 からR+ ,R- を算
出し、このR+ ,R- を(11)式に代入することによ
り、合焦位置Pまでのフォーカスレンズの移動量(焦点
外れ量)x0 を算出することができる。尚、この焦点外
れ量x0 は、各BPFを介して得られる焦点電圧毎に算
出される。
Therefore, the focus voltage Es+, Es0And Es
-Is measured, and these focal voltage Es +, Es0And Es
-Based on equations (7) and (8)+, R-Calculate
Out, this R+, R-By substituting
The amount of movement of the focus lens to the in-focus position P (focus
Deviation amount x0Can be calculated. It ’s out of focus
Amount x0Is calculated for each focus voltage obtained through each BPF.
Will be issued.

【0019】さて、上記のようにして算出した焦点外れ
量が各BPFで信頼できる値を越える値になる場合があ
る。ステップ106では、焦点外れ量が各BPFで信頼
できる値以内の場合には、ステップ108に、各BPF
で信頼できる値を越える場合には、ステップ118に進
み、ここでその算出値を所定値(最大信頼値)に修正す
る。尚、BPFの個数n=4とし、各BPF1,2,
3,4の種類とその最大信頼値との一例を次表に示す。 次に、ステップ108では、ルール4によってレンズの
駆動量をファジイ的推論により決定する。
The defocus amount calculated as described above may exceed a reliable value for each BPF. In step 106, if the defocus amount is within a reliable value for each BPF, the process proceeds to step 108 for each BPF.
If the value exceeds the reliable value in step 118, the process proceeds to step 118 where the calculated value is corrected to a predetermined value (maximum reliable value). The number of BPFs is n = 4, and each BPF 1, 2,
An example of types 3 and 4 and their maximum confidence values is shown in the following table. Next, in step 108, the driving amount of the lens is determined by fuzzy reasoning according to Rule 4.

【0020】『ルール3』 〔駆動量をファジイ的推論により決定〕BPF2,3,
4を介して検出した焦点電圧から焦点外れ量が3値得ら
れる。そして、これらに3値と、メンバーシップ関数と
からファジイ集合を求め、集合の重心を焦点外れ量とし
て決定するファジイ的推論を行う。
[Rule 3] [Driving amount is determined by fuzzy reasoning] BPF 2, 3,
The defocus amount can be obtained in three values from the focus voltage detected via 4. Then, a fuzzy set is obtained from these three values and the membership function, and fuzzy reasoning is performed to determine the center of gravity of the set as the defocus amount.

【0021】即ち、図3(A)に示すようにBPF2,
3,4に対応するメンバーシップ関数をそれぞれμ2,μ
3,μ4 とし、BPF2,3,4を介して検出した焦点電
圧から算出される焦点外れ量をそれぞれa2,a3,a4とし
て、ファジイ集合Sを、次式、 S=∨(∧a2∩μ2)∪(∧a3∩μ3)∪(∧a4∩μ4) …(12) によって求め、この集合Sの重心Aを焦点外れ量として
決定する(図3(B))。
That is, as shown in FIG.
The membership functions corresponding to 3 and 4 are μ2 and μ, respectively.
Assuming that the defocus amount calculated from the focus voltage detected through BPFs 2, 3, and 4 is a2, a3, and a4, the fuzzy set S is given by the following equation: S = ∨ (∧a2∩μ2) ∪ (∧a3∩μ3) ∪ (∧a4∩μ4) (12), and the center of gravity A of this set S is determined as the defocus amount (FIG. 3 (B)).

【0022】尚、この焦点外れ量Aは、メンバーシップ
関数μ2 と焦点外れ量a2とから得られる推論結果のメン
バーシップ関数の面積をS2,その重心をA2 とし、同様
にメンバーシップ関数μ3 と焦点外れ量a3とから得られ
る推論結果のメンバーシップ関数の面積をS3,その重心
をA3 とし、メンバーシップ関数μ4 と焦点外れ量a4と
から得られる推論結果のメンバーシップ関数の面積をS
4,その重心をA4 とすると、重心Aは、次式、 A=(S2・A2+S3・A3+S4・A4)/(S2+S3+S4) に基づいて算出することができる。
The defocus amount A is defined by the area of the membership function of the inference result obtained from the membership function μ2 and the defocus amount a2 as S2 and the center of gravity thereof as A2. Let S3 be the area of the inference result membership function obtained from the defocus amount a3, and let A3 be its center of gravity, and let S be the area of the inference result membership function obtained from the membership function μ4 and the defocus amount a4.
4. If the center of gravity is A4, the center of gravity A can be calculated based on the following equation: A = (S2.A2 + S3.A3 + S4.A4) / (S2 + S3 + S4).

