JPH0530741U - Measuring device for surface temperature distribution of steel strip - Google Patents

Measuring device for surface temperature distribution of steel strip

Info

Publication number
JPH0530741U
JPH0530741U JP7924991U JP7924991U JPH0530741U JP H0530741 U JPH0530741 U JP H0530741U JP 7924991 U JP7924991 U JP 7924991U JP 7924991 U JP7924991 U JP 7924991U JP H0530741 U JPH0530741 U JP H0530741U
Authority
JP
Japan
Prior art keywords
temperature
measuring means
measured
steel strip
emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7924991U
Other languages
Japanese (ja)
Other versions
JP2566952Y2 (en
Inventor
智 鈴木
久生 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP1991079249U priority Critical patent/JP2566952Y2/en
Publication of JPH0530741U publication Critical patent/JPH0530741U/en
Application granted granted Critical
Publication of JP2566952Y2 publication Critical patent/JP2566952Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

(57)【要約】 【目的】 物体の放射率が不明であっても、補正して正
確な温度分布を求める。 【構成】 物体表面の熱放射エネルギ分布を、被写界深
度の範囲内で測定し、この測定値と物体の測定波長放射
率とから、プランクの放射則によって物体の表面温度を
計算して、温度を求める第1の温度測定手段と、第1の
温度測定手段によって測定される物体表面の測定領域内
の任意の点の温度を測定する第2の温度測定手段とを含
み、第1の温度測定手段によって求められた温度と、第
2の温度測定手段によって測定された温度とによって、
第1の温度測定手段の測定波長放射率を補正することを
特徴とする鋼帯の表面温度分布測定装置。
(57) [Summary] [Purpose] Even if the emissivity of an object is unknown, correct it to obtain an accurate temperature distribution. [Composition] The thermal radiant energy distribution on the surface of the object is measured within the depth of field, and the surface temperature of the object is calculated by Planck's radiation law from this measured value and the measured wavelength emissivity of the object, A first temperature measuring means for determining a temperature; and a second temperature measuring means for measuring a temperature at an arbitrary point within a measurement area of the object surface measured by the first temperature measuring means, the first temperature measuring means By the temperature obtained by the measuring means and the temperature measured by the second temperature measuring means,
An apparatus for measuring the surface temperature distribution of a steel strip, characterized in that the measuring wavelength emissivity of the first temperature measuring means is corrected.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、焼鈍中の鋼帯などのような物体の測定波長放射率を補正して、真の 温度分布に可及的に近い温度分布を求めることができるようにした鋼帯の表面温 度分布測定装置に関する。 The present invention corrects the measured wavelength emissivity of an object such as a steel strip being annealed so as to obtain a temperature distribution as close to the true temperature distribution as possible. The present invention relates to a distribution measuring device.

【0002】[0002]

【従来の技術】[Prior Art]

物体であるたとえば鋼帯の表面温度分布を測定するための装置は、各測定点を 走査するために回転ミラーや振動ミラーが使われており、また温度検出器として PbSまたはSiを使用するなど、測定温度範囲によって各種のものが用いられ ている。しかしながら、その原理は、ある波長区間の熱エネルギから温度を求め るものがほとんどである。 A device for measuring the surface temperature distribution of an object, such as a steel strip, uses a rotating mirror or a vibrating mirror to scan each measurement point, and uses PbS or Si as a temperature detector. Various types are used depending on the measurement temperature range. However, the principle is that most of the temperature is obtained from the thermal energy in a certain wavelength range.

【0003】 すなわち、温度T°Kの黒体から放射される熱エネルギの波長分布は、プラン クの放射則によって数1によって求められる。That is, the wavelength distribution of heat energy radiated from a black body having a temperature of T ° K is obtained by Equation 1 according to Planck's radiation law.

【0004】[0004]

【数1】 [Equation 1]

【0005】 また物体の放射率ελは、数2に示されるように、ある波長λにおいて、同温 度の黒体放射の比として定義される。The emissivity ελ of an object is defined as the ratio of black body radiation of the same temperature at a certain wavelength λ, as shown in equation 2.

【0006】[0006]

【数2】 [Equation 2]

【0007】 さらに放射温度計では、それぞれの波長に対する放射率ではなく、その放射温 度計に予め設定されている波長区間の放射率εΔλによって温度が求められる。Further, in the radiation thermometer, the temperature is obtained not by the emissivity for each wavelength but by the emissivity εΔλ in the wavelength section preset in the radiation thermometer.

