JPH05306903A - Device and method for adjusting light receiving sensitivity of speckle length measuring gauge - Google Patents

Device and method for adjusting light receiving sensitivity of speckle length measuring gauge

Info

Publication number
JPH05306903A
JPH05306903A JP4096510A JP9651092A JPH05306903A JP H05306903 A JPH05306903 A JP H05306903A JP 4096510 A JP4096510 A JP 4096510A JP 9651092 A JP9651092 A JP 9651092A JP H05306903 A JPH05306903 A JP H05306903A
Authority
JP
Japan
Prior art keywords
light receiving
solid
light
state image
speckle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4096510A
Other languages
Japanese (ja)
Inventor
Yuuji Akishiba
雄二 秋柴
Makoto Hirai
誠 平井
Takanori Imayado
孝則 今宿
Kazuya Minamino
和也 南野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Priority to JP4096510A priority Critical patent/JPH05306903A/en
Publication of JPH05306903A publication Critical patent/JPH05306903A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To use a speckle displacement gauge as it is with high accuracy even when light receiving signals become weak when an object to be measured is changed to the one made of a different material. CONSTITUTION:The light receiving sensitivity adjusting device of speckle displacement gauge is connected with a light quantity monitor circuit 7 which detects a decline in light receiving quantity on the output side of a solid-state image pickup element 1 and reset pulse control section 6 for reset pulses B which resets signals accumulated during one-scanning period on the control side of the element 1 and makes the period of the reset pulses longer by an integer multiple. The light receiving sensitivity of the speckle displacement gauge is adjusted in such a way that, when a decline in the light receiving signals A received by the element 1 is detected, the signal accumulating period is prolonged by making the period of the pulses B for resetting the signals accumulated in one-scanning period of the element 1 longer so that the light receiving signals can be intensified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスペックル相関法を利用
した測定法に於いて、被測定物からの反射光量が十分で
なく受光信号が弱まったとき、受光感度を調節し、受光
信号を強める装置及び方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measurement method using the speckle correlation method. When the amount of reflected light from the object to be measured is insufficient and the received light signal weakens, the received light sensitivity is adjusted to change the received light signal. The present invention relates to a strengthening device and method.

【0002】[0002]

【従来の技術】従来半導体レーザーから発射されたレー
ザービームを被測定物に照射し、該被測定物表面からの
反射拡散光によって生じるスペックルパターンを相互相
関処理によって検出し、物体の移動変形速度等を測定す
るスペックル測長計が知られている(特開平4−507
08)。
2. Description of the Related Art Conventionally, a laser beam emitted from a semiconductor laser is irradiated onto an object to be measured, and a speckle pattern generated by reflected and diffused light from the surface of the object to be measured is detected by cross-correlation processing to determine the moving and deforming speed of the object. There is known a speckle length measuring device for measuring such as the like (Japanese Patent Laid-Open No. 4-507).
08).

【0003】図4に示す如くスペックル測長計の測定ヘ
ッドは、ビーム発射用及び受光用の窓(15)を有するケー
シング内に半導体レーザー(8)、該半導体レーザーから
のレーザー光を平行レーザービームに成形するコリメー
ターレンズ(81)、レーザービームが被測定物体(9)にて
拡散反射されて形成されたスペックルパターンを光電変
換する一次元イメージセンサー等の固体撮像素子(1)を
配置して構成されている。図1は本発明に係るスペック
ル測長計の全体構成を示すものであるが、従来のスペッ
クル測長計も一部を除き基本的には同一構成であるの
で、図1に基づいて従来のスペックル測長計の構成及び
動作を説明する。
As shown in FIG. 4, a measuring head of a speckle length measuring device comprises a semiconductor laser (8) in a casing having a window (15) for emitting and receiving a beam, and a laser beam from the semiconductor laser (parallel laser beam). A collimator lens (81) to be molded into a solid-state image sensor (1) such as a one-dimensional image sensor for photoelectrically converting a speckle pattern formed by the laser beam diffused and reflected by the object to be measured (9) is arranged. Is configured. FIG. 1 shows the overall configuration of a speckle length measuring device according to the present invention. The conventional speckle length measuring device basically has the same configuration except for a part thereof. The configuration and operation of the length measuring instrument will be described.