【0023】そして、ステップ110では、このように
して算出した焦点外れ量(重心A)から合焦の検定を行
う。即ち、算出した焦点外れ量が許容錯乱円内か否か、
即ち、Aの絶対値が錯乱円半径δmin 以下(|A|≦δ
min )か否かを判別し、|A|≦δmin の場合には、合
焦状態であると判定してオートフォーカス動作が終了す
る。
Then, in step 110, a focus test is performed from the defocus amount (center of gravity A) thus calculated. That is, whether the calculated defocus amount is within the permissible circle of confusion,
That is, the absolute value of A is equal to or less than the radius of confusion circle δ min (| A | ≦ δ
min )), and if | A | ≦ δ min , it is determined to be in focus, and the autofocus operation ends.

【0024】一方、|A|>δmin の場合には、非合焦
状態であると判定して、前記算出した焦点ずれ量Aだけ
フォーカスレンズを駆動させ(ステップ112)、ステ
ップ100に戻り、再度焦点ずれ量等の演算を実行す
る。尚、ステップ102で検定された焦点電圧値が所定
値以下の場合には、ノイズなどの誤差成分の割合が増加
し、その後の検定に悪影響を及ぼすことが考えられるた
め、ステップ114に進み、ここでルール5による計算
値エラー1の処置を行う。
On the other hand, if │A│ > δ min , it is determined that the lens is out of focus, the focus lens is driven by the calculated defocus amount A (step 112), and the process returns to step 100. The calculation of the amount of defocus etc. is executed again. If the focus voltage value verified in step 102 is less than or equal to the predetermined value, the ratio of error components such as noise increases, which may adversely affect the subsequent verification. Therefore, the process proceeds to step 114. Then, the calculated value error 1 according to rule 5 is dealt with.

【0025】『ルール5』 〔計算値エラー1の処置〕BPF1の検出で焦点電圧の
傾斜が検出不能の場合であり、この場合には一定方向に
サーチ駆動を行わせる。また、ステップ104では、B
PF2〜4で求めた算出値がいずれも不適切な場合は、
算出値に基づくレンズ駆動が不可能となるため、この場
合にはステップ116に進み、ここでルール6による計
算値エラー2の処置を行う。
[Rule 5] [Treatment of calculation value error 1] This is a case where the slope of the focus voltage cannot be detected by the detection of BPF1. In this case, the search drive is performed in a fixed direction. In step 104, B
If any of the calculated values obtained with PF2-4 are inappropriate,
Since it becomes impossible to drive the lens based on the calculated value, in this case, the process proceeds to step 116, and the calculated value error 2 according to rule 6 is dealt with.

【0026】『ルール6』 〔計算値エラー2の処置〕この場合にはBPF1で検出
した焦点電圧の傾斜を基に単位送り量、焦点位置を移動
させる。尚、焦点電圧に基づく焦点ずれ量の算出方法は
本実施例に限定されず、種々の方法が適用できる。
[Rule 6] [Remedy for calculation value error 2] In this case, the unit feed amount and the focus position are moved based on the inclination of the focus voltage detected by the BPF 1. The method of calculating the defocus amount based on the focus voltage is not limited to this embodiment, and various methods can be applied.

【0027】[0027]

【発明の効果】以上説明したように本発明に係るオート
フォーカス方法及び装置によれば、撮像素子より得られ
る映像信号からそれぞれ異なる複数の高周波帯域別の周
波数成分を複数の焦点電圧として抽出し、この複数の焦
点電圧に基づいてそれぞれ合焦位置までの光学系の一部
の移動すべき距離を演算し、この演算した複数の移動す
べき距離と複数の高周波帯域を変数とするメンバーシッ
プ関数とから複数の適合度を決定し、この複数の適合度
の集合の代表値を合焦位置までの距離として算出するよ
うにしたため、合焦位置までの距離をファジイ的推論に
基づいて適正に推定でき、これにより確実かつ迅速にフ
ォーカシングを行うことができる。
As described above, according to the autofocus method and apparatus of the present invention, a plurality of different frequency components for different high frequency bands are extracted from a video signal obtained from an image sensor as a plurality of focus voltages, Based on the plurality of focus voltages, the distance to move a part of the optical system to the in-focus position is calculated, and the calculated plurality of distances to move and a membership function having a plurality of high frequency bands as variables. Since a plurality of goodness-of-fits are determined from this, and the representative value of the set of these goodness-of-fits is calculated as the distance to the in-focus position, the distance to the in-focus position can be estimated properly based on fuzzy inference. Therefore, focusing can be performed surely and quickly.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明に係るオートフォーカス装置を備
えた電子カメラの一実施例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of an electronic camera equipped with an autofocus device according to the present invention.

【図2】図2は図1の演算処理回路の作用を説明するた
めに用いたフローチャートである。
FIG. 2 is a flowchart used to explain the operation of the arithmetic processing circuit of FIG.