【0008】 この特定の波長区間にわたる放射率εΔλは、数3によって求められる。The emissivity εΔλ over this specific wavelength section is obtained by the equation 3.

【0009】[0009]

【数3】 [Equation 3]

【0010】 すなわち放射温度計とは、That is, the radiation thermometer is

【0011】[0011]

【数4】 [Equation 4]

【0012】 の関係から、温度Tを求めるものであり、条件として放射率εΔλが既知であ ることが必要となる。The temperature T is obtained from the relationship of, and the emissivity εΔλ must be known as a condition.

【0013】[0013]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながら、測定物体の放射率εΔλは、その特定が困難であり、放射率デ ータについて多くの資料があるのもかかわらず、実際の計測においてはそれらの 値は参考値の域を出ず、多くの場合、確実な値を見い出すことができないのが実 状である。 However, it is difficult to specify the emissivity εΔλ of the measured object, and despite the fact that there are many documents regarding emissivity data, in actual measurement, those values do not fall within the range of reference values. In many cases, it is the fact that no reliable value can be found.

【0014】 したがって本考案の目的は、前記放射率εΔλが不明であっても、自動的に補 正して温度分布を求めることができるようにした表面温度分布測定装置を提供す ることである。Therefore, an object of the present invention is to provide a surface temperature distribution measuring device capable of automatically correcting the temperature distribution even if the emissivity εΔλ is unknown. ..

【0015】[0015]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は、物体表面の熱放射エネルギ分布を、被写界深度の範囲内で測定し、 この測定値と物体の測定波長放射率とから、プランクの放射則によって物体の表 面温度を計算して、温度を求める第1の温度測定手段と、 第1の温度測定手段によって測定される物体表面の測定領域内の任意の点の温 度を測定する第2の温度測定手段とを含み、 第1の温度測定手段によって求められた温度と、第2の温度測定手段によって 測定された温度とによって、第1の温度測定手段の測定波長放射率を補正するこ とを特徴とする鋼帯の表面温度分布測定装置である。 The present invention measures the thermal radiant energy distribution on the surface of an object within the depth of field, and calculates the surface temperature of the object by Planck's radiation law from this measured value and the measured wavelength emissivity of the object. A first temperature measuring means for determining a temperature, and a second temperature measuring means for measuring the temperature of an arbitrary point in the measurement area of the object surface measured by the first temperature measuring means, The surface of the steel strip characterized in that the measured wavelength emissivity of the first temperature measuring means is corrected by the temperature obtained by the first temperature measuring means and the temperature measured by the second temperature measuring means. It is a temperature distribution measuring device.

【0016】 また本考案は、前記補正された測定波長放射率が、物体表面の前記第1の温度 測定手段によって測定される全ての測定領域で同一値であるとして、各測定領域 の熱放射エネルギから、プランクの放射則によって物体の表面温度を計算して、 温度分布を求めることを特徴とする。The present invention also provides that the corrected measurement wavelength emissivity has the same value in all measurement regions measured by the first temperature measuring means on the object surface, and the thermal radiation energy of each measurement region is From this, the surface temperature of the object is calculated according to Planck's radiation law, and the temperature distribution is obtained.

【0017】 さらに本考案は、前記第2の温度測定手段は、2色温度計であることを特徴と する。Further, the present invention is characterized in that the second temperature measuring means is a two-color thermometer.

【0018】[0018]

【作用】[Action]

本考案に従えば、鋼帯などの物体などの放射率を、第1の温度測定手段によっ て測定された表面温度分布の任意の一点と同一場所を、放射率比が一定であるこ とが確認されているたとえば2色温度計などである第2の温度測定手段によって 測定し、その測定値を物体の真温度とみなして、その点の放射率を計算して求め 、前記第1の温度測定手段の測定面における放射率を全ての前記放射率として、 表面温度分布を求める。 According to the present invention, the emissivity of an object such as a steel strip is constant at the same location as any one point of the surface temperature distribution measured by the first temperature measuring means. The temperature is measured by a second temperature measuring means which has been confirmed, for example, a two-color thermometer, the measured value is regarded as the true temperature of the object, and the emissivity at that point is calculated to obtain the first temperature. The surface temperature distribution is obtained with the emissivity on the measurement surface of the measuring means as all the emissivities.

【0019】 また本考案に従えば、前述のようにして求められて補正された測定波長放射率 が第1の温度測定手段によって測定される全ての物体表面の測定領域で同一値で あるとして、各測定領域の熱放射エネルギ分布から、プランクの放射則によって 物体の表面温度を計算して、温度分布が求められる。Further, according to the present invention, it is assumed that the measured wavelength emissivity obtained and corrected as described above has the same value in the measurement areas of all the object surfaces measured by the first temperature measuring means. From the thermal radiation energy distribution of each measurement area, the surface temperature of the object is calculated according to Planck's radiation law to obtain the temperature distribution.

【0020】 さらに本考案に従えば、2色温度計が第2の温度測定手段として用いられる。Further according to the invention, a two-color thermometer is used as the second temperature measuring means.

【0021】[0021]

【実施例】【Example】

図1は、本考案の一実施例の全体の構成を示す系統図である。たとえば焼鈍ラ インにおいて物体である鋼帯1は、矢符A方向に走行されて焼鈍され、この鋼帯 1の表面温度を測定するために、本考案に従う表面温度分布測定装置が用いられ る。この表面温度分布測定装置は、基本的に、鋼帯の表面の熱放射エネルギ分布 を被写界深度の範囲内で測定し、この測定値と物体の測定波長放射率ελとから 、プランクの放射則によって鋼帯の表面温度を計算して、温度分布を求める第1 の温度測定手段である走査形放射温度計2と、走査形放射温度計2によって測定 される鋼帯の表面の測定領域内の任意の点の温度を測定する第2の温度測定手段 である2色温度計3と、各温度計2,3からの出力を演算処理する演算処理手段 4と、演算処理手段からの出力によって温度分布を表示する、たとえば陰極線管 などによって実現される表示手段5とを含む。前記鋼帯1は、たとえば焼鈍後の ステンレス鋼帯である。 FIG. 1 is a system diagram showing the overall configuration of an embodiment of the present invention. For example, in the annealing line, the steel strip 1 which is an object is run in the direction of arrow A and annealed, and in order to measure the surface temperature of this steel strip 1, the surface temperature distribution measuring device according to the present invention is used. This surface temperature distribution measuring device basically measures the thermal radiation energy distribution on the surface of the steel strip within the depth of field, and from this measurement value and the measured wavelength emissivity ελ of the object, the Planck's radiation Within the measurement area of the surface of the steel strip measured by the scanning radiation thermometer 2 which is the first temperature measuring means for calculating the surface temperature of the steel strip by the law to obtain the temperature distribution. By a two-color thermometer 3 which is a second temperature measuring means for measuring the temperature at an arbitrary point of the above, an arithmetic processing means 4 for arithmetically processing the output from each thermometer 2, 3, and an output from the arithmetic processing means. And a display unit 5 for displaying the temperature distribution, which is realized by a cathode ray tube or the like. The steel strip 1 is, for example, an annealed stainless steel strip.

【0022】 前記走査形放射温度計2は、鋼帯1の走行経路長に設けられる検出部6と、検 出部6からの出力が入力される処理回路7とを有し、この処理回路7において、 放射率εΔλ=1として温度換算されて、平面的温度分布データとして出力され る。すなわち測定波長λが既知であることから、後述する数5によって温度Tを 求める。また前記2色温度計3は、鋼帯1の走行経路に近接して設けられる検出 部8と、この検出部からの出力を受信して温度換算する処理回路9とを有する。 前記検出部8は、走査形放射温度計2の測定範囲S内でその中央部の測定点S1 の熱放射エネルギを測定して、前記処理回路9において温度換算する。The scanning radiation thermometer 2 has a detection unit 6 provided in the length of the traveling path of the steel strip 1 and a processing circuit 7 to which an output from the detection unit 6 is input. In, the temperature is converted into the emissivity εΔλ = 1 and output as planar temperature distribution data. That is, since the measurement wavelength λ is known, the temperature T is obtained by the equation 5 described later. Further, the two-color thermometer 3 has a detection unit 8 provided in the vicinity of the traveling path of the steel strip 1, and a processing circuit 9 that receives an output from the detection unit and converts the temperature. The detection unit 8 measures the thermal radiation energy at the central measurement point S1 within the measurement range S of the scanning radiation thermometer 2 and converts the temperature into the processing circuit 9.

【0023】 図2は、走査形放射温度計2の構成を簡略化して示す系統図である。前記走査 形放射温度計2は、鋼帯1から放射される赤外線を、レンズ10にいわば機械光 学的な手段によって走査して入射し、その集光された赤外線を検出素子11によ って検出して電気信号に時系列的に変換し、その信号を増幅器12によって増幅 した後、信号処理回路13によって可視光領域に波長変換し、この信号処理回路 13からの可視光領域に波長変換された出力信号によって、前記表示手段5に温 度分布を表示するように構成されている。FIG. 2 is a system diagram showing a simplified configuration of the scanning radiation thermometer 2. The scanning radiation thermometer 2 scans the infrared rays emitted from the steel strip 1 by a so-called mechanical-optical means and makes them incident on the lens 10, and the collected infrared rays are detected by a detecting element 11. The detected signal is converted into an electric signal in time series, the signal is amplified by the amplifier 12, the wavelength is converted into the visible light region by the signal processing circuit 13, and the wavelength is converted into the visible light region from the signal processing circuit 13. The temperature distribution is displayed on the display means 5 according to the output signal.

【0024】 前記鋼帯1の表面とレンズ10との間における光経路長には、図3に示される ように、集光レンズ17と、走査手段14を構成する垂直走査用プリズム15と 、水平走査用プリズム16とが介在される。垂直走査用プリズム15は水平な回 転軸線まわりに回転駆動され、また水平走査用プリズム16は垂直な回転軸線ま わりに回転駆動されて、鋼帯1の表面を鋼帯1の幅方向および走行方向に走査す るように構成されている。As shown in FIG. 3, the optical path length between the surface of the steel strip 1 and the lens 10 includes a condenser lens 17, a vertical scanning prism 15 which constitutes the scanning means 14, and a horizontal scanning prism 15. The scanning prism 16 is interposed. The vertical scanning prism 15 is rotationally driven around a horizontal rotation axis line, and the horizontal scanning prism 16 is rotationally driven around a vertical rotation axis line so that the surface of the steel strip 1 extends in the width direction and the traveling direction of the steel strip 1. It is configured to scan.

【0025】 図4は、2色温度計3の構成を簡略化して示す系統図である。この2色温度計 3は、互いに異なる2つの測定波長λ1,λ2における放射輝度比を求める温度 計であって、測定面が灰色体のときに放射率に関係なく真温度を示すように構成 されている。すなわち、前記測定点S1からの光をレンズ20を介して集光し、 絞り21を経て入射した光を反射鏡22,23によって反射され、接眼レンズ2 4を介して肉眼で前記測定点S1を確認することができる。またこの2色温度計 3に入射した赤外線は回転板25に設けられる波長の異なる波長フィルタ26, 27を通って検出素子28によって検出され、その検出信号はAGC(オートゲ インコントロール)増幅器29によって、増幅される。前記一方の波長フィルタ 26は波長λ1帯域の光を通過させ、また他方の波長フィルタ27は波長λ2帯 域の光を通過させる。すなわち、図5に示されるように、前記フィルタ26を通 過する光の透過量が最大値Gとなる波長がλ1であるとき、その最大値Gのたと えば1/2で弁別したときの波長区間がΔλ1である。同様に、フィルタ27を 通過する光の透過量が最大値となる波長λ2に関しても、波長区間Δλ2が特定 される。FIG. 4 is a system diagram showing a simplified configuration of the two-color thermometer 3. The two-color thermometer 3 is a thermometer that obtains the radiance ratio at two different measurement wavelengths λ1 and λ2, and is configured to show the true temperature regardless of the emissivity when the measurement surface is a gray body. ing. That is, the light from the measurement point S1 is condensed via the lens 20, the light incident through the diaphragm 21 is reflected by the reflecting mirrors 22 and 23, and the measurement point S1 is visually observed through the eyepiece lens 24. You can check. Further, the infrared rays incident on the two-color thermometer 3 are detected by a detection element 28 through wavelength filters 26, 27 having different wavelengths provided on the rotary plate 25, and the detection signal is detected by an AGC (auto gain control) amplifier 29. Is amplified. The one wavelength filter 26 passes light in the wavelength λ1 band, and the other wavelength filter 27 passes light in the wavelength λ2 band. That is, as shown in FIG. 5, when the wavelength at which the amount of light passing through the filter 26 reaches the maximum value G is λ1, the wavelength when the maximum value G is discriminated by 1/2, for example. The section is Δλ1. Similarly, the wavelength section Δλ2 is also specified for the wavelength λ2 at which the amount of light passing through the filter 27 has the maximum value.

【0026】 前記AGC増幅器29の出力は、分離回路30に入力され、同期信号発生器3 1からの前記同期信号に基づいてAGC増幅器29によって利得制御した後、2 つ信号成分V1,V2に分離し、一方の信号V1は放射率比補正回路32によっ てその利得が補正され、ゼロクランプ回路33を経て比較回路34の一方の入力 端子に入力される。この比較回路34の他方の入力端子には、弁別レベル信号V 0が入力されて、前記信号V2がレベル弁別され、再びAGC増幅器29に入力 されて利得制御する。測定温度が下限を下まわるとき、入射束不足によって比率 演算が不安定になるので、信号レベルを検出して強制的に出力を零点にクランプ し、このクランプされなかった信号は出力端子35に導出される。The output of the AGC amplifier 29 is input to the separation circuit 30, and the gain is controlled by the AGC amplifier 29 based on the synchronization signal from the synchronization signal generator 31 and then separated into two signal components V1 and V2. Then, the gain of one signal V1 is corrected by the emissivity ratio correction circuit 32, and the signal V1 is input to one input terminal of the comparison circuit 34 via the zero clamp circuit 33. The discrimination level signal V 0 is inputted to the other input terminal of the comparison circuit 34, the level of the signal V 2 is discriminated, and the signal V 2 is inputted again to the AGC amplifier 29 for gain control. When the measured temperature falls below the lower limit, the ratio calculation becomes unstable due to insufficient incident flux, so the signal level is detected and the output is forcibly clamped to the zero point, and this unclamped signal is output to the output terminal 35. To be done.

【0027】 前記2色温度計3は、互いに異なる2つの測定波長帯域がλ1,λ2における 熱放射エネルギ比R(T)から物体である鋼帯1の温度を求めることができ、そ の関係式は、数5によって示される。The two-color thermometer 3 can obtain the temperature of the steel strip 1, which is an object, from the thermal radiation energy ratio R (T) in two different measurement wavelength bands λ1 and λ2. Is shown by the equation 5.

【0028】[0028]

【数5】 [Equation 5]

【0029】 この数5において、鋼帯1の放射率εΔλ1,εΔλ2が未知数であっても、 波長区間Δλ1,Δλ2が既知で、かつεΔλ1/εΔλ2が一定であれば、熱 放射エネルギ比R(T)は常に温度Tの関数となり得ることを示している。すな わち、熱放射エネルギ比R(T)を測定すれば、温度Tを逆算することによって 求めることができる。そこで2色温度計3は、波長区間Δλ1とΔλ2とを極力 近い波長に選択して、極小波長区間においてεΔλ1/εΔλ2=一定となる関 係を成立させている。In Equation 5, even if the emissivities εΔλ1 and εΔλ2 of the steel strip 1 are unknown, if the wavelength sections Δλ1 and Δλ2 are known and εΔλ1 / εΔλ2 is constant, the thermal radiation energy ratio R (T ) Indicates that it can always be a function of temperature T. That is, if the thermal radiation energy ratio R (T) is measured, it can be obtained by back-calculating the temperature T. Therefore, the two-color thermometer 3 selects the wavelength sections Δλ1 and Δλ2 as wavelengths as close as possible, and establishes the relationship that εΔλ1 / εΔλ2 = constant in the minimum wavelength section.

【0030】 この検証のために、第1の材料特性、すなわち結晶粒度または硬さと2色温度 計の指示値とを1コイルあたり数回チェックして、管理範囲内にあることを確認 している。前記温度と硬さHv との関係は図6に示されており、ラインL1,L 2間が管理範囲内にあることが確認される。また材質温度と結晶粒度との関係は 図7に示されており、ラインL3とラインL4とに挟まれた管理範囲内にあるこ とが確認される。このように温度と硬さあるいは温度と結晶粒度との関係が一定 の相関性を有して管理範囲内にあれば、2色温度計3の指示値はほぼ真値に近い と考えることができる。For this verification, the first material characteristic, that is, the grain size or hardness and the indicated value of the two-color thermometer are checked several times per coil to confirm that they are within the control range. . The relationship between the temperature and the hardness H v is shown in FIG. 6, and it is confirmed that the lines L1 and L 2 are within the control range. Further, the relationship between the material temperature and the grain size is shown in FIG. 7, and it is confirmed that it is within the control range sandwiched between the line L3 and the line L4. In this way, if the relationship between temperature and hardness or the relationship between temperature and crystal grain has a certain correlation and is within the control range, it can be considered that the indicated value of the two-color thermometer 3 is close to the true value. .

【0031】 次に、2色温度計3の指示値を鋼帯1の真の温度として、走査形放射温度計2 の放射率εΔλを数6によって求める。Next, the emissivity εΔλ of the scanning radiation thermometer 2 is calculated by the equation 6 using the indicated value of the two-color thermometer 3 as the true temperature of the steel strip 1.

【0032】[0032]

【数6】 [Equation 6]

【0033】 また数6において分母は、温度T1に2色温度計3の測定温度を代入すること によって求めることができる。したがって数6は数7のように示される。The denominator in Equation 6 can be obtained by substituting the temperature measured by the two-color thermometer 3 into the temperature T1. Therefore, Equation 6 is expressed as Equation 7.

【0034】[0034]

【数7】 [Equation 7]

【0035】 数7において、τλ,aλおよびΔλは、固有値であることから、放射率εΔ λを導くことができる。In Equation 7, since τλ, aλ and Δλ are eigenvalues, the emissivity εΔλ can be derived.

【0036】 前記演算処理手段4において、放射率εΔλ=1として温度換算されて保存さ れている平面的温度データとなっている全ての温度値T2と、数5によって求め られた放射率εΔλとを、次の数8に代入して、温度T3を求めることができる 。In the arithmetic processing means 4, all temperature values T2 which are temperature data converted and stored as emissivity εΔλ = 1 and the emissivity εΔλ obtained by the equation (5). Can be substituted into the following equation 8 to obtain the temperature T3.

【0037】[0037]

【数8】 [Equation 8]

【0038】 このようにして数8によって導かれる鋼帯1の測定面全体の温度T3をそれぞ れ演算して求めることによって、補正された温度分布を得ることができる。In this way, a corrected temperature distribution can be obtained by calculating and obtaining the temperature T3 of the entire measurement surface of the steel strip 1 which is derived by the equation 8.

【0039】 このようにして、本考案によれば、物体の温度分布の変位をほぼ真値に近い状 態で管理が可能となるので、たとえば焼鈍炉の温度分布の異常、あるいは直火焚 き焼鈍炉のバーナの異常を早期に発見することができる。また鋼帯1の表面材温 分布を小さくするために、直火焚き焼鈍炉のフレーム長を調整することによって 、幅方向に均一な鋼帯の焼鈍が可能となり、しかも鋼帯の温度分布と板形状との 関連を解析することができ、鋼帯品質の向上および安定に寄与することが可能で ある。In this way, according to the present invention, it is possible to manage the displacement of the temperature distribution of the object in a state that is close to the true value, and therefore, for example, the temperature distribution of the annealing furnace is abnormal, or direct heating is used. Anomalies in the burner of the annealing furnace can be detected early. Further, in order to reduce the temperature distribution of the surface material of the steel strip 1, by adjusting the frame length of the direct-fired annealing furnace, it becomes possible to uniformly anneal the steel strip in the width direction, and the temperature distribution of the steel strip and the strip It is possible to analyze the relationship with the shape and contribute to the improvement and stability of the steel strip quality.

【0040】[0040]

【考案の効果】[Effect of the device]

このように本考案によれば、第1の温度測定手段によって測定される物体表面 の測定領域内の任意の点の温度を第2温度測定手段によって測定し、第2の温度 測定手段によって求められた温度分布と、第2の温度測定手段によって測定され た温度とによって、第1の温度測定手段の測定波長放射率を補正するようにした ので、たとえば鋼帯などの物体の表面温度分布を可及的に真の表面温度分布に近 い値として求めることができ、物体の温度分布の異常などを早期に発見すること が可能となる。 As described above, according to the present invention, the temperature of an arbitrary point in the measurement area of the object surface measured by the first temperature measuring means is measured by the second temperature measuring means and is obtained by the second temperature measuring means. Since the measured wavelength emissivity of the first temperature measuring means is corrected by the temperature distribution measured by the second temperature measuring means and the temperature measured by the second temperature measuring means, the surface temperature distribution of an object such as a steel strip can be calculated. It is possible to obtain a value that is as close as possible to the true surface temperature distribution, and it is possible to detect abnormalities in the temperature distribution of an object at an early stage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例の概略的構成を示す系統図で
ある。
FIG. 1 is a system diagram showing a schematic configuration of an embodiment of the present invention.

【図2】走査形放射温度計2の構成を示す系統図であ
る。
FIG. 2 is a system diagram showing a configuration of a scanning radiation thermometer 2.

【図3】走査手段14の具体的構成を示す図である。FIG. 3 is a diagram showing a specific configuration of a scanning unit 14.

【図4】2色温度計3の具体的構成を示す系統図であ
る。
FIG. 4 is a system diagram showing a specific configuration of a two-color thermometer 3.

【図5】フィルタ26を通過する波長λ1の光とその波
長区間Δλ1との関係を示すグラフである。
FIG. 5 is a graph showing a relationship between light having a wavelength λ1 that passes through a filter and its wavelength section Δλ1.

【図6】2色温度計3の放射率比εΔλが一定であるこ
とを示すための温度と硬度との関係を示すグラフであ
る。
FIG. 6 is a graph showing a relationship between temperature and hardness for showing that the emissivity ratio εΔλ of the two-color thermometer 3 is constant.

【図7】2色温度計3の放射率比が一定であることを示
す温度と結晶粒度との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between temperature and crystal grain size, which shows that the emissivity ratio of the two-color thermometer 3 is constant.

【符号の説明】[Explanation of symbols]

1 鋼帯 2 走査形放射温度計 3 2色温度計 4 演算処理手段 5 表示手段 6,8 検出部 7,9 処理回路 DESCRIPTION OF SYMBOLS 1 Steel strip 2 Scanning radiation thermometer 3 2 Color thermometer 4 Arithmetic processing means 5 Display means 6,8 Detection part 7,9 Processing circuit

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 物体表面の熱放射エネルギ分布を、被写
界深度の範囲内で測定し、この測定値と物体の測定波長
放射率とから、プランクの放射則によって物体の表面温
度を計算して、温度を求める第1の温度測定手段と、 第1の温度測定手段によって測定される物体表面の測定
領域内の任意の点の温度を測定する第2の温度測定手段
とを含み、 第1の温度測定手段によって求められた温度と、第2の
温度測定手段によって測定された温度とによって、第1
の温度測定手段の測定波長放射率を補正することを特徴
とする鋼帯の表面温度分布測定装置。
1. The thermal radiation energy distribution on the surface of an object is measured within the depth of field, and the surface temperature of the object is calculated from the measured value and the measured wavelength emissivity of the object by Planck's radiation law. A first temperature measuring means for determining a temperature, and a second temperature measuring means for measuring a temperature at an arbitrary point within a measurement area of the object surface measured by the first temperature measuring means. Of the temperature measured by the second temperature measuring means and the temperature measured by the second temperature measuring means.
An apparatus for measuring the surface temperature distribution of a steel strip, which is characterized in that the measuring wavelength emissivity of the temperature measuring means is corrected.
【請求項2】 前記補正された測定波長放射率が、物体
表面の前記第1の温度測定手段によって測定される全て
の測定領域で同一値であるとして、各測定領域の熱放射
エネルギから、プランクの放射則によって物体の表面温
度を計算して、温度分布を求めることを特徴とする請求
項1記載の鋼帯の表面温度分布測定装置。
2. Assuming that the corrected measurement wavelength emissivity has the same value in all measurement areas measured by the first temperature measuring means on the surface of the object, from the thermal radiation energy of each measurement area, the Planck 2. The surface temperature distribution measuring device for a steel strip according to claim 1, wherein the surface temperature of the object is calculated by the radiation law of 1.
【請求項3】 前記第2の温度測定手段は、2色温度計
であることを特徴とする請求項2記載の鋼帯の表面温度
分布測定装置。
3. The surface temperature distribution measuring device for a steel strip according to claim 2, wherein the second temperature measuring means is a two-color thermometer.
JP1991079249U 1991-09-30 1991-09-30 Surface temperature distribution measuring device for steel strip Expired - Lifetime JP2566952Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991079249U JP2566952Y2 (en) 1991-09-30 1991-09-30 Surface temperature distribution measuring device for steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991079249U JP2566952Y2 (en) 1991-09-30 1991-09-30 Surface temperature distribution measuring device for steel strip

Publications (2)

Publication Number Publication Date
JPH0530741U true JPH0530741U (en) 1993-04-23
JP2566952Y2 JP2566952Y2 (en) 1998-03-30

Family

ID=13684587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991079249U Expired - Lifetime JP2566952Y2 (en) 1991-09-30 1991-09-30 Surface temperature distribution measuring device for steel strip