【0004】スペックル測長計に配備された固体撮像素
子(1)は、周知の如くタイミング発生回路(5)からドラ
イバー(63)を経て入力されるリセット信号B及び読出し
信号C及びDによって、CCD配列方向の走査を一定周
期で繰り返す。該素子(1)の出力信号は、初段アンプ(1
1)を経てサンプルホールド回路(12)へ接続され、これに
よってCCD特有のノイズが除去される。
As is well known, the solid-state image pickup device (1) provided in the speckle length measuring device uses a reset signal B and read signals C and D which are input from a timing generation circuit (5) through a driver (63) so that the CCD The scanning in the array direction is repeated at a constant cycle. The output signal of the element (1) is the first stage amplifier (1
It is connected to the sample hold circuit (12) via 1), and the noise peculiar to CCD is removed by this.

【0005】サンプルホールド回路(12)の出力信号は、
ゲイン制御アンプ(13)を経て2値化回路(14)へ送られ2
値化される。更に該2値化データは相互相関回路(2)へ
送られて対象物体の基準位置に於けるスペックルパター
ンと、その後の移動位置に於けるスペックルパターンと
の相互相関関数が前記基準位置を適宜にずらしながら繰
り返し計算され、この計算結果がマイクロコンピュータ
(3)へ送られる。マイクロコンピュータ(3)は相互相関
回路(2)から送られてくる相互相関関数のピーク位置に
基づいて物体の移動距離を算出する。この際マイクロコ
ンピュータ(3)は、前記したスペックルパターンの相互
相関係数が所定値よりも低下する時点を検出し、該低下
時には相互相関関数算出の基礎となる基礎データを現デ
ータに切り替えるための制御信号を作成して相互相関回
路(2)へ送り出す。これに応じて相互相関回路(2)に於
ける基準データの切替えが行なわれるのである。基準デ
ータの切替に伴う基準値の移動量を累積して、これを距
離又は速度に換算し、表示器(4)に表示するものであ
る。
The output signal of the sample and hold circuit (12) is
It is sent to the binarization circuit (14) through the gain control amplifier (13)
Valued. Further, the binarized data is sent to the cross-correlation circuit (2), and the cross-correlation function of the speckle pattern at the reference position of the target object and the speckle pattern at the subsequent moving position determines the reference position. It is repeatedly calculated with appropriate shifts, and the result of this calculation is calculated by the microcomputer.
It is sent to (3). The microcomputer (3) calculates the moving distance of the object based on the peak position of the cross-correlation function sent from the cross-correlation circuit (2). At this time, the microcomputer (3) detects the time when the cross-correlation coefficient of the speckle pattern falls below a predetermined value, and switches the basic data, which is the basis of the cross-correlation function calculation, to the current data at the time of the fall. The control signal is generated and sent to the cross-correlation circuit (2). In response to this, the reference data in the cross-correlation circuit (2) is switched. The movement amount of the reference value due to the switching of the reference data is accumulated, converted into a distance or a speed, and displayed on the display (4).

【0006】[0006]

【解決するべき課題】スペックル測長計によって被対象
物の相対的な移動量を精度良く測定するには、固体撮像
素子は適切な光量を受ける必要があり、光量の過不足は
望ましくない。被測定物が黒ゴム等の表面反射率の低い
物体の場合、反射光量が十分でないため、固体撮像素子
は一走査時間に於ける受光量が不足し、SN比が悪く、
測定の精度が低下或いは測定不能となる問題があった。
In order to accurately measure the relative amount of movement of the object by the speckle length measuring device, the solid-state image pickup device needs to receive an appropriate amount of light, which is not desirable. When the object to be measured is an object with low surface reflectance such as black rubber, the amount of reflected light is not sufficient, so the solid-state image sensor lacks the amount of received light in one scanning time, and the SN ratio is poor.
There is a problem that the measurement accuracy is lowered or measurement becomes impossible.

【0007】固体撮像素子の感度を高める方法の1つと
して、受光部を照射する信号の蓄積時間を長く設定する
ことにより、固体撮像素子の感度を高めることは可能で
ある。しかしながら、表面反射率の低い被測定物を対象
とした同じ測定ヘッドを用いて、次に標準的な被測定物
を測定すると、固体撮像素子は受光量が飽和して、測定
不能となる問題があった。
As one method of increasing the sensitivity of the solid-state image pickup device, it is possible to increase the sensitivity of the solid-state image pickup device by setting a long accumulation time of a signal for irradiating the light receiving portion. However, when the same measurement head for the object to be measured with low surface reflectance is used to measure a standard object to be measured next, the solid-state image sensor has a problem that the amount of light received is saturated and measurement becomes impossible. there were.

【0008】本発明は被測定物の材質の違いによって固
体撮像素子の受光部での蓄積光量の不足が生じる場合、
制御回路の働きによって固体撮像素子の感度を高め、受
光信号を強めることが出来るスペックル測長計の受光感
度調節装置及びその方法を明らかにするものである。
According to the present invention, when the quantity of accumulated light in the light receiving portion of the solid-state image pickup device is insufficient due to the difference in material of the object to be measured,
It is intended to clarify a light receiving sensitivity adjusting device of a speckle length measuring device and its method capable of enhancing the sensitivity of a solid-state image pickup device and strengthening a light receiving signal by the action of a control circuit.

【0009】[0009]

【課題を解決するための手段】本発明は、固体撮像素子
の出力側に受光量の低下を検出する光量モニター回路
(7)を接続すると共に、固体撮像素子(1)の制御側に
は、走査時間の間に蓄積した信号をリセットするリセッ
トパルスBの周期を変更するリセットパルス制御部(6)
を接続し、受光モニター回路(7)の検出信号によってリ
セットパルス周期を整数倍に延長するスペックル変位計
に於ける受光感度調節装置である。
SUMMARY OF THE INVENTION The present invention provides a light amount monitor circuit for detecting a decrease in the amount of light received on the output side of a solid-state image sensor.
(7) is connected, and a reset pulse control section (6) for changing the cycle of the reset pulse B for resetting the signal accumulated during the scanning time is connected to the control side of the solid-state image sensor (1).
And a light receiving sensitivity adjusting device in a speckle displacement meter for extending the reset pulse period to an integral multiple by the detection signal of the light receiving monitor circuit (7).

【0010】更に本発明は、固体撮像素子(1)の受光信
号Aの低下を検出したとき、固体撮像素子(1)の1走査
時間に蓄積した受光信号Aをリセットするためのリセッ
トパルスBの周期を延長し、固体撮像素子(1)のリセッ
トパルス周期の延長によって照射された光量の蓄積時間
を延ばし、受光信号を強めることを特徴とするスペック
ル変位計に於ける受光感度調節方法である。
Further, according to the present invention, when a decrease in the light receiving signal A of the solid-state image pickup device (1) is detected, a reset pulse B for resetting the light receiving signal A accumulated in one scanning time of the solid-state image pickup device (1). A light-receiving sensitivity adjusting method in a speckle displacement meter, characterized in that the light-receiving signal is strengthened by extending the period and extending the reset pulse period of the solid-state image sensor (1) to extend the accumulation time of the amount of light emitted. ..

【0011】[0011]

【作用】標準的な表面反射率を有する被測定物を検査し
ているときは、固体撮像素子(1)を照射する反射拡散ビ
ームは固体撮像素子(1)のリセット周期の間に蓄積さ
れ、適切な強さの受光信号を出力している。被測定物が
黒ゴムの如く表面の反射率が低く、固体撮像素子(1)に
対する受光量が不足するときは、光量モニター回路(7)
は光量不足を検出し、マイクロコンピュータに信号を入
力する。
When the object to be measured having the standard surface reflectance is inspected, the reflected diffuse beam illuminating the solid-state image sensor (1) is accumulated during the reset period of the solid-state image sensor (1), The received light signal with appropriate strength is output. When the object to be measured has a low reflectance such as black rubber and the amount of light received by the solid-state image sensor (1) is insufficient, the light amount monitor circuit (7)
Detects insufficient light quantity and inputs a signal to the microcomputer.

【0012】光量不足が検出されたとき、マイクロコン
ピュータ(3)は自動的に或いは光量不足の表示を見て手
動操作により固体撮像素子のリセット時間を延長する。
従って1リセット周期の間に固体撮像素子に蓄積される
光量は増加するから、感度は向上し、適切な強さの受光
信号を出力出来る。
When the insufficient light amount is detected, the microcomputer (3) extends the reset time of the solid-state image pickup device automatically or by seeing the display of the insufficient light amount and by manual operation.
Therefore, the amount of light accumulated in the solid-state image sensor during one reset cycle increases, so that the sensitivity is improved and a light receiving signal having an appropriate intensity can be output.

【0013】[0013]

【実施例】図1に示す固体撮像素子(1)、サンプルホー
ルド回路(12)、ゲイン制御アンプ(13)、2値化回路(1
4)、相互相関回路(2)、表示器(4)の構成は従来と同一
であって、ここでは説明を省略する。
EXAMPLE A solid-state image sensor (1), a sample hold circuit (12), a gain control amplifier (13) and a binarization circuit (1) shown in FIG.
4), the cross-correlation circuit (2) and the display (4) are the same as the conventional ones, and the description thereof is omitted here.

【0014】タイミング信号発生回路(5)は、図2に示
す如く固体撮像素子(1)をリセットするため20マイク
ロ秒の周期T0で、リセット基本パルスEを出力してい
る。更に固体撮像素子(1)に内蔵するアナログシフトレ
ジスター(図示せず)からデータを1ピッチずつ送り出
すため互いに半波長ずれた一対の読出パルスC,D及び
ゲート信号Fを形成している。固体撮像素子(1)の制御
側にはドライバー(63)を介してリセットパルス切替部
(6)及びタイミング信号発生回路(5)が接続されてお
り、リセットパルス切替部(6)からリセット信号Bを受
け、タイミング信号発生回路(5)からは読出パルスC及
びDを受ける。
The timing signal generating circuit (5) outputs a reset basic pulse E at a period T0 of 20 microseconds for resetting the solid-state image pickup device (1) as shown in FIG. Further, in order to send data one pitch at a time from an analog shift register (not shown) incorporated in the solid-state image pickup device (1), a pair of read pulses C and D and a gate signal F which are deviated from each other by a half wavelength are formed. A reset pulse switching unit is provided on the control side of the solid-state image sensor (1) via a driver (63).
(6) and the timing signal generating circuit (5) are connected to receive the reset signal B from the reset pulse switching section (6) and read pulses C and D from the timing signal generating circuit (5).

【0015】リセットパルス切替部(6)にはマイクロコ
ンピュータ(3)及びタイミング信号発生回路(5)に夫々
繋がったゲート信号制御回路(62)及びゲート(61)が配備
されており、光量モニター回路(7)が受光信号Aの強さ
が適当な範囲であることを検出しているときは、「H
i」のゲート信号Fを出力する。ゲート(61)はタイミン
グ信号発生回路(5)に於いて作成されたリセット基本パ
ルスE及びゲート信号制御回路(62)からのゲート信号F
が夫々入力され、論理和処理を行ないリセットパルスB
を出力するものである。
The reset pulse switching section (6) is provided with a gate signal control circuit (62) and a gate (61) which are respectively connected to the microcomputer (3) and the timing signal generating circuit (5), and a light quantity monitor circuit. When (7) detects that the intensity of the received light signal A is within an appropriate range, "H
The gate signal F of "i" is output. The gate (61) is a reset basic pulse E created in the timing signal generation circuit (5) and the gate signal F from the gate signal control circuit (62).
Are input respectively, and the logical sum processing is performed and the reset pulse B
Is output.

【0016】光量モニター回路(7)が受光信号Aの光量
が適切なことを感知しているときは、ゲート信号Fが
「Hi」であるから、リセット基本パルスEはゲート(6
1)を通過し、その儘リセットパルスBとして固体撮像素
子(1)に入力される。従ってリセットパルスBの周期T
1はリセット基本パルスEの周期T0に一致する。
When the light amount monitor circuit (7) senses that the light amount of the received light signal A is appropriate, the reset basic pulse E is the gate (6) because the gate signal F is "Hi".
After passing through 1), the reset pulse B is input to the solid-state image sensor (1). Therefore, the period T of the reset pulse B
1 corresponds to the period T0 of the reset basic pulse E.

【0017】被測定物の交換、その他の原因によって固
体撮像素子(1)に入力する反射拡散光の光量が不足し、
受光信号Aが弱まったとき、光量モニター(7)はそれを
検出し、マイクロコンピュータ(3)へ出力する。マイク
ロコンピュータ(3)は、光量モニター回路(7)の検出信
号によって自動的にタイミング発生回路(5)を制御し、
リセット基本パルスEの周期T0に対する整数倍の延長
された周期T2でゲート信号Fを発生する。
Due to the replacement of the object to be measured or other reasons, the amount of reflected diffused light input to the solid-state image sensor (1) is insufficient,
When the received light signal A weakens, the light quantity monitor (7) detects it and outputs it to the microcomputer (3). The microcomputer (3) automatically controls the timing generation circuit (5) by the detection signal of the light quantity monitor circuit (7),
The gate signal F is generated at a period T2 which is an integral multiple of the period T0 of the reset basic pulse E.

【0018】図3の実例に於いては、ゲート信号Fの
「Hi」はリセット基本パルスEの4パルス目毎に出現
しているから、ゲート(61)を通過したリセットパルスB
の周期T2は、リセット基本パルスEの周期T0の3倍で
ある。固体撮像素子(1)は以前のものより3倍の周期で
リセットされるから、拡散反射光は固体撮像素子(1)へ
T0よりも3倍長いリセット時間T2の間、信号を蓄積す
る。仮に固体撮像素子(1)が適切な強さの反射拡散ビー
ムを受光している際のリセットパルス周期T1(図2参
照)で、固体撮像素子をリセットした場合、受光信号A
の強さは図2のように弱いが、図3の如くリセット周期
を延長し、T0の3倍の長い周期T2の間、拡散反射レー
ザー光を固体撮像素子(1)に蓄積すると、受光信号Aは
光蓄積時間が3倍に延長された分だけ受光信号の強さは
図2のものより3倍に強められる。
In the example of FIG. 3, since the "Hi" of the gate signal F appears every fourth pulse of the reset basic pulse E, the reset pulse B passing through the gate (61).
Period T2 is three times the period T0 of the reset basic pulse E. Since the solid-state image sensor (1) is reset in a cycle three times as long as the previous one, the diffuse reflection light accumulates a signal in the solid-state image sensor (1) for a reset time T2 which is three times longer than T0. If the solid-state image sensor is reset at the reset pulse period T1 (see FIG. 2) when the solid-state image sensor (1) is receiving a reflected diffuse beam having an appropriate intensity, the light-receiving signal A
2 is weak as shown in FIG. 2, but when the reset period is extended as shown in FIG. In A, the intensity of the received light signal is tripled as compared with that in FIG. 2 by the amount that the light accumulation time is extended by three times.

【0019】本発明の実施例に於ては、リセット信号パ
ルスの周期の延長はマイクロコンピュータ(3)によるタ
イミング発生回路(5)及びゲート信号制御回路(62)の制
御動作によって自動的に行なっているが、光量モニター
回路(7)からの信号或いはマイクロコンピュータ(3)を
経た表示器(4)に於ける表示を見て、作業者が手動操作
によってタイミング発生回路(5)を操作出来ることは勿
論である。
In the embodiment of the present invention, the period of the reset signal pulse is automatically extended by the control operation of the timing generation circuit (5) and the gate signal control circuit (62) by the microcomputer (3). However, it is not possible for an operator to manually operate the timing generation circuit (5) by seeing the signal from the light amount monitor circuit (7) or the display on the display (4) via the microcomputer (3). Of course.

【0020】[0020]

【発明の効果】本発明に於て固体撮像素子(1)のリセッ
ト周期は可変であるから、被測定物の材質が表面反射率
の高いもの、それに引き続いて次は反射率の低いものを
続けて測定する場合、受光量の変化に伴なう問題はリセ
ットパルス切替部(6)の信号処理だけで対処し、スペッ
クル変位計はその儘使用することが出来、従来の如く装
置部品の取り替え、本体の変更等は不要となる。
According to the present invention, since the reset period of the solid-state image sensor (1) is variable, the material of the object to be measured has a high surface reflectance, followed by a material having a low reflectance. In the case of measurement, the problem associated with the change in the amount of received light can be dealt with only by the signal processing of the reset pulse switching unit (6), and the speckle displacement meter can be used as it is. There is no need to change the main body.

【0021】[0021]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る装置の概略を示すブロック図であ
る。
FIG. 1 is a block diagram showing an outline of an apparatus according to the present invention.

【図2】受光量が適切な場合の各部に於ける信号波形図
である。
FIG. 2 is a signal waveform diagram in each part when the amount of received light is appropriate.

【図3】受光量不足のときの各部の信号波形図である。FIG. 3 is a signal waveform diagram of each part when the amount of received light is insufficient.

【図4】従来のスペックル変位計の斜面図である。FIG. 4 is a perspective view of a conventional speckle displacement meter.

【符号の説明】[Explanation of symbols]

(1) 固体撮像素子 (3) マイクロコンピュータ (5) タイミング発生回路 (6) リセットパルス切替部 (7) 光量モニター回路 (1) Solid-state image sensor (3) Microcomputer (5) Timing generation circuit (6) Reset pulse switching section (7) Light intensity monitor circuit

フロントページの続き (72)発明者 南野 和也 大阪府高槻市明田町2番13号 株式会社キ ーエンス内Continuation of the front page (72) Inventor Kazuya Minamino 2-13 Akita-cho, Takatsuki-shi, Osaka Inside Keyence Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 相対的に変位する被測定物(9)の表面に
レーザービームを照射して、該被測定物表面からの反射
拡散光によって生じるスペックルパターンを固体撮像素
子(1)によって検出し、被測定物の基準位置におけるス
ペックルパターンに応じた基準データとその後の移動位
置におけるスペックルパターンに応じた現データとの相
互相関処理によって物体の移動量を測定するスペックル
測長計に於いて、 固体撮像素子の出力側には、受光量の低下を検出する光
量モニター回路(7)を接続すると共に、固体撮像素子
(1)の制御側には、走査時間の間に蓄積した信号をリセ
ットするリセットパルスBの周期を変更するリセットパ
ルス制御部(6)を接続し、受光モニター回路(7)の検出
信号によってリセットパルス周期を整数倍に延長するス
ペックル変位計に於ける受光感度調節装置。
1. A solid-state image sensor (1) detects a speckle pattern generated by reflected and diffused light from the surface of the object to be measured by irradiating the surface of the object to be measured (9) which is relatively displaced. However, in a speckle length measuring device that measures the amount of movement of an object by cross-correlation processing between reference data corresponding to the speckle pattern at the reference position of the object to be measured and current data corresponding to the speckle pattern at the subsequent movement position. At the output side of the solid-state image sensor, a light amount monitor circuit (7) that detects a decrease in the amount of received light is connected and
The control side of (1) is connected to a reset pulse control unit (6) that changes the cycle of a reset pulse B that resets the signal accumulated during the scanning time, and is reset by the detection signal of the light receiving monitor circuit (7). Light sensitivity adjustment device in a speckle displacement meter that extends the pulse period by an integral multiple.
【請求項2】 相対的に変位する被測定物(9)の表面へ
レーザービームを照射して、該被測定物表面からの反射
拡散光によって生じるスペックルパターンを固体撮像素
子(1)によって検出し、被測定物の基準位置におけるス
ペックルパターンに応じた基準データとその後の移動位
置におけるスペックルパターンに応じた現データとの相
互相関処理によって物体の移動量を測定するスペックル
測長計に於いて、固体撮像素子(1)の受光信号Aの低下
を検出したとき、固体撮像素子(1)の1走査時間に蓄積
した受光信号AをリセットするためのリセットパルスB
の周期を延長し、固体撮像素子(1)のリセットパルス周
期の延長によって照射された光量の蓄積時間を延ばし、
受光信号を強めることを特徴とするスペックル測長計に
於ける受光感度調節方法。
2. A solid-state image sensor (1) detects a speckle pattern generated by reflected and diffused light from the surface of the object to be measured by irradiating the surface of the object to be measured (9) which is relatively displaced. However, in a speckle length measuring device that measures the amount of movement of an object by cross-correlation processing between reference data corresponding to the speckle pattern at the reference position of the object to be measured and current data corresponding to the speckle pattern at the subsequent movement position. Then, when a decrease in the light receiving signal A of the solid-state image sensor (1) is detected, a reset pulse B for resetting the light receiving signal A accumulated in one scanning time of the solid-state image sensor (1).
Of the solid-state imaging device (1) to extend the period of, and extend the accumulation time of the amount of light emitted by the extension of the reset pulse period of the solid-state imaging device (1),
A method for adjusting the light receiving sensitivity in a speckle length measuring device, which is characterized by enhancing a light receiving signal.
JP4096510A 1992-04-16 1992-04-16 Device and method for adjusting light receiving sensitivity of speckle length measuring gauge Withdrawn JPH05306903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4096510A JPH05306903A (en) 1992-04-16 1992-04-16 Device and method for adjusting light receiving sensitivity of speckle length measuring gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4096510A JPH05306903A (en) 1992-04-16 1992-04-16 Device and method for adjusting light receiving sensitivity of speckle length measuring gauge