【図3】図3(A)は各BPFに対応するメンバーシッ
プ関数と、各BPFから算出される焦点外れ量の一例を
示す図であり、図3(B)は推論結果のメンバーシップ
関数の集合を示す図である。
3A is a diagram showing an example of a membership function corresponding to each BPF and an out-of-focus amount calculated from each BPF, and FIG. 3B is a diagram showing a membership function of an inference result. It is a figure showing a set.

【図4】図4(A)は被写体の周波数成分やレンズ絞り
等が変化した場合の各焦点電圧の特性曲線を示し、図4
(B)は被写体のコントラストや増幅系の利得等が変化
した場合の各焦点電圧の特性曲線を示すグラフである。
FIG. 4A is a characteristic curve of each focus voltage when a frequency component of a subject, a lens diaphragm, and the like change.
(B) is a graph showing a characteristic curve of each focus voltage when the contrast of the subject and the gain of the amplification system are changed.

【図5】図5は本発明を原理的に説明するために用いた
焦点電圧の特性曲線を示すグラフである。
FIG. 5 is a graph showing a characteristic curve of a focus voltage used for explaining the principle of the present invention.

【符号の説明】[Explanation of symbols]

10…撮影レンズ 10B…フォーカスレンズ 14…フォーカスモータ 20…演算処理回路 30…撮像素子(CCD) 40…AF回路 42…ゲート回路 BPF1〜BPFn……バンドパスフィルタ DET1〜DETn…焦点電圧検出回路 10 ... Shooting lens 10B ... Focus lens 14 ... Focus motor 20 ... Arithmetic processing circuit 30 ... Imaging device (CCD) 40 ... AF circuit 42 ... Gate circuit BPF1 to BPFn ... Band pass filter DET1 to DETn ... Focus voltage detection circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被写体像を光学系を介して撮像素子上に
結像させ、該撮像素子より得られる映像信号からそれぞ
れ異なる複数の高周波帯域別の周波数成分を複数の焦点
電圧として抽出し、該複数の焦点電圧に基づいて合焦位
置までの前記光学系の一部の移動すべき距離を演算し、
該演算した距離だけ前記光学系の一部を光軸方向に移動
させて被写体に合焦させるオートフォーカス方法であっ
て、 前記移動すべき距離の演算は、複数の焦点電圧に基づい
てそれぞれ合焦位置までの複数の移動すべき距離を演算
し、 前記演算した複数の移動すべき距離と前記複数の高周波
帯域を変数とするメンバーシップ関数とから複数の適合
度を決定し、この複数の適合度の集合の代表値を合焦位
置までの距離として算出するようにしたことを特徴とす
るオートフォーカス方法。
1. A subject image is formed on an image pickup device through an optical system, and frequency components for a plurality of different high frequency bands are extracted as a plurality of focus voltages from a video signal obtained from the image pickup device, Calculate a distance to move a part of the optical system to a focus position based on a plurality of focus voltages,
An autofocus method for focusing a subject by moving a part of the optical system in the optical axis direction by the calculated distance, wherein the calculation of the distance to be moved is based on a plurality of focus voltages. A plurality of distances to be moved to the position are calculated, and a plurality of fitness values are determined from the calculated plurality of distances to be moved and a membership function having the plurality of high frequency bands as variables. The autofocus method is characterized in that the representative value of the set is calculated as the distance to the focus position.
【請求項2】 被写体像を光学系を介して撮像素子上に
結像させ、該撮像素子より得られる映像信号からそれぞ
れ異なる複数の高周波帯域別の周波数成分を複数の焦点
電圧として抽出し、該複数の焦点電圧に基づいて合焦位
置までの前記光学系の一部の移動すべき距離を演算し、
該演算した距離だけ前記光学系の一部を光軸方向に移動
させて被写体に合焦させるオートフォーカス方法であっ
て、 前記移動すべき距離の演算は、複数の焦点電圧に基づい
てそれぞれ合焦位置までの複数の移動すべき距離を演算
し、 前記演算した複数の移動すべき距離と前記複数の高周波
帯域を変数とするメンバーシップ関数とから複数の推論
結果のメンバーシップ関数を求め、該複数の推論結果の
メンバーシップ関数の重心値をAi(i=1,2,…N)、複数の
推論結果のメンバーシップ関数の面積をSi(i=1,2,…N)
とすると、合焦位置までの距離Aを、次式、 A=Σ(Ai×Si)/ΣSi に基づいて算出することを特徴とするオートフォーカス
方法。
2. A subject image is formed on an image pickup device through an optical system, and frequency components of a plurality of different high frequency bands which are different from each other are extracted as a plurality of focus voltages from a video signal obtained from the image pickup device. Calculate a distance to move a part of the optical system to a focus position based on a plurality of focus voltages,
An autofocus method for focusing a subject by moving a part of the optical system in the optical axis direction by the calculated distance, wherein the calculation of the distance to be moved is based on a plurality of focus voltages. A plurality of distances to be moved to the position are calculated, a membership function of a plurality of inference results is obtained from the calculated plurality of distances to be moved and a membership function having the plurality of high frequency bands as variables, and the plurality of The barycenter value of the membership function of the inference result is Ai (i = 1,2, ... N), and the area of the membership function of the multiple inference results is Si (i = 1,2, ... N)
Then, the distance A to the in-focus position is calculated based on the following formula: A = Σ (Ai × Si) / ΣSi.
【請求項3】 被写体像を撮像素子上に結像させる光学
系と、 前記撮像素子より得た映像信号からのそれぞれ異なる複
数の高周波帯域別の周波数成分を複数の焦点電圧として
抽出する複数の高域周波数成分抽出手段と、 前記高域周波数成分抽出手段から得られる複数の焦点電
圧に基づいて合焦位置までの移動すべき距離をそれぞれ
演算する第1の演算手段と、 前記第1の演算手段によって演算した複数の移動すべき
距離と前記複数の高周波帯域を変数とするメンバーシッ
プ関数とから複数の適合度を決定し、この複数の適合度
の集合の代表値を合焦位置までの距離として演算する第
2の演算手段と、 前記光学系の一部をモータによって光軸方向に移動させ
る駆動手段と、 被写体に合焦させるように前記第2の演算手段によって
演算された距離に基づいて前記駆動手段を制御する制御
手段と、 を備えたことを特徴とするオートフォーカス装置。
3. An optical system for forming a subject image on an image pickup device, and a plurality of high frequency components for extracting, as a plurality of focus voltages, frequency components for a plurality of different high frequency bands from a video signal obtained from the image pickup device. Band frequency component extracting means, first computing means for computing a distance to be moved to a focus position based on a plurality of focus voltages obtained from the high frequency component extracting means, and the first computing means A plurality of goodnesses of fit are determined from a plurality of distances to be moved calculated by the above and a membership function having the plurality of high frequency bands as variables, and a representative value of a set of the goodnesses of fit is set as a distance to a focus position. Second computing means for computing, driving means for moving a part of the optical system in the optical axis direction by a motor, and distance calculated by the second computing means so as to focus on a subject. Autofocus apparatus characterized by and a control means for controlling said drive means based on.
JP10829192A 1992-04-28 1992-04-28 Autofocus method and device Expired - Fee Related JP3227666B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10829192A JP3227666B2 (en) 1992-04-28 1992-04-28 Autofocus method and device
US08/051,095 US5432332A (en) 1992-04-28 1993-04-22 Method of auto-focussing and system therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10829192A JP3227666B2 (en) 1992-04-28 1992-04-28 Autofocus method and device

