JPH05307170A - Liquid crystal electrooptical device - Google Patents

Liquid crystal electrooptical device

Info

Publication number
JPH05307170A
JPH05307170A JP20743992A JP20743992A JPH05307170A JP H05307170 A JPH05307170 A JP H05307170A JP 20743992 A JP20743992 A JP 20743992A JP 20743992 A JP20743992 A JP 20743992A JP H05307170 A JPH05307170 A JP H05307170A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
resin
optical device
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20743992A
Other languages
Japanese (ja)
Other versions
JP2775042B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Takeshi Nishi
毅 西
Toshimitsu Konuma
利光 小沼
Michio Shimizu
清水美知緒
Koji Moriya
幸司 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JPH05307170A publication Critical patent/JPH05307170A/en
Priority to US08/447,549 priority Critical patent/US5566009A/en
Priority to US08/677,330 priority patent/US6195139B1/en
Application granted granted Critical
Publication of JP2775042B2 publication Critical patent/JP2775042B2/en
Priority to US09/781,154 priority patent/US6618105B2/en
Priority to US10/645,613 priority patent/US7123320B2/en
Priority to US11/542,215 priority patent/US8035773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the electrooptical device of a dispersion type liquid crystal having good transmittability of light when an electric field is not impressed to the device and a high scattering efficiency when the electric field is impressed thereto by using a specific antiferroelectic liquid crystal. CONSTITUTION:The liquid crystal material which exhibits a antiferroelectric property is used as the liquid crystal material to be used for the liquid crystal electrooptical device having a light control layer (composite composed of a liquid crystal and a light transmissive material) between a pair of electrodes. The liquid crystal droplets in the light control layer is produced by a method of injecting a mixture composed of the liquid crystal material and a UV curing resin between substrates and irradiating the resin with UV rays from the substrate surface to cure the resin. The liquid crystal droplets are otherwise formed by preparing a soln. formed by dissolving the liquid crystal and the resin in a solvent and applying the soln. by a spinner method or casting method on the substrate, then gradually evaporating the solvent. The resin is exemplified by polyethylene terephthalate, polyfumarate, polycarbazole, PMMA, etc. The liquid crystal droplets are otherwise produced as liquid crystal capsules by using polyvinyl alcohol.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高分子樹脂の中に液晶材
料を分散させた液晶樹脂複合体を有する分散型の液晶電
気光学装置に関するものである。特に、散乱効率が高い
液晶電気光学装置を提案するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dispersion type liquid crystal electro-optical device having a liquid crystal resin composite in which a liquid crystal material is dispersed in a polymer resin. In particular, it proposes a liquid crystal electro-optical device having high scattering efficiency.

【0002】[0002]

【従来の技術】従来の液晶電気光学装置はネマチック液
晶等を使用したTN型やSTN型のものが広く知られ、
実用化されている。また、最近では強誘電性液晶を使用
したものも知られている。これらの液晶電気光学装置
は、基本的には基板上に電極及びリードを有する第1の
基板と基板上に電極とリードを有する第2の基板によっ
て、液晶組成物を挟持しており、前記基板上の電極によ
って、液晶組成物に電界を加え、液晶材料自身の誘電率
の異方性によって、または強誘電性液晶の場合は自発分
極によって、液晶分子の状態を変化させ、その結果液晶
分子の状態の変化に伴う電気光学効果を利用するもので
ある。
2. Description of the Related Art Conventional liquid crystal electro-optical devices of TN type and STN type using nematic liquid crystal are widely known.
It has been put to practical use. Recently, a liquid crystal using a ferroelectric liquid crystal is also known. These liquid crystal electro-optical devices basically sandwich a liquid crystal composition between a first substrate having electrodes and leads on a substrate and a second substrate having electrodes and leads on the substrate. An electric field is applied to the liquid crystal composition by the upper electrode, and the state of the liquid crystal molecule is changed by the anisotropy of the dielectric constant of the liquid crystal material itself or by spontaneous polarization in the case of a ferroelectric liquid crystal, and as a result, the liquid crystal molecule It utilizes the electro-optic effect that accompanies a change in state.

【0003】TN、STN型の液晶電気光学装置におい
て、液晶分子は、液晶層の両基板接触面では配向処理の
ために行われるラビングによって規制力につられて、ラ
ビング方向に並ぶ。上下基板においては、このラビング
方向が90゜または200゜〜290゜に位置するよう
にずらせてある。液晶層の中間付近では、90゜〜29
0゜に位置する上下の分子の間をエネルギーが一番小さ
くなるように螺旋状に液晶分子が並ぶことになる。この
時、STN型の場合は必要に応じて液晶材料にカイラル
物質を混合している。
In a TN or STN type liquid crystal electro-optical device, liquid crystal molecules are aligned in the rubbing direction on the contact surfaces of both substrates of the liquid crystal layer by a restricting force by rubbing performed for alignment treatment. The rubbing directions of the upper and lower substrates are displaced so as to be located at 90 ° or 200 ° to 290 °. 90 ° -29 near the middle of the liquid crystal layer
The liquid crystal molecules are arranged spirally so that the energy between the upper and lower molecules located at 0 ° is the smallest. At this time, in the case of the STN type, a chiral substance is mixed with the liquid crystal material as needed.

【0004】これらの装置はいずれも偏光板を有しかつ
液晶分子を液晶電気光学装置内で一定の方向に規則正し
く配向させる必要があった。この配向処理は、配向膜
(通常は有機膜)を綿やベルベットの布で一定方向に擦
るというもので、この処理がなければ、一定方向に液晶
分子は配列せず、液晶の電気光学効果を利用することは
できない。そのため、装置の構造は、一対の基板によっ
て液晶材料を保持する容器を構成して、その容器内に液
晶を注入し、液晶を配向させてその光学的な効果を利用
していた。
All of these devices had a polarizing plate and it was necessary to orient the liquid crystal molecules regularly in a certain direction in the liquid crystal electro-optical device. This alignment treatment involves rubbing the alignment film (usually an organic film) with cotton or velvet cloth in a certain direction. Without this treatment, the liquid crystal molecules would not be aligned in a certain direction, and the electro-optical effect of the liquid crystal would be lost. It cannot be used. Therefore, in the structure of the device, a container for holding a liquid crystal material is constituted by a pair of substrates, and the liquid crystal is injected into the container to orient the liquid crystal to utilize its optical effect.

