JPH05307109A - Active optical device - Google Patents

Active optical device

Info

Publication number
JPH05307109A
JPH05307109A JP11177992A JP11177992A JPH05307109A JP H05307109 A JPH05307109 A JP H05307109A JP 11177992 A JP11177992 A JP 11177992A JP 11177992 A JP11177992 A JP 11177992A JP H05307109 A JPH05307109 A JP H05307109A
Authority
JP
Japan
Prior art keywords
optical element
optical device
driving means
actuators
surface shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11177992A
Other languages
Japanese (ja)
Inventor
Seiichiro Murai
誠一郎 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11177992A priority Critical patent/JPH05307109A/en
Publication of JPH05307109A publication Critical patent/JPH05307109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Telescopes (AREA)

Abstract

PURPOSE:To provide the active optical device which is reduced in the load on a control means by simplifying a deformation driving means. CONSTITUTION:This active optical device is equipped with a means 5 which measures the surface shape of an optical element 1 and a control circuit 4 which sends a driving signal to actuators 3 as the deformation driving means according to the measurement result of the measuring means 5, and the actuators 3 which have received the driving signal from the control circuit 4 expand or contract behind the photodetection surface 2 of the optical element 1 to deform the photodetection surface 2 of the optical element 1 into an ideal surface shape; and the actuators 3 are unevenly distributed more in the photodetection area of the optical element 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、たとえば大型望遠鏡と
して用いられる能動光学装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active optical device used as, for example, a large telescope.

【0002】[0002]

【従来の技術】巨大構造物である大型望遠鏡を建設する
には、主鏡を軽量化することが必要である。この軽量化
に伴なう鏡の剛性の低下を補い、最良の状態で観測する
ため、鏡面形状をモニタしてコンピュータ制御で理想面
に保とうとするのが能動光学装置である。
2. Description of the Related Art In order to construct a large telescope which is a huge structure, it is necessary to reduce the weight of the primary mirror. In order to compensate for the reduction in mirror rigidity that accompanies this weight reduction and to observe in the best condition, an active optical device monitors the mirror surface shape and tries to keep it on an ideal surface by computer control.

【0003】すなわち、望遠鏡の鏡面は、光の波長程度
の変形さえ生じないようにする必要がある。天体を観測
するときに望遠鏡は多くの異なる方向に傾き、したがっ
て、自重のかかる方向は一定しない。鏡の支え方が安易
だと、鏡が変形してしまう。この自重変形を小さくする
には主鏡のガラス材料を充分厚く、堅くするのが常識で
あった。ところが、大型望遠鏡の場合は、ガラス材の重
量が非現実的に大きくなり、鏡を支える構造が大きく重
くなるために、コストが天文学的な数字になる。
That is, the mirror surface of the telescope must be prevented from being deformed to the extent of the wavelength of light. When observing a celestial object, the telescope tilts in many different directions, so the direction in which its own weight is applied is not constant. If the mirror is easily supported, the mirror will be deformed. In order to reduce this self-weight deformation, it has been common knowledge that the glass material of the primary mirror is made sufficiently thick and rigid. However, in the case of a large telescope, the weight of the glass material becomes unrealistically large, and the structure for supporting the mirror becomes large and heavy, so the cost becomes an astronomical figure.

【0004】鏡を薄くて軽量なものにできれば、全体が
身軽になる。すなわち、薄くて、柔らかい鏡を常に理想
面形状に保持することが、大型望遠鏡を実現するための
最大の課題であった。図5は、上述した要望を略満足す
るまでに可能化した、能動光学装置の概略構成である。
If the mirror can be made thin and lightweight, the whole body becomes lighter. That is, maintaining a thin and soft mirror in an ideal plane shape has always been the biggest challenge for realizing a large telescope. FIG. 5 is a schematic configuration of an active optical device that is made possible to substantially satisfy the above-mentioned demand.

【0005】図中1は大型薄肉の主鏡である光学素子で
あって、図において上面側が受光面、すなわち鏡面2で
ある。非受光面である下面側には、変形駆動手段である
アクチュエータ3…が多数本配設される。
In the figure, reference numeral 1 denotes an optical element which is a large-sized thin-walled main mirror, and the upper surface side in the figure is a light receiving surface, that is, a mirror surface 2. On the lower surface side which is a non-light receiving surface, a large number of actuators 3 ... Which are deformation driving means are arranged.

【0006】これらアクチュエータ3…は、光学素子1
に対して縦横所定ピッチをもって整然と配列されてい
て、それぞれの作動子3a先端が光学素子1下面に直接
連結される。上記作動子3aは伸縮自在に駆動されるよ
うになっていて、それに応じて光学素子1に対する連結
部分が変形する。全ての上記アクチュエータ3は、制御
手段である制御回路4を介して面形状測定手段5に電気
的に接続される。
The actuators 3 ...
In contrast, the actuators 3a are arranged in order with a predetermined vertical and horizontal pitches, and the tips of the respective actuators 3a are directly connected to the lower surface of the optical element 1. The actuator 3a is designed to be capable of expanding and contracting, and the connecting portion for the optical element 1 is deformed accordingly. All the actuators 3 are electrically connected to the surface shape measuring means 5 via a control circuit 4 which is a control means.

【0007】しかして、光学素子1の鏡面2で受光した
光は、ここで反射して面形状測定手段5に到達する。こ
こで、予め記憶された理想面形状と比較され、その信号
が制御回路4に送られる。制御回路4では、その比較結
果をもとに各アクチュエータ3…の作動子3a…の伸縮
制御量が計算され、鏡面2が理想面形状となるような制
御信号が送られる。このようにして、光学素子1の性能
を能動的に高めることが可能となった。
The light received by the mirror surface 2 of the optical element 1 is reflected here and reaches the surface shape measuring means 5. Here, it is compared with a previously stored ideal surface shape, and the signal is sent to the control circuit 4. The control circuit 4 calculates the expansion / contraction control amount of the actuators 3a of the actuators 3 based on the comparison result, and sends a control signal that makes the mirror surface 2 have an ideal surface shape. In this way, the performance of the optical element 1 can be actively enhanced.

【0008】[0008]

【発明が解決しようとする課題】上述した能動光学装置
は、変形駆動手段であるアクチュエータ3により光学素
子1の面形状を理想面状態に保とうとするものであり、
したがって、アクチュエータ3の本数が多ければ多いほ
ど、より精密な面形状の制御が可能となる。しかしなが
ら、アクチュエータ3の本数を増やすと、各アクチュエ
ータ3の作動子3aの伸縮制御量の計算が膨大になっ
て、効率が悪くなる。すなわち、光学素子1の性能を低
下させることなく、アクチュエータ3の本数を減少させ
ることが要求される。これに対して、従来のものは、直
径が極めて大きな光学素子1に縦横整然と配列されてお
り、極めて多数本備えられることになる。
The above-mentioned active optical device is intended to keep the surface shape of the optical element 1 in an ideal surface state by the actuator 3 which is the deformation driving means.
Therefore, the larger the number of actuators 3, the more precise the surface shape can be controlled. However, if the number of actuators 3 is increased, the calculation of the expansion / contraction control amount of the actuator 3a of each actuator 3 becomes enormous, resulting in poor efficiency. That is, it is required to reduce the number of actuators 3 without deteriorating the performance of the optical element 1. On the other hand, in the conventional device, the optical elements 1 having an extremely large diameter are arranged vertically and horizontally, and an extremely large number are provided.

【0009】しかるに、実際に光学素子1が受光する使
用領域である受光領域は、鏡面2全体を均一に用いるこ
とはあり得ない。普通、鏡面2を部分的に限定した領域
が多用される。そしてまた、光学素子1の形状構造上、
特に外周部の変形が大であって、その内側の変形は比較
的小さい。
However, it is impossible that the entire mirror surface 2 is used uniformly as the light receiving area, which is the use area where the optical element 1 actually receives light. Usually, a region in which the mirror surface 2 is partially limited is often used. And again, due to the shape structure of the optical element 1,
In particular, the deformation of the outer peripheral portion is large, and the deformation inside thereof is relatively small.

【0010】このように、従来の能動光学装置において
は、本来、変形させる必要のない部分にまで多数のアク
チュエータを配置しており、これらの本数が増大し、制
御を複雑にしている。
As described above, in the conventional active optical device, a large number of actuators are originally arranged even in a portion that does not need to be deformed, and the number of these actuators is increased to complicate the control.

【0011】本発明は上記事情に着目してなされたもの
であり、その目的とするところは、変形駆動手段の簡素
化を図って、制御手段の負担を軽減させた能動光学装置
を提供するものである。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an active optical device in which the deformation driving means is simplified and the load on the control means is reduced. Is.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明は、光学素子と、この光学素子の面形状
を測定する手段と、この測定手段の測定結果に基づいて
変形駆動手段に駆動信号を発する制御手段とを具備し、
制御手段からの駆動信号を受けた変形駆動手段は上記光
学素子の受光面の裏側の面において伸縮し光学素子の受
光面を理想面形状に変形させるようにした能動光学装置
において、上記変形駆動手段は、上記光学素子の受光領
域に多く偏在させて配置したことを特徴とする能動光学
装置である。
In order to achieve the above object, the first invention is an optical element, a means for measuring the surface shape of the optical element, and a deformation driving based on the measurement result of the measuring means. A control means for issuing a drive signal to the means,
In the active optical device, the deformation driving means receiving the drive signal from the control means expands and contracts on the surface on the back side of the light receiving surface of the optical element to deform the light receiving surface of the optical element into an ideal surface shape. Is an active optical device characterized in that it is arranged so as to be unevenly distributed in the light receiving region of the optical element.

【0013】第2の発明は、上記変形駆動手段は、理想
面形状との誤差の大きな光学素子の外周部に対向して配
置したことを特徴とする請求項1記載の能動光学装置で
ある。
A second aspect of the present invention is the active optical device according to the first aspect, wherein the deformation driving means is arranged so as to face the outer peripheral portion of the optical element having a large error from the ideal surface shape.

【0014】第3の発明は、上記変形駆動手段は、光学
素子の受光面の裏側の面に設けられた複数のスリット状
の溝と、上記溝に浸入して変形させる液状のアクチュエ
ータとからなることを特徴とする請求項1記載の能動光
学装置である。
According to a third aspect of the present invention, the deformation driving means comprises a plurality of slit-shaped grooves provided on the surface on the back side of the light-receiving surface of the optical element, and a liquid actuator that penetrates into the grooves and deforms. The active optical device according to claim 1, wherein:

【0015】[0015]

【作用】本発明においては、特に必要な箇所に偏在して
変形駆動手段を配置したから、変形駆動手段が簡素化し
て、制御手段における制御量の計算量が軽減する。
According to the present invention, the deformation driving means is arranged in a particularly distributed manner in a particularly required place, so that the deformation driving means is simplified and the calculation amount of the control amount in the control means is reduced.

【0016】[0016]

【実施例】以下、本発明の一実施例を図面にもとづいて
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0017】図中1は大型薄肉の主鏡である光学素子で
あって、図において上面側が受光面である鏡面2となっ
ており、従来より用いられるものと全く同様の形状構造
をなす。光学素子1の非受光面である下面側には、変形
駆動手段であるアクチュエータ3…が後述するようにし
て配設される。
In the figure, reference numeral 1 denotes an optical element which is a large-sized thin-walled main mirror, and in the figure, an upper surface side is a mirror surface 2 which is a light receiving surface, and has the same shape structure as that conventionally used. On the lower surface side of the optical element 1 which is a non-light receiving surface, actuators 3 ... Which are deformation driving means are arranged as described later.

【0018】すなわち、これらアクチュエータ3…は、
光学素子1の外周部1aに対向する位置に集中して配置
される。それ以外の部位は、必要最小限の本数を揃えて
配置される。したがって、全体としてのアクチュエータ
3の本数は従来のものよりも、はるかに少なくなってい
る。
That is, these actuators 3 ...
The optical elements 1 are arranged in a concentrated manner at positions facing the outer peripheral portion 1a. The other parts are arranged with the minimum required number being aligned. Therefore, the number of actuators 3 as a whole is much smaller than that of the conventional one.

【0019】各アクチュエータ3は、それぞれその作動
子3aが光学素子1下面に直接連結される。上記作動子
3aは伸縮自在に駆動されるようになっていて、それに
応じて光学素子1の連結部分が変形することは、従来の
ものと同様である。全ての上記アクチュエータ3は、従
来と同様、ここでは図示しない制御手段である制御回路
4を介して面形状測定手段5に電気的に接続される。
The actuator 3 of each actuator 3 is directly connected to the lower surface of the optical element 1. It is the same as the conventional one in that the actuator 3a is driven to extend and contract, and the connecting portion of the optical element 1 is deformed accordingly. All of the above-mentioned actuators 3 are electrically connected to the surface shape measuring means 5 via a control circuit 4 which is a control means not shown here, as in the conventional case.

【0020】しかして、光学素子1の鏡面2で受光した
光は、ここで反射して面形状測定手段5に到達する。こ
こで、予め記憶された理想面形状と比較され、その信号
が制御回路4に送られる。制御回路4では、その比較結
果をもとに各アクチュエータ3の作動子3aの伸縮制御
量が計算され、鏡面2が理想面形状となるような制御信
号が送られる。
The light received by the mirror surface 2 of the optical element 1 is reflected here and reaches the surface shape measuring means 5. Here, it is compared with a previously stored ideal surface shape, and the signal is sent to the control circuit 4. The control circuit 4 calculates the expansion / contraction control amount of the actuator 3a of each actuator 3 based on the comparison result, and sends a control signal for causing the mirror surface 2 to have an ideal surface shape.

【0021】なお、ここで用いられる光学素子1のよう
な大型の加工物では、撓みや歪みによる誤差が、特にそ
の外周部1aで大きくなる。また、光学素子1を傾斜し
て用いる場合も、外周部1aでの誤差が大きくなること
が予想される。
In the case of a large workpiece such as the optical element 1 used here, an error due to bending or distortion becomes large especially in the outer peripheral portion 1a. Further, even when the optical element 1 is tilted and used, it is expected that the error in the outer peripheral portion 1a becomes large.

【0022】上記実施例のように、光学素子1の外周部
1aに多くのアクチュエータ3を集中させて配置すれ
ば、外周部1aでの誤差補正能力である変形自由度が高
まる。さらに、アクチュエータ3の本数が少なくなった
ので、面形状測定手段5および制御回路4における計算
量が少なくてすむ。図2に示すように、光学素子10の
使用領域である受光領域Sに、多くの変形駆動手段であ
るアクチュエータ3…を偏在させて配置する。
If a large number of actuators 3 are arranged in the outer peripheral portion 1a of the optical element 1 in a concentrated manner as in the above embodiment, the degree of freedom of deformation, which is the error correction capability in the outer peripheral portion 1a, is increased. Further, since the number of actuators 3 is reduced, the amount of calculation in the surface shape measuring means 5 and the control circuit 4 can be reduced. As shown in FIG. 2, in the light receiving area S which is a usage area of the optical element 10, many actuators 3 ... Which are deformation driving means are eccentrically arranged.

【0023】すなわち、受光面である鏡面11の一部を
用いて光学系を構成する場合、鏡面11全体が高い形状
精度を持つ必要がない。必要な受光領域Sに多くのアク
チュエータ3…を対向して配置し、その領域における誤
差補正能力である光学素子10の変形自由度を高くすれ
ばよい。
That is, when the optical system is constructed by using a part of the mirror surface 11 which is the light receiving surface, it is not necessary for the entire mirror surface 11 to have high shape accuracy. A large number of actuators 3 ... Can be arranged in the required light receiving area S so as to face each other, and the degree of freedom of deformation of the optical element 10, which is the error correction capability in that area, can be increased.

【0024】なお、いずれの実施例においても、アクチ
ュエータ3の配置状態として、これらを光学素子1,1
0に対し同心円状の位置に配置してもよく、あるいはマ
トリックス状に配置してもよい。図3に示すような、能
動光学装置であってもよい。図中20は、上面側を受光
面である鏡面21とする光学素子であって、この下面側
に変形駆動手段22が一体に埋設される。
In any of the embodiments, the actuators 3 are placed in the optical elements 1, 1 as the arrangement state.
They may be arranged concentrically with respect to 0, or may be arranged in a matrix. It may be an active optical device as shown in FIG. In the figure, reference numeral 20 denotes an optical element whose upper surface side is a mirror surface 21 which is a light receiving surface, and the deformation driving means 22 is integrally embedded in the lower surface side.

【0025】すなわち、光学素子20の下面側には、多
数の断面楔状のスリット23…が設けられている。これ
らスリット23の上端(尖鋭端)と鏡面21との間隔
は、いずれのスリット23においても均一であり、かつ
それぞれ同一の断面角度に形成される。各スリット23
…内およびこれらと連通する溜め部24内には、変形駆
動手段を構成する磁性流体25が集溜される。
That is, a large number of slits 23 having a wedge-shaped cross section are provided on the lower surface side of the optical element 20. The intervals between the upper ends (pointed ends) of the slits 23 and the mirror surface 21 are uniform in all the slits 23 and are formed to have the same sectional angle. Each slit 23
The magnetic fluid 25 that constitutes the deformation driving means is collected in the inside of the storage tank 24 and in the storage portion 24 that communicates therewith.

【0026】上記磁性流体25は、磁性体の微粉子(直
径100オングストローム程度)を、分散媒である液体
に多量に分布させて得られるコロイド状の一種の固液混
合相流体である。
The magnetic fluid 25 is a kind of colloidal solid-liquid mixed phase fluid obtained by distributing a large amount of fine particles of a magnetic material (diameter of about 100 Å) in a liquid as a dispersion medium.

【0027】微粒子として、マグネダイト、鉄、コバル
トなどの強磁性体が用いられ、また分散媒として、水、
ケロシン、ダイエステル、アイコシルナフタリンなどの
溶液が用いられる。
Ferromagnetic materials such as magnetite, iron and cobalt are used as fine particles, and water is used as a dispersion medium.
A solution of kerosene, diester, eicosylnaphthalene or the like is used.

【0028】磁性流体25は、磁性体であり、かつ流体
であるという2つの性質を同時に持つ物質である。この
ような性質を持たせるために、磁性微粉体の表面が界面
活性剤で被覆される。
The magnetic fluid 25 is a substance that has the two properties of being a magnetic substance and being a fluid at the same time. In order to have such properties, the surface of the magnetic fine powder is coated with a surfactant.

【0029】すなわち、磁性流体25は微粉化された磁
性体粒子と、その磁性体粒子の一つ一つに被覆された界
面活性剤の効果により、磁性体粒子が常に均質な分散状
態を保つように工夫されており、これが流体であり、か
つ磁性体であるという両性質を兼ね備えている理由であ
る。
That is, the magnetic fluid 25 is made to maintain a uniform dispersed state of the magnetic particles by the effect of the finely divided magnetic particles and the surfactant coated on each of the magnetic particles. The reason is that it has both properties of being a fluid and being a magnetic substance.

【0030】上記光学素子20に設けられる各スリット
23…内の磁性流体25は、光学素子20の溜め部24
下部に配置されるアクチュエータ駆動コイル26と対応
している。そして、この駆動コイル26は制御回路27
を介して面形状測定手段28と電気的に接続される。
The magnetic fluid 25 in each slit 23 provided in the optical element 20 is stored in the reservoir 24 of the optical element 20.
It corresponds to the actuator drive coil 26 arranged in the lower part. The drive coil 26 is controlled by the control circuit 27.
It is electrically connected to the surface shape measuring means 28 via.

【0031】このようにして構成される能動光学装置で
あるので、光学素子20の鏡面21で反射した光は、面
形状測定手段28へと向かい、ここで予め記憶された理
想面形状と比較される。
Since it is an active optical device constructed in this way, the light reflected by the mirror surface 21 of the optical element 20 goes to the surface shape measuring means 28, where it is compared with the previously stored ideal surface shape. It

【0032】この面形状測定手段28での測定結果を制
御回路27が受けて、必要なアクチュエータ駆動コイル
26に制御信号を送る。制御信号を受けたアクチュエー
タ駆動コイル26は、対応するスリット23内の磁性流
体25に磁界をかける。図4(A)に示すように、スリ
ット23内の磁性流体25は、磁界がかけられていない
状態で、スリット23壁に対して何等の作用も及ぼさな
い。
The control circuit 27 receives the measurement result of the surface shape measuring means 28 and sends a control signal to the necessary actuator drive coil 26. The actuator drive coil 26 receiving the control signal applies a magnetic field to the magnetic fluid 25 in the corresponding slit 23. As shown in FIG. 4 (A), the magnetic fluid 25 in the slit 23 does not exert any action on the wall of the slit 23 in the state where the magnetic field is not applied.

【0033】同図(B)に示すように、スリット23内
の磁性流体25に磁界がかけられると、これはスリット
23上部壁に圧力を加える。スリット23壁は、この力
を受けてスリット23幅が拡開する方向に押し拡げられ
る。
When a magnetic field is applied to the magnetic fluid 25 in the slit 23, this applies pressure to the upper wall of the slit 23, as shown in FIG. The slit 23 wall is pushed and expanded in the direction in which the width of the slit 23 is expanded by receiving this force.

【0034】これにより、光学素子20の受光面、すな
わち鏡面21部分は変形する。このような作用を、面形
状測定手段28と制御回路27とともに、フィードバッ
ク制御系を構成すれば、光学素子20の性能を能動的に
高めることができる。
As a result, the light receiving surface of the optical element 20, that is, the mirror surface 21 is deformed. By forming a feedback control system with such a function together with the surface shape measuring means 28 and the control circuit 27, the performance of the optical element 20 can be actively enhanced.

【0035】なお、図3では、磁性流体25を作用させ
るためのスリット23を等間隔に、多数備えたが、これ
に限定されるものではなく、先に説明したように、理想
面形状との誤差が大きいことが予想される、受光素子2
0の外周部に対向してスリット23を多く設けてもよ
い。
In FIG. 3, a large number of slits 23 for causing the magnetic fluid 25 to act are provided at equal intervals, but the number of slits 23 is not limited to this, and as described above, an ideal surface shape is formed. Light receiving element 2 which is expected to have a large error
You may provide many slits 23 so that it may oppose the outer peripheral part of 0.

【0036】また、スリット23を使用領域である受光
領域に対向し、多く偏在して配置してもよい。要は、ス
リット23の位置および数を自由に設定でき、光学素子
20の変形自由度が高められる。
Further, the slits 23 may be arranged so as to face the light receiving region which is the use region and be unevenly distributed. In short, the position and the number of the slits 23 can be set freely, and the degree of freedom of deformation of the optical element 20 can be increased.

【0037】いずれにしても、磁性流体25を備えた変
形駆動手段22であるので、先に説明したアクチュエー
タ3からなるものよりも、支持固定構造が簡素化し、か
つ配線手間が省略できる。
In any case, since it is the deformation driving means 22 provided with the magnetic fluid 25, the supporting and fixing structure can be simplified and the wiring labor can be saved as compared with the actuator 3 described above.

【0038】[0038]

【発明の効果】以上説明したように本発明によれば、光
学素子に対する変形駆動手段を、受光領域に多く偏在さ
せて配置したので、変形駆動手段の簡素化を図ってコス
トの低減と、制御手段の負担を軽減させてランニングコ
ストの軽減化を図った効果を奏する。
As described above, according to the present invention, the deformation driving means for the optical element is arranged in a more unevenly distributed manner in the light receiving area. Therefore, the deformation driving means can be simplified to reduce the cost and control. The effect of reducing the burden on the means and the running cost is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す、能動光学装置の一部
省略した構成図。
FIG. 1 is a block diagram showing an embodiment of the present invention with a part of an active optical device omitted.

【図2】他の実施例を示す、能動光学装置の一部省略し
た構成図。
FIG. 2 is a block diagram of an active optical device according to another embodiment with a part thereof omitted.

【図3】さらに異なる他の実施例の、能動光学装置の一
部省略した構成図。
FIG. 3 is a block diagram of an active optical device according to still another embodiment with a part thereof omitted.

【図4】(A)および(B)は、同実施例の変形作用を
説明する図。
4 (A) and 4 (B) are views for explaining a modification action of the embodiment.

【図5】本発明の従来例を示す、能動光学装置の構成
図。
FIG. 5 is a configuration diagram of an active optical device showing a conventional example of the present invention.

【符号の説明】[Explanation of symbols]

1…光学素子、2…受光面(鏡面)、5…面形状測定手
段、4…制御手段(制御回路)、3…変形駆動手段(ア
クチュエータ)、1a…(光学素子の)外周部、S…
(光学素子の)受光領域、23…スリット、25…磁性
流体。
DESCRIPTION OF SYMBOLS 1 ... Optical element, 2 ... Light receiving surface (mirror surface), 5 ... Surface shape measuring means, 4 ... Control means (control circuit), 3 ... Deformation drive means (actuator), 1a ... (Optical element) outer peripheral part, S ...
Light receiving region (of optical element), 23 ... Slit, 25 ... Magnetic fluid.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光学素子と、この光学素子の面形状を測定
する手段と、この測定手段の測定結果に基づいて変形駆
動手段に駆動信号を発する制御手段とを具備し、制御手
段からの駆動信号を受けた変形駆動手段は上記光学素子
の受光面の裏側の面において伸縮し光学素子の受光面を
理想面形状に変形させるようにした能動光学装置におい
て、上記変形駆動手段は、上記光学素子の受光領域に多
く偏在させて配置したことを特徴とする能動光学装置。
1. An optical element, means for measuring the surface shape of the optical element, and control means for issuing a drive signal to the deformation driving means based on the measurement result of the measuring means. In the active optical device in which the deformation driving means that receives the signal expands and contracts on the surface on the back side of the light receiving surface of the optical element to deform the light receiving surface of the optical element into an ideal surface shape, the deformation driving means includes the optical element. The active optical device is characterized in that it is arranged so as to be unevenly distributed in the light receiving region of the.
【請求項2】上記変形駆動手段は、理想面形状との誤差
の大きな光学素子の外周部に対向して配置したことを特
徴とする請求項1記載の能動光学装置。
2. The active optical device according to claim 1, wherein the deformation driving means is arranged so as to face the outer peripheral portion of the optical element having a large error from the ideal surface shape.
【請求項3】上記変形駆動手段は、光学素子の受光面の
裏側の面に設けられた複数のスリット状の溝と、上記溝
に浸入して変形させる液状のアクチュエータとからなる
ことを特徴とする請求項1記載の能動光学装置。
3. The deformation driving means comprises a plurality of slit-shaped grooves provided on the surface on the back side of the light-receiving surface of the optical element, and a liquid actuator which penetrates into the grooves and deforms. The active optical device according to claim 1.
JP11177992A 1992-04-30 1992-04-30 Active optical device Pending JPH05307109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11177992A JPH05307109A (en) 1992-04-30 1992-04-30 Active optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11177992A JPH05307109A (en) 1992-04-30 1992-04-30 Active optical device

Publications (1)

Publication Number Publication Date
JPH05307109A true JPH05307109A (en) 1993-11-19

Family

ID=14569958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11177992A Pending JPH05307109A (en) 1992-04-30 1992-04-30 Active optical device

Country Status (1)

Country Link
JP (1) JPH05307109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043778A (en) * 2003-07-22 2006-02-16 Ngk Insulators Ltd Actuator device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043778A (en) * 2003-07-22 2006-02-16 Ngk Insulators Ltd Actuator device

Similar Documents

Publication Publication Date Title
US5862003A (en) Micromotion amplifier
US6666561B1 (en) Continuously variable analog micro-mirror device
US4705365A (en) Light deflecting apparatus
US6728024B2 (en) Voltage and light induced strains in porous crystalline materials and uses thereof
US7567367B2 (en) Micro-mirror device and array thereof
US7075699B2 (en) Double hidden flexure microactuator for phase mirror array
JPWO2005085125A1 (en) Microactuator and device equipped with microactuator
US7009755B2 (en) MEMS mirror with drive rotation amplification of mirror rotation angle
SI9620001A (en) Multiple layer piezoelectric deformable bimorphic mirror
JPH0142153B2 (en)
EP3564726B1 (en) Scanning optical device with broadened image area
Ealey Active and adaptive optical components: the technology and future trends
JP2000338430A (en) Mirror tilting mechanism
JPH05307109A (en) Active optical device
WO1996033434A1 (en) Thin film actuated mirror array for providing double tilt angle
US5710657A (en) Monomorph thin film actuated mirror array
Marth et al. Latest experience in design of piezoelectric-driven fine-steering mirrors
JP2002318358A (en) Light deflector and method for driving it
JP2000221421A (en) Optical control element and image pickup device
Ribak Deformable mirrors
KR102413742B1 (en) Tip-Tilt Mechanism of Ultra-small Optical Mirror Using Displacement Amplification Structures
US20050100268A1 (en) Low loss optical switch using magnetic actuation and sensing
CN117724239A (en) Permanent magnet pre-tightening high-speed tilting mirror
JP2001229558A (en) Actuator for pickup
Mirrors et al. I. SURFACE MICROMACHINING TECHNOLOGY