Publications (1)

Publication Number Publication Date
JPH05306903A true JPH05306903A (en) 1993-11-19

Family

ID=14167127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4096510A Withdrawn JPH05306903A (en) 1992-04-16 1992-04-16 Device and method for adjusting light receiving sensitivity of speckle length measuring gauge

Country Status (1)

Country Link
JP (1) JPH05306903A (en)

Similar Documents

Publication Publication Date Title
US7212278B2 (en) Method and device for recording a three-dimensional distance-measuring image
EP0790484B1 (en) Horizontal position error correction mechanism for electronic level
US5367379A (en) Luster detector
US4878754A (en) Method of and apparatus for measuring irregularities of road surface
EP0332781B1 (en) Optical measuring device
JP4165010B2 (en) Optical displacement measuring device and method for correcting the amount of projected light
US4719347A (en) Method and apparatus for investigating a sample under tension
JPH05306903A (en) Device and method for adjusting light receiving sensitivity of speckle length measuring gauge
JP2568879Y2 (en) Monitor device for speckle length meter
JP3924363B2 (en) Dimensional measuring device
JP2969466B2 (en) Monitor device for speckle length meter
JPH06258040A (en) Laser displacement meter
EP1258701B1 (en) A process for reading fractions of an interval between contiguous photo-sensitive elements in a linear optical sensor
JP3486223B2 (en) Distance measuring device
JP3368961B2 (en) Displacement gauge
JP2816257B2 (en) Non-contact displacement measuring device
JP2671915B2 (en) Position detector for surface inspection equipment
JP2743038B2 (en) Underwater distance measuring device using laser light
JP2008151702A (en) Optical ranging sensor and warm water wash toilet seat
US20020060782A1 (en) Optical traingulation displacement sensor using a diffraction grating
JP2545311B2 (en) Underwater distance measuring device with laser light
JP2001050711A (en) Optical displacement meter
JP2970250B2 (en) Distance measuring device
JPH0635922B2 (en) Speckle length measuring device monitor
JPH0666525A (en) Measuring apparatus for thickness using laser range finder

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706