【0005】一方、これらの偏光板や配向処理等を必要
とせず、画面の明るいコントラストのよい分散型液晶が
知られている。図1に分散型液晶の概略図を示す。透光
性を有する基板1に挟持された分散型液晶とは透光性の
固相ポリマー4が液晶材料3を粒状または海綿状に保持
して調光層を構成しているものである。この液晶装置の
作製方法としては、カプセル化された液晶材料をポリマ
ー中に分散させ、そのポリマーをフィルムあるいは基板
上に薄膜として形成されたものが知られている。ここ
で、カプセル化材料してはアラビアゴム、ポリビニルア
ルコール、ゼラチン等が用いられている。
On the other hand, there is known a dispersion type liquid crystal which does not require these polarizing plates or alignment treatment and has a bright screen and good contrast. FIG. 1 shows a schematic view of a dispersed liquid crystal. The dispersion-type liquid crystal sandwiched between the substrates 1 having a light-transmitting property is a solid-state polymer 4 having a light-transmitting property which holds the liquid crystal material 3 in a granular or spongy form to form a light control layer. As a method for manufacturing this liquid crystal device, there is known a method in which an encapsulated liquid crystal material is dispersed in a polymer and the polymer is formed as a thin film on a film or a substrate. Here, gum arabic, polyvinyl alcohol, gelatin, etc. are used as the encapsulating material.

【0006】例えば、ポリビニルアルコールでカプセル
化された液晶分子は、それらが薄膜中で正の誘電異方性
を有するものであるならば電界の存在下でその液晶分子
が液晶分子の長軸を電界に平行になるように配列させ液
晶の屈折率と等しい場合には透明性が発現する。一方電
界がない場合には、液晶は特定の方向に配列せず様々な
方向を向いているので、液晶の屈折率がポリマーの屈折
率との差が大きいために光は散乱され光の透過を妨げ、
白濁状態になる。このような液晶電気光学装置の印加電
圧に対する透過率の変化は図2に示すような関係にな
る。図中の曲線上の矢印は電圧の変化の方向を示してい
る。また、負の誘電異方性を有するものであり、かつ液
晶の平均の屈折率がポリビニルアルコールと一致するも
のであるならば電界が無い状態では透明性が発現する。
For example, liquid crystal molecules encapsulated with polyvinyl alcohol, if they have a positive dielectric anisotropy in a thin film, will have the long axis of the liquid crystal molecules in the presence of an electric field in the presence of an electric field. When they are arranged so as to be parallel to, and have a refractive index equal to that of the liquid crystal, transparency is exhibited. On the other hand, when there is no electric field, the liquid crystal is not aligned in a specific direction but faces various directions, and therefore the difference in the refractive index of the liquid crystal from the refractive index of the polymer is large, so that light is scattered and the transmission of light is prevented. Hinder,
It becomes cloudy. The change in the transmittance of the liquid crystal electro-optical device with respect to the applied voltage has the relationship shown in FIG. The arrow on the curve in the figure indicates the direction of change in voltage. If the liquid crystal has a negative dielectric anisotropy and the average refractive index of the liquid crystal is the same as that of polyvinyl alcohol, the transparency is exhibited in the absence of an electric field.

【0007】ここで平均の屈折率について簡単に述べる
と、液晶材料について無電界状態で、なんら配向処理を
していない基板を用いて屈折率の分布を測定すると、図
4に示すような関係が得られる。図中のno、neはそれ
ぞれ液晶の常光、異常光に対する屈折率を示す。平均の
屈折率とは、図4において最も分布強度の高くなるとき
の屈折率naveと定義する。
The average refractive index will be briefly described here. When the refractive index distribution is measured in a liquid crystal material in a non-electric field state without using any alignment treatment, the relationship shown in FIG. 4 is obtained. can get. In the figure, n o and n e respectively indicate the refractive index of the liquid crystal for ordinary light and extraordinary light. The average refractive index is defined as the refractive index n ave when the distribution intensity is highest in FIG.

【0008】一方電界の存在下では液晶分子の長軸が電
界の方向と垂直に向き屈折率に差が生じるため光が散乱
され白濁状態となる。また、液晶分子が液晶分子の長軸
と垂直な向きに自発分極を有すれば同様な結果となる。
このような液晶材料を使用した液晶電気光学装置の透過
率の電圧に対する変化は、図3に示す関係となる。分散
型液晶電気光学装置はこのような透明性と白濁状態との
差を利用して、各種情報を提供するものである。
On the other hand, in the presence of an electric field, the long axes of the liquid crystal molecules are oriented perpendicularly to the direction of the electric field and a difference in refractive index occurs, so that light is scattered and becomes a cloudy state. Similar results are obtained if the liquid crystal molecules have spontaneous polarization in the direction perpendicular to the long axis of the liquid crystal molecules.
The change in the transmittance of the liquid crystal electro-optical device using such a liquid crystal material with respect to the voltage has the relationship shown in FIG. The dispersion type liquid crystal electro-optical device utilizes the difference between the transparency and the opaque state to provide various information.

【0009】分散型液晶としてはこのようなカプセル化
されたもの以外にも液晶材料がエポキシ樹脂内に分散さ
れたものや、液晶と光硬化型の樹脂とを混合し、樹脂硬
化の為の光を照射して、液晶と樹脂との相分離を利用し
たもの、3次元につながったポリマーの中に液晶を含侵
させたものなどが知られている。本発明においてはこれ
らを総称して分散型液晶と呼ぶ。
As the dispersion type liquid crystal, in addition to such encapsulated ones, a liquid crystal material dispersed in an epoxy resin, or a liquid crystal and a photocurable resin are mixed to obtain a light for curing the resin. There are known ones that utilize the phase separation between liquid crystal and resin by irradiating with, and one in which the liquid crystal is impregnated in a three-dimensionally connected polymer. In the present invention, these are collectively referred to as dispersion type liquid crystal.

【0010】これらの分散型液晶電気光学装置は、従来
のTN、STN等の電気光学装置に比して偏光板を使用
しないために液晶電気光学装置の光の透過率は格段に高
い。具体的には偏光板一枚の透過率は約50%であり、
それを組み合わせて使うアクティブマトリクスの場合1
%程度の光しか透過しない、STN系では20%程度で
あり、そのためこれらの場合は後部照明の照度を高め画
面を明るくする努力をしている。一方、分散型液晶電気
光学装置の場合50%以上の光が透過する。これは一重
に分散型液晶装置が偏光板を必要としないことによる、
優位性である。
Since these dispersion type liquid crystal electro-optical devices do not use a polarizing plate as compared with conventional electro-optical devices such as TN and STN, the light transmittance of the liquid crystal electro-optical device is remarkably high. Specifically, the transmittance of one polarizing plate is about 50%,
In the case of an active matrix that uses it in combination 1
In the STN system, which transmits only about 10% of light, it is about 20%. Therefore, in these cases, efforts are being made to increase the illuminance of the rear illumination and to brighten the screen. On the other hand, in the case of the dispersion type liquid crystal electro-optical device, 50% or more of light is transmitted. This is because the dispersion type liquid crystal device does not need a polarizing plate.
Superiority.

【0011】前述のように分散型液晶は透明状態と白濁
状態との間で使用し、液晶電気光学装置を透過する光の
量が多いので、通常は透過型の液晶電気光学装置として
研究開発がなされている。特に、透過型の中でも、投影
型の液晶電気光学装置として、開発されている。
As described above, the dispersive liquid crystal is used between the transparent state and the cloudy state, and a large amount of light is transmitted through the liquid crystal electro-optical device. Therefore, research and development is usually conducted as a transmissive liquid crystal electro-optical device. Has been done. In particular, it has been developed as a projection type liquid crystal electro-optical device among the transmission type.

【0012】この投影型の液晶電気光学装置とは液晶電
気光学装置パネルを光源から発せられる光の光路上に配
置させ、パネルに通過してきた光を一定の角度を有した
スリットを通して壁面上に投影するものである。このパ
ネルの液晶は、液晶分子が正の誘電異方性を有する場
合、印加電圧に応答しない閾値以下の低電界領域では様
々な方向に向いており、白濁状態となっている。 この
時に入射してきた光はパネル通過後に散乱され、入射し
てきた光の光路を大きく広げることになる。そしてその
次に配置されたスリットで散乱された光をカットしてし
まうために壁面上にはほとんど光が達せずに黒状態が得
られる。
In this projection type liquid crystal electro-optical device, a liquid crystal electro-optical device panel is arranged on an optical path of light emitted from a light source, and light passing through the panel is projected on a wall surface through a slit having a certain angle. To do. When the liquid crystal molecules have a positive dielectric anisotropy, the liquid crystal of this panel is oriented in various directions in a low electric field region below a threshold value that does not respond to an applied voltage, and is in a clouded state. The light that has entered at this time is scattered after passing through the panel, and the optical path of the light that has entered is greatly widened. Then, since the light scattered by the slit arranged next is cut off, almost no light reaches the wall surface, and a black state is obtained.

【0013】一方、電界印加時で液晶が応答し電界方向
に対して液晶分子が平行に配列するときには入射してき
た光は散乱することなく直進し、壁面上には高輝度の明
状態が得られる。また、液晶分子が負の誘電異方性を有
するか、液晶分子の長軸方向に垂直な向きに自発分極を
有する場合、電界が無いときの液晶分子の平均の屈折率
が、液晶を保持している高分子樹脂の屈折率と一致する
ならば、液晶分子が正の誘電異方性を有する場合とは逆
に電界が無いときには透明で光を透過し、電界があると
きには白濁状態となって光が散乱し、黒状態が得られ
る。
On the other hand, when the liquid crystal responds when an electric field is applied and the liquid crystal molecules are aligned parallel to the direction of the electric field, the incident light goes straight without being scattered, and a bright state with high brightness is obtained on the wall surface. .. When the liquid crystal molecules have negative dielectric anisotropy or have spontaneous polarization in a direction perpendicular to the long axis direction of the liquid crystal molecules, the average refractive index of the liquid crystal molecules in the absence of an electric field holds the liquid crystal. Contrary to the case where the liquid crystal molecules have a positive dielectric anisotropy, it is transparent and transmits light when there is no electric field, and becomes opaque when there is an electric field, as long as it matches the refractive index of the polymer resin. Light is scattered and a black state is obtained.

【0014】[0014]

【発明が解決しようとする課題】以上に述べたように分
散型液晶のスイッチングの原理は、透光性の基板側から
入射した光が調光層に於ける屈折率の異なる樹脂と液晶
ドロップレットの中を数回に渡って通過し両界面におい
て光路を変えながら反対の基板面に達し、光が散乱す
る。その時には入射光の光は大きく散乱した状態になっ
ている。この時の調光層に於ける散乱効率を大きくする
ためには、樹脂と液晶ドロップレットとの接する回数が
調光層の厚み方向に多いことが望ましい。そのたび毎に
光は散乱していくからである。従って、調光層の厚みを
大きくすればするほど散乱効率は大きくなる。しかしな
がら、基板間隔、しいては電極間隔が大きくなり、調光
層をスィッチングするための駆動電圧が大きくなってし
まう問題が生じた。そのために散乱効率は良くなっても
通常のICでの駆動、TFTでの駆動が出来なくなって
しまった。
As described above, the principle of switching of the dispersion type liquid crystal is that the light incident from the translucent substrate side has a different refractive index in the light control layer and the liquid crystal droplet. The light passes through the inside of the substrate several times, changes the optical path at both interfaces, reaches the opposite substrate surface, and the light is scattered. At that time, the incident light is largely scattered. In order to increase the scattering efficiency in the light control layer at this time, it is desirable that the number of times the resin and the liquid crystal droplets are in contact with each other in the thickness direction of the light control layer. This is because the light scatters each time. Therefore, the scattering efficiency increases as the thickness of the light control layer increases. However, there has been a problem that the substrate spacing, and hence the electrode spacing, becomes large and the drive voltage for switching the light control layer becomes large. For this reason, even if the scattering efficiency is improved, it is impossible to drive the IC and the TFT normally.

【0015】また、一般にかかる液晶電気光学装置にお
いて、 1)低電圧での駆動ができること、 2)スピ−ドが十分はやいこと、 3)セル厚を2.5 〜10μmでも0.1ミリ秒(100μ秒) 以
下での駆動ができること、が実用上特性として要求され
る。 従来の分散型液晶電気光学装置はネマチック性を示す液
晶材料を使用しているものがほとんどであるが、応答速
度の点で上記の要求を満たすまでには至っていない。そ
してこれらの条件を満たし、かつ偏光板を用いることな
く動画表示に対応する程度の早い光学応答を行う液晶電
気光学装置は提案されていないが、この一部を実現する
ものとして、強誘電性を発現する液晶材料を使用した分
散型の液晶電気光学装置が提案されている。しかしなが
ら、この強誘電性を使用した液晶電気光学装置は、電極
間に存在する液晶材料が強誘電性を持つ為に、圧電効果
をその駆動時に示してしまう。具体的には、液晶を駆動
する際に印加される電界により、液晶部分が体積収縮を
起こし、それが、基板の振動を引起し、音を発するよう
になる。
In general, in such a liquid crystal electro-optical device, 1) it can be driven at a low voltage, 2) the speed is sufficiently fast, and 3) even when the cell thickness is 2.5 to 10 μm, it is 0.1 ms (100 μs). ) Practical characteristics are required to be able to drive below. Most of the conventional dispersion type liquid crystal electro-optical devices use a liquid crystal material exhibiting nematic property, but in terms of response speed, the above requirements have not been met. A liquid crystal electro-optical device that satisfies these conditions and has a fast optical response that corresponds to moving image display without using a polarizing plate has not been proposed. Dispersion-type liquid crystal electro-optical devices using a developing liquid crystal material have been proposed. However, in the liquid crystal electro-optical device using this ferroelectricity, the liquid crystal material existing between the electrodes has ferroelectricity, so that the piezoelectric effect is exhibited at the time of driving. Specifically, the electric field applied when driving the liquid crystal causes the liquid crystal portion to contract in volume, which causes the substrate to vibrate and emits sound.

【0016】この基板の振動により、通常は一対の基板
が張り合わされている液晶電気光学装置の接着が剥がれ
るなどの破壊が発生する可能性があった。本発明は以上
のような、数多くの欠点を除かんとしたものであって、
以下にその内容を記す。
Due to the vibration of the substrate, there is a possibility that the liquid crystal electro-optical device in which a pair of substrates are usually bonded together may be broken or otherwise broken. The present invention eliminates many drawbacks as described above,
The contents are described below.

【0017】[0017]

【問題を解決するための手段】本発明は上記の問題を解
決するするため、一対の電極間に調光層(液晶および透
光性物質との複合体)を有する液晶電気光学装置におい
て、使用する液晶材料を反強誘電性を発現する液晶材料
を使用したことを特徴とするものであり、このことによ
り、液晶の応答速度を早め、かつ液晶材料の体積変化に
伴う液晶電気光学装置としての問題を解決したものであ
ります。
In order to solve the above problems, the present invention is used in a liquid crystal electro-optical device having a dimming layer (composite of liquid crystal and translucent material) between a pair of electrodes. It is characterized in that a liquid crystal material exhibiting antiferroelectricity is used as the liquid crystal material, and by this, the response speed of the liquid crystal is increased, and the liquid crystal electro-optical device according to the volume change of the liquid crystal material is used. It is a solution to the problem.

【0018】本発明の調光層に於ける液晶ドロップレッ
トの代表的な作製方法は、以下に示す3種類である。 1)液晶材料と紫外線硬化樹脂を4:6から8:2の割
合で混合したものを基板間に注入し、基板面から紫外線
を照射して樹脂を硬化させるものである。照射するとき
には液晶と樹脂の混合体の等方相から液晶相への転移す
る温度から5から40℃程度に加熱した状態に試料の温
度を調節して置くことが望ましい。 2)溶媒の中に液晶と樹脂を溶解したものを調整し、基
板上にスピナー法か、キャスト法により塗布した後、溶
媒を徐々に揮散させて作製することが出来る。樹脂とし
てはポリエチレンテレフタレートやポリフマル酸エステ
ルやポリカルバゾールやPMMA等が挙げられる。 3)ポリビニルアルコールを用いて液晶カプセルにした
もの これらはいずれにしても液晶ドロップレットの形状は図
1に示すように球形を呈している。以下に実施例を記載
し、本発明を説明するが本発明は本実施例に限定され
ず、幅広い応用が可能である。
Typical methods for producing liquid crystal droplets in the light control layer of the present invention are the following three types. 1) A mixture of a liquid crystal material and an ultraviolet curable resin in a ratio of 4: 6 to 8: 2 is injected between the substrates, and ultraviolet rays are irradiated from the substrate surface to cure the resin. At the time of irradiation, it is desirable to adjust the temperature of the sample so that it is heated to about 5 to 40 ° C. from the transition temperature of the mixture of liquid crystal and resin from the isotropic phase to the liquid crystal phase. 2) A liquid crystal and a resin may be dissolved in a solvent to prepare a solution, which is applied on a substrate by a spinner method or a casting method, and then the solvent is gradually vaporized to prepare the film. Examples of the resin include polyethylene terephthalate, polyfumaric acid ester, polycarbazole, PMMA and the like. 3) What was made into a liquid crystal capsule using polyvinyl alcohol. In any case, the shape of the liquid crystal droplet is spherical as shown in FIG. The present invention is described below with reference to examples, but the present invention is not limited to these examples and can be applied to a wide range of applications.

【0019】[0019]

【実施例】まずは図1に示すように通常のプロセスによ
り分散型液晶を作製する。本実施例では紫外線硬化形樹
脂を用いた分散形液晶について説明する。透光性を有す
る基板1上に、透光性の導電膜であるインジウムと錫の
酸化膜(Indium−Tin−Oxide)2を公知
の蒸着法やスパッタ法にて成膜した。膜厚は、500か
ら2000 であった。この時のシート抵抗は20から
200Ω/cm2 であった。次にこれを通常のフォトリ
ソグラフィ技術によりパターニングした。次に前記第1
の基板と第2に基板を間隔5〜100μm、望ましくは
7〜30μmの無機製のスペーサを間に挟んで加圧して
貼合わせた。その結果ほぼスペサー径のセル間隔を保つ
事が出来る。つぎに液晶材料について説明する。使用し
た液晶は、屈折率が1.6、Δnが0.2のエステル系
の反強誘電性液晶であった。未硬化の光硬化性樹脂とし
て、屈折率が1.62のウレタン系オリゴマーとアクリ
ル系モノマーの混合系を使用した。
EXAMPLE First, as shown in FIG. 1, a dispersion type liquid crystal is produced by a normal process. In this embodiment, a dispersion type liquid crystal using an ultraviolet curable resin will be described. An indium-tin oxide film (Indium-Tin-Oxide) 2 which is a light-transmitting conductive film was formed on the light-transmitting substrate 1 by a known vapor deposition method or sputtering method. The film thickness was 500 to 2000. The sheet resistance at this time was 20 to 200 Ω / cm 2 . Next, this was patterned by the usual photolithography technique. Next, the first
The second substrate was bonded to the second substrate with an inorganic spacer having a distance of 5 to 100 μm, preferably 7 to 30 μm interposed therebetween under pressure. As a result, it is possible to maintain a cell spacing of approximately the Spessor diameter. Next, the liquid crystal material will be described. The liquid crystal used was an ester-based antiferroelectric liquid crystal having a refractive index of 1.6 and Δn of 0.2. As the uncured photocurable resin, a mixed system of a urethane oligomer having a refractive index of 1.62 and an acrylic monomer was used.

【0020】本実施例においては、これらの材料を混合
して攪半した上、超音波を加えて、液晶材料が均一に分
散するようにした。この時、同時に加熱を行い、液晶材
料が等方相(液体)状態として攪半、超音波を加えて、
均一に分散させ、その後に液晶相の温度にまで、温度を
さげることは非常に有効であった。
In the present embodiment, these materials were mixed and stirred, and ultrasonic waves were applied so that the liquid crystal material was uniformly dispersed. At this time, heating is performed at the same time, and the liquid crystal material is in an isotropic phase (liquid) state and is stirred and ultrasonic waves are added.
It was very effective to disperse the particles uniformly and then lower the temperature to the temperature of the liquid crystal phase.

【0021】液晶混合系のSA −I相転移点よりも高温
で前述の第1の基板と第2の基板により形成された液晶
セルに注入し、約10から100mW/cm2 のUV照
射強度で約30〜300秒間紫外光照射し、液晶と樹脂
の相分離を起こさせながら樹脂を硬化させた。その結
果、樹脂4に取り囲まれた液晶ドロップレット3が形成
された。
At a temperature higher than the S A -I phase transition point of the liquid crystal mixed system, it is injected into the liquid crystal cell formed by the above-mentioned first substrate and second substrate, and the UV irradiation intensity is about 10 to 100 mW / cm 2. UV irradiation for about 30 to 300 seconds to cure the resin while causing phase separation between the liquid crystal and the resin. As a result, the liquid crystal droplets 3 surrounded by the resin 4 were formed.

【0022】このようにして、作製された液晶装置は、
図5に示すように上下の基板に設けられた電極間に電圧
を加えない状態では、液晶分子1はランダムに配向して
いるが、液晶の平均の屈折率の値と高分子樹脂の屈折率
の値がほぼ等しいため、光は透過される。また、電圧を
加えたときには、液晶分子1が有する自発分極2のた
め、図6に示すように液晶分子の長軸がその電界の向き
に垂直に近いように配向し、そのため液晶の屈折率と高
分子樹脂との屈折率の差が生じるので光を散乱するよう
になる。
The liquid crystal device thus manufactured is
As shown in FIG. 5, the liquid crystal molecules 1 are randomly aligned in the state where no voltage is applied between the electrodes provided on the upper and lower substrates, but the average refractive index of the liquid crystal and the refractive index of the polymer resin are Since the values of are approximately equal, the light is transmitted. Further, when a voltage is applied, due to the spontaneous polarization 2 of the liquid crystal molecule 1, the long axis of the liquid crystal molecule is oriented so as to be nearly perpendicular to the direction of the electric field, as shown in FIG. Since there is a difference in the refractive index from the polymer resin, the light is scattered.

【0023】本実施例にて、使用した液晶材料の相系列
はIso−SmA−SmC*−SmCA *−Cryをとる
ものであり、その転移温度はIso−SmAは100
℃、SmA−SmC*は84℃、SmCA * は82℃、S
mCA * −Cryは−10. 1℃であり、屈折率の異方
性の値Δnは0.2程度であった。自発分極の値は80
nC/cm2 であった。 この液晶電気光学装置の電気光
学特性値を表1に示した。
[0023] In this embodiment, the phase sequence of the liquid crystal material used is intended to take Iso-SmA-SmC * -SmC A * -Cry, the transition temperature of Iso-SmA 100
℃, SmA-SmC * is 84 ℃, SmC A * is 82 ° C., S
mC A * -Cry is -10. 1 ° C., anisotropy value Δn of the refractive index was about 0.2. The value of spontaneous polarization is 80
It was nC / cm 2 . The electro-optical characteristic values of this liquid crystal electro-optical device are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】表1の値は80℃でのものである。透過率
の値から分かるように、反強誘電性を示す液晶材料を使
用した分散型液晶は、透過率の印加電圧に対する変化が
従来の分散型液晶電気光学装置が示す図2のような関係
とは異なり、図3のようになった。また、この液晶電気
光学装置のスイッチング速度は、ネマチック性を示す液
晶材料を用いた場合とは異なり相当応答時間は速いもの
が得られた。この時の液晶駆動のしきい値電圧は表1に
示すように比較的高い電圧が必要であったが、屈折率異
方性の値がさらに大きい液晶材料を用いれば光を散乱す
る能力が高くなり、基板間隔を薄くできるので実際に駆
動する際の電圧は一般的な範囲とすることができる。
The values in Table 1 are at 80 ° C. As can be seen from the value of the transmittance, in the dispersion type liquid crystal using the liquid crystal material exhibiting the antiferroelectricity, the change in the transmittance with respect to the applied voltage has the relationship as shown in FIG. 2 of the conventional dispersion type liquid crystal electro-optical device. However, the result is as shown in FIG. Further, the switching speed of this liquid crystal electro-optical device was obtained in which the corresponding response time was fast, which was different from the case where the liquid crystal material exhibiting nematic property was used. The threshold voltage for driving the liquid crystal at this time required a relatively high voltage as shown in Table 1, but if a liquid crystal material having a larger refractive index anisotropy value is used, the ability to scatter light is high. Since the substrate interval can be made thin, the voltage for actual driving can be set within a general range.

【0026】また、本発明においては液晶材料として、
反強誘電性を示す液晶材料を使用しているために、液晶
電気光学装置駆動時に液晶材料に加わる電界により、発
生する体積収縮が強誘電性液晶を使用した際より、非常
に少ないため、液晶電気光学装置の基板が振動すること
がない。
Further, in the present invention, as the liquid crystal material,
Since a liquid crystal material exhibiting antiferroelectricity is used, the volume contraction that occurs due to the electric field applied to the liquid crystal material when the liquid crystal electro-optical device is driven is much less than when a ferroelectric liquid crystal is used. The substrate of the electro-optical device does not vibrate.

【0027】さらに、強誘電性液晶の場合は、電界を印
加しても、その液晶材料が分散されたドロップレット内
で取っているスメクチック層構造までも、変形すること
はないが、本発明の反強誘電性液晶の場合は外部から印
加する電界によって、容易にその液晶材料が分散された
ドロップレット内で取っているスメクチック層構造を変
形させることができる、そのため、液晶材料と透明物質
との屈折率の差を大きくとることができ、液晶電気光学
装置とした際にコントラストの値を大きく取ることが可
能となった。
Further, in the case of the ferroelectric liquid crystal, even if an electric field is applied, the smectic layer structure taken in the droplets in which the liquid crystal material is dispersed will not be deformed. In the case of antiferroelectric liquid crystal, the smectic layer structure taken in the droplets in which the liquid crystal material is dispersed can be easily deformed by the electric field applied from the outside. A large difference in refractive index can be obtained, and a large contrast value can be obtained when a liquid crystal electro-optical device is formed.

【0028】また、本発明においては液晶材料として、
反強誘電性を示す液晶材料を使用しているため、しきい
値特性にヒステリシスを有することから、ネマチック性
を示す液晶材料や、強誘電性を示す液晶材料を使用した
分散型液晶電気光学装置とは異なり、応答時間が速くか
つメモリー性を有する電気光学装置を実現することが可
能となった。
Further, in the present invention, as the liquid crystal material,
Since a liquid crystal material exhibiting antiferroelectricity is used, the threshold characteristic has hysteresis. Therefore, a liquid crystal material exhibiting nematicity or a dispersion type liquid crystal electro-optical device using a liquid crystal material exhibiting ferroelectricity. Unlike the above, it has become possible to realize an electro-optical device having a fast response time and a memory property.

【0029】また本明細書において、分散された液晶材
料をドロップレットとして記載し、図面にも円または円
形状で表現しているが、実際には添付の参考写真に見ら
れるように、特にこの形状に限定されることはなく、写
真の白い部分にあたる樹脂が3次元網目状に基板間に存
在し、のこりの黒い部分にあたる空洞中に液晶が保持さ
れたようなものでも同様な効果を期待できる。さらにこ
れらに加えて二色性の染料等を加えてゲストホスト型の
液晶電気光学装置としてもよい。
Further, in the present specification, the dispersed liquid crystal material is described as a droplet and is represented by a circle or a circular shape in the drawings. The shape is not limited, and the same effect can be expected even if the resin corresponding to the white part of the photograph exists between the substrates in a three-dimensional mesh pattern and the liquid crystal is held in the cavity corresponding to the black part of the dust. .. In addition to these, a dichroic dye or the like may be added to form a guest-host type liquid crystal electro-optical device.

【0030】[0030]

【発明の効果】本発明の構成をとることにより、分散型
液晶電気光学装置において無電界時の光の透過性が良好
で、かつ電界印加時の散乱効率が大きい分散型液晶の電
気光学装置を実現する事が出来た。
With the structure of the present invention, it is possible to provide a dispersion type liquid crystal electro-optical device which has a good light transmittance in the absence of an electric field and a large scattering efficiency when an electric field is applied in the dispersion type liquid crystal electro-optical device. I was able to realize it.

【0031】本発明は、これまで知られているTN液晶を
用いた場合に比べて、電極間間隔が5〜10μの厚さを有
しても、かつそのスイッチングスピ−ドが400μ秒また
はそれ以下である20倍以上速く、また液晶材料が反強誘
電性液晶を用いるため、自発分極が80nC/cm2と大き
く、結果としてそこでは同じ電界でも液晶に与えられた
分子を強制的に駆動させようとする力の強さが大きい。
結果として、低い電界強度即ち液晶セルの厚みが厚くて
もまた低い電圧であっても、高いスイッチング速度を有
せしめることができた。
Compared with the case of using the TN liquid crystal that has been known so far, the present invention has a switching speed of 400 μs or less even if the interelectrode spacing has a thickness of 5 to 10 μ. It is less than 20 times faster, and since the liquid crystal material uses an antiferroelectric liquid crystal, the spontaneous polarization is as large as 80 nC / cm 2, and as a result, the molecules given to the liquid crystal are forcibly driven there even under the same electric field. The strength to try is great.
As a result, it was possible to provide a high switching speed even when the electric field strength was low, that is, the liquid crystal cell was thick and the voltage was low.

【0032】これまでの偏光板付の通常の強誘電性液晶
電気光学装置においては、セル厚みが1.3 〜2.3 μmと
きわめて薄かった。しかし、その厚さが狭すぎるためゴ
ミ等により上下の基板電極間にショ−トが発生し、実用
化に問題があった。これを2.5〜10μm例えば5μmと
するとこのショートの発生率が減り、基板間の電界強度
が減少するが、スイッチング速度として500μ秒以下を
得ることができた。
In the conventional ferroelectric liquid crystal electro-optical device with a polarizing plate, the cell thickness was extremely thin, 1.3 to 2.3 μm. However, since the thickness is too small, shorts are generated between the upper and lower substrate electrodes due to dust or the like, which poses a problem in practical use. When this is set to 2.5 to 10 μm, for example, 5 μm, the occurrence rate of this short circuit decreases and the electric field strength between the substrates decreases, but a switching speed of 500 μsec or less could be obtained.

【0033】また、従来のようなネマチック性を示す液
晶材料を使用した分散型液晶電気光学装置ではしきい値
特性にヒステリシスを有せず表示内容の記憶機能は無か
った。しかし、本発明では反強誘電性を示す液晶材料を
使用したことで、電界を加えて散乱状態から透過状態へ
変化させたときのしきい値が9.5V/μmとなり、一
方電界を印加状態から無印加状態にして散乱状態から透
過状態にしたときのしきい値が5.5V/μmとなっ
て、しきい値特性に明確なヒステリシスが生じることか
ら表示内容を記憶させることができた。
Further, in the conventional dispersion type liquid crystal electro-optical device using the liquid crystal material exhibiting nematic property, there is no hysteresis in the threshold characteristic and there is no storage function of the displayed contents. However, in the present invention, since the liquid crystal material exhibiting antiferroelectricity is used, the threshold value when the electric field is applied to change from the scattering state to the transmitting state becomes 9.5 V / μm, while the electric field is applied. Therefore, the threshold value when the non-applied state is changed from the scattering state to the transmission state is 5.5 V / μm, and clear hysteresis occurs in the threshold characteristic, so that the display content can be stored.

【0034】さらに、偏光板を用いないために、光の損
失の少ない、明るい液晶ディスプレイができた。つまり
背景色が乳白色であり、紙のような印象の液晶パネルが
でき上がった。それはあたかも印刷物のような印象のデ
ィスプレイを再現することができた。
Further, since no polarizing plate is used, a bright liquid crystal display with little light loss can be obtained. In other words, the background color is milky white, creating a liquid crystal panel that looks like paper. It was able to reproduce a display that looked as if it were a printed matter.

【図面の簡単な説明】[Brief description of drawings]

【図1】分散型の液晶電気光学装置の概略図を示す。FIG. 1 is a schematic view of a dispersion type liquid crystal electro-optical device.

【図2】正の誘電異方性を有する液晶材料を使用した場
合の分散型液晶電気光学装置の透過率の電圧に対する変
化を示す。
FIG. 2 shows a change in transmittance of a dispersion type liquid crystal electro-optical device with respect to a voltage when a liquid crystal material having a positive dielectric anisotropy is used.

【図3】負の誘電異方性を有する液晶材料、または液晶
分子の長軸に垂直な方向に自発分極を有する液晶材料を
使用した場合の分散型液晶電気光学装置の透過率の電圧
に対する変化を示す。
FIG. 3 is a graph showing a change in transmittance of a dispersion type liquid crystal electro-optical device with respect to a voltage when a liquid crystal material having negative dielectric anisotropy or a liquid crystal material having spontaneous polarization in a direction perpendicular to a long axis of liquid crystal molecules is used. Indicates.

【図4】液晶の屈折率分布の概略図を示す。FIG. 4 shows a schematic view of a refractive index distribution of liquid crystal.

【図5】無電界時の分散型液晶電気光学装置の液晶分子
の配向の概略図を示す。
FIG. 5 shows a schematic view of alignment of liquid crystal molecules of a dispersion type liquid crystal electro-optical device when no electric field is applied.

【図6】電界印加時の分散型液晶電気光学装置の液晶分
子の配向の概略図を示す。
FIG. 6 shows a schematic view of alignment of liquid crystal molecules of a dispersion type liquid crystal electro-optical device when an electric field is applied.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水美知緒 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内 (72)発明者 森谷 幸司 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Michio Shimizu 398 Hase, Atsugi City, Kanagawa Prefecture, Semiconducting Energy Laboratory Co., Ltd. In-house

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極を有し、少なくとも一方が透光性を
持つ一対の基板と前記基板間に支持された調光層を有
し、前記調光層が反強誘電性の液晶材料と透明性物質を
有していることを特徴とする液晶電気光学装置。
1. A pair of substrates having electrodes, at least one of which has translucency, and a dimming layer supported between the substrates, the dimming layer being transparent to an antiferroelectric liquid crystal material. A liquid crystal electro-optical device characterized by having a crystalline substance.
【請求項2】 電極を有し、少なくとも一方が透光性を
持つ一対の基板と前記基板間に支持された調光層を有
し、前記調光層が反強誘電性を発現するスメクチック液
晶材料と透明性物質を有し、前記調光層に電気信号を加
えていないとき調光層への入射光を透過し、電気信号を
加えたときに調光層の入射光を散乱することを特徴とす
る液晶電気光学装置。
2. A smectic liquid crystal having electrodes, at least one of which has a pair of translucent substrates and a dimming layer supported between the substrates, the dimming layer exhibiting antiferroelectricity. Having a material and a transparent substance, it transmits incident light to the light control layer when no electric signal is applied to the light control layer, and scatters incident light to the light control layer when an electric signal is applied. Characteristic liquid crystal electro-optical device.
JP4207439A 1992-03-04 1992-07-10 Liquid crystal electro-optical device Expired - Fee Related JP2775042B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/447,549 US5566009A (en) 1992-03-04 1995-05-23 Polymer-dispersed antiferroelectric liquid crystal device
US08/677,330 US6195139B1 (en) 1992-03-04 1996-07-02 Electro-optical device
US09/781,154 US6618105B2 (en) 1992-03-04 2001-02-13 Electro-optical device
US10/645,613 US7123320B2 (en) 1992-03-04 2003-08-22 Electro-optical device
US11/542,215 US8035773B2 (en) 1992-03-04 2006-10-04 Electro-optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4-82702 1992-03-04
JP8270292 1992-03-04

Publications (2)

Publication Number Publication Date
JPH05307170A true JPH05307170A (en) 1993-11-19
JP2775042B2 JP2775042B2 (en) 1998-07-09

Family

ID=13781736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4207439A Expired - Fee Related JP2775042B2 (en) 1992-03-04 1992-07-10 Liquid crystal electro-optical device

Country Status (1)

Country Link
JP (1) JP2775042B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194993A (en) * 2005-01-11 2006-07-27 Fujitsu Ltd Optical element and optical switch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271233A (en) * 1986-12-23 1988-11-09 Asahi Glass Co Ltd Liquid crystal optical element
JPH02824A (en) * 1988-01-21 1990-01-05 Asahi Glass Co Ltd Liquid crystal optical element and production thereof and light control body and display device formed by using the element
JPH02222930A (en) * 1988-11-09 1990-09-05 Mitsubishi Gas Chem Co Inc Ferroelectric liquid crystal element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271233A (en) * 1986-12-23 1988-11-09 Asahi Glass Co Ltd Liquid crystal optical element
JPH02824A (en) * 1988-01-21 1990-01-05 Asahi Glass Co Ltd Liquid crystal optical element and production thereof and light control body and display device formed by using the element
JPH02222930A (en) * 1988-11-09 1990-09-05 Mitsubishi Gas Chem Co Inc Ferroelectric liquid crystal element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194993A (en) * 2005-01-11 2006-07-27 Fujitsu Ltd Optical element and optical switch
JP4621506B2 (en) * 2005-01-11 2011-01-26 富士通株式会社 Optical element and optical switch

Also Published As

Publication number Publication date
JP2775042B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
US5400156A (en) Liquid crystal electro-optical device wherein the scattering efficiency is improved in increasing the frequency of contact between the resin and the droplet
US6104448A (en) Pressure sensitive liquid crystalline light modulating device and material
US5570216A (en) Bistable cholesteric liquid crystal displays with very high contrast and excellent mechanical stability
JP3086718B2 (en) Liquid crystal display device
KR20010024689A (en) Phase separated composite organic film and methods for the manufacture thereof
EP0204537A2 (en) Encapsulated liquid crystal having a smectic phase
JPH0580303A (en) Liquid crystal electrooptical device and formation thereof
JPH03278024A (en) High-polymer liquid crystal composite and production thereof
US5253090A (en) Liquid crystal electro-optic device with two materials different in refractive index dispersed in the liquid crystal
JPH09325324A (en) Production of liquid crystal display element
JP3105311B2 (en) Liquid crystal electro-optical device and manufacturing method thereof
EP0523256A1 (en) Liquid crystal display device, and manufacture and application thereof
JP3708983B2 (en) Liquid crystal-containing / polymer microcapsule and liquid crystal electro-optical element
JPH09218421A (en) Reflection type liquid crystal display device
JP2775042B2 (en) Liquid crystal electro-optical device
US5619354A (en) Dispersion type electro-optical device and method for forming the same
JP3225932B2 (en) Manufacturing method of liquid crystal display element
JP3559197B2 (en) Method for manufacturing liquid crystal electro-optical device
JP3059030B2 (en) Liquid crystal display device and method of manufacturing the same
JP4399212B2 (en) Liquid crystal light modulator, manufacturing method thereof, and liquid crystal display device
JP3322501B2 (en) Liquid crystal display medium and driving method thereof
JP2796912B2 (en) Liquid crystal electro-optical device
JPH0651351A (en) Electric field double refraction control type liquid crystal element and its production
JPH09329778A (en) Liquid crystal element
JPH0926569A (en) Liquid crystal display device and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090501

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100501

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100501

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100501

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110501

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110501

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120501

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120501

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120501

LAPS Cancellation because of no payment of annual fees