Country Status (1)

Country Link
JP (1) JP2566952Y2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105479A1 (en) * 2007-02-28 2008-09-04 Jfe Steel Corporation Metal-band hot-rolling method and apparatus using near infrared camera
JP2008296251A (en) * 2007-05-31 2008-12-11 Jfe Steel Kk Computer system for storing quality judgment result of hot-rolled metal strip, business computer system for controlling manufacture and quality history and for controlling passing-step instruction, and method using the same system for cutting off defective quality part of hot-rolled metal strip in downstream step
JP2008296249A (en) * 2007-05-31 2008-12-11 Jfe Steel Kk Method for photographing overall width of hot-rolled metallic band using near infrared ray camera in hot rolling and method for recording overall width photographing result
JP2010025756A (en) * 2008-07-18 2010-02-04 Fuji Electric Systems Co Ltd Temperature measuring instrument and temperature distribution measuring system
JP2017067602A (en) * 2015-09-30 2017-04-06 新日鐵住金株式会社 Steel temperature measurement device and steel temperature measurement method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283633A (en) * 1991-03-12 1992-10-08 Nippon Steel Corp Method for measuring temperature of strip in continuous strip heat treatment equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283633A (en) * 1991-03-12 1992-10-08 Nippon Steel Corp Method for measuring temperature of strip in continuous strip heat treatment equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105479A1 (en) * 2007-02-28 2008-09-04 Jfe Steel Corporation Metal-band hot-rolling method and apparatus using near infrared camera
KR101503984B1 (en) * 2007-02-28 2015-03-18 제이에프이 스틸 가부시키가이샤 Metal-band hot-rolling method and apparatus using near infrared camera
JP2008296251A (en) * 2007-05-31 2008-12-11 Jfe Steel Kk Computer system for storing quality judgment result of hot-rolled metal strip, business computer system for controlling manufacture and quality history and for controlling passing-step instruction, and method using the same system for cutting off defective quality part of hot-rolled metal strip in downstream step
JP2008296249A (en) * 2007-05-31 2008-12-11 Jfe Steel Kk Method for photographing overall width of hot-rolled metallic band using near infrared ray camera in hot rolling and method for recording overall width photographing result
JP2010025756A (en) * 2008-07-18 2010-02-04 Fuji Electric Systems Co Ltd Temperature measuring instrument and temperature distribution measuring system
JP2017067602A (en) * 2015-09-30 2017-04-06 新日鐵住金株式会社 Steel temperature measurement device and steel temperature measurement method

Also Published As

Publication number Publication date
JP2566952Y2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US7422365B2 (en) Thermal imaging system and method
US10215643B2 (en) Dual waveband temperature detector
JP2007510152A (en) Infrared camera methods, uses and systems for determining the risk of condensation
US5764684A (en) Infrared thermocouple improvements
JP2007192579A (en) Temperature measuring device and method
JP2566952Y2 (en) Surface temperature distribution measuring device for steel strip
US5436443A (en) Polaradiometric pyrometer in which the parallel and perpendicular components of radiation reflected from an unpolarized light source are equalized with the thermal radiation emitted from a measured object to determine its true temperature
US6817758B2 (en) Temperature distribution measuring method and apparatus
EP0623811B1 (en) Method of contactless measuring the surface temperature and/or emissivity of objects
EP1302759A2 (en) Temperature distribution measuring method and apparatus
US20040008753A1 (en) Emissivity distribution measuring method and apparatus
US4605314A (en) Spectral discrimination pyrometer
JPH07140006A (en) Method of measuring temperatures of multiple colors
JPH07301569A (en) Method and apparatus for processing infrared temperature image using two filters
KR101863498B1 (en) System for calculating calibration curve for measuring high temperature
KR101947256B1 (en) Method for calculating calibration curve for measuring high temperature
JP3733846B2 (en) Correction system control method, thermometer and correction device
JPH07280667A (en) Method for measuring temperature of aluminum board material in hot rolling
JPH06109549A (en) Infrared imaging system
JPH03134524A (en) Radiation-temperature measuring apparatus
JP2004109023A (en) Method and apparatus for measuring surface temperature of steel product
JP2004219114A (en) Multicolor infrared imaging device and data processing method
JPH09171891A (en) Microwave oven
RU2217715C1 (en) Device determining temperature
JP2003166880A (en) Imaging device having temperature measuring means

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971202