Publications (2)

Publication Number Publication Date
JPH05308556A true JPH05308556A (en) 1993-11-19
JP3227666B2 JP3227666B2 (en) 2001-11-12

Family

ID=14480955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10829192A Expired - Fee Related JP3227666B2 (en) 1992-04-28 1992-04-28 Autofocus method and device

Country Status (1)

Country Link
JP (1) JP3227666B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614480B1 (en) 1997-11-28 2003-09-02 Oki Electric Industry Co., Ltd. Apparatus and a method for automatically focusing on a subject

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614480B1 (en) 1997-11-28 2003-09-02 Oki Electric Industry Co., Ltd. Apparatus and a method for automatically focusing on a subject

Also Published As

Publication number Publication date
JP3227666B2 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
JP3175175B2 (en) Focus detection device
US5115262A (en) Auto-focusing apparatus
JPH09243906A (en) Automatic focusing device and method
US5396336A (en) In-focus detecting device
JP4255186B2 (en) Focusing device
US5402175A (en) Automatic focusing device wherein lens movement is controlled in accordance with lens hunting
JPH05300421A (en) Automatic focusing device
JP3218408B2 (en) Automatic focus detection device
JP2974339B2 (en) Automatic focusing device
JP3569973B2 (en) Focus adjustment device
JP3227666B2 (en) Autofocus method and device
US10911660B2 (en) Control apparatus, imaging apparatus, control method, and storage medium
JP3590806B2 (en) Image sensor system and automatic focus detection device
US5432332A (en) Method of auto-focussing and system therefor
JP2850336B2 (en) Focus detection device
JP2001242371A (en) Automatic focusing controller
JP3428663B2 (en) Automatic focusing device
JPH05308555A (en) Method and device for automatic focusing
JP2810403B2 (en) Automatic focusing device
JP3216019B2 (en) Camera and camera automatic focusing device
JPH09127403A (en) Automatic focus detector
JP3550601B2 (en) Focus detection device
JP3389379B2 (en) Auto focus device
KR970004183B1 (en) Display processing method of video camera
JP3174124B2 (en) Focus detection device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees