JPH0666525A - Measuring apparatus for thickness using laser range finder - Google Patents

Measuring apparatus for thickness using laser range finder

Info

Publication number
JPH0666525A
JPH0666525A JP21894192A JP21894192A JPH0666525A JP H0666525 A JPH0666525 A JP H0666525A JP 21894192 A JP21894192 A JP 21894192A JP 21894192 A JP21894192 A JP 21894192A JP H0666525 A JPH0666525 A JP H0666525A
Authority
JP
Japan
Prior art keywords
laser
thickness
pulse
image sensor
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21894192A
Other languages
Japanese (ja)
Other versions
JP2519375B2 (en
Inventor
Megumi Suzuki
木 恵 鈴
Youichi Fujikake
懸 洋 一 藤
Yuji Otsuka
塚 祐 二 大
Mitsuru Kizawa
沢 満 木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANPA KOGYO KK
Nippon Steel Corp
Original Assignee
SANPA KOGYO KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANPA KOGYO KK, Nippon Steel Corp filed Critical SANPA KOGYO KK
Priority to JP4218941A priority Critical patent/JP2519375B2/en
Publication of JPH0666525A publication Critical patent/JPH0666525A/en
Application granted granted Critical
Publication of JP2519375B2 publication Critical patent/JP2519375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To reduce an error in measurement due to vibration by emitting pulsed lasers from light sources of two sets of laser range finders simultaneously and by sensing lights reflected from the opposite surface and rear of an object of measurement in the same time section of the same time. CONSTITUTION:Based on the same pulse signal from a pulse generating circuit 11, pulsed lasers of the same time width are applied onto the opposite surface and rear (the rear and the surface at the same position) of an object (steel plate) 9 of measurement at the same timing from laser generators 2A and 2B disposed on the upper and lower sides of the object 9. In response to a start pulse from the circuit 11, image sensors 5A and 5B read out sensed light signals of pixels in the sensors in the sequence of arrangement and give them to signal processing circuits 6A and 6B. In response to readout start signals from the sensors 5A and 5B, the circuits 6A and 6B detect imaged positions of laser reflected lights and calculate distances La and Lb. Using the distances La and Lb and a distance Lo between two range finders 1A and 1B set beforehand, an arithmetic unit 13 calculates the plate thickness (t) of the object 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は2台のレーザ距離計を用
いて鋼板などの厚さを測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring the thickness of a steel plate or the like using two laser rangefinders.

【0002】[0002]

【従来の技術】三角測量の原理に基づくレーザ距離計2
台で測定対象物を挟んで厚さを測定する厚さ計が実用化
されている。この厚さ計は、非接触、且つ高速応答であ
り、またレーザのスポット径を小さくできるので、従来
からある放射線を用いた厚さ計に比べ測定対象物の比較
的小さな範囲の厚さを測定できるため、高速にラインを
流れる鋼板などの厚さを正確に且つ高密度に測定でき
る。
Laser range finder 2 based on the principle of triangulation
A thickness gauge has been put into practical use, which measures the thickness by sandwiching a measurement object on a table. This thickness gauge is non-contact, has a high-speed response, and can reduce the laser spot diameter, so it can measure the thickness of a comparatively small range of the object to be measured compared to conventional thickness gauges using radiation. Therefore, it is possible to measure the thickness of a steel sheet or the like flowing through the line at high speed accurately and with high density.

【0003】また、この厚さ計を用いる三角測量の原理
に基づくレーザ距離計として、受光器に電荷結合形撮像
素子(CCD)等を一次元に並べたイメージセンサを使
用したものが、比較的距離の離れた測定対象物に対して
も精度が確保できる点で最近よく用いられている。そこ
で、このようなレーザ距離計を用いた厚さ計の測定原理
を図3に基づき説明する。図3に示すように、上部レー
ザ距離計1Aにおいては、まずレーザ発生器2Aから測
定対象物9へ向かってレーザ光7Aを照射する。このと
き、測定対象物9の測定面9Aにレーザ光7Aに照射ス
ポット8Aが生ずる。そして、この照射スポットからの
反射光を受光器3Aで受光する。この受光器3Aにおい
ては、凸レンズからなる集光レンズ4Aで前記反射光を
集光し、イメージセンサ5A上に結像させる。イメージ
センサ5Aでは、読出しスタートパルスが入力される
と、それまでに反射光を受光して蓄積された電荷を片端
1から他端a2 まで、順次、信号処理回路6Aに払い
出し、新たに反射光を受光して蓄積し始める。従って、
図4に示すように、信号処理回路6Aでは、読み出しス
タートパルスを基準に時系列的に受光強度の信号が得ら
れ、一次元イメ−ジセンサの読出しスタート端から結像
位置までのピクセル数Taをカウントすることにより、
イメ−ジセンサ5A上の結像位置Daが求まる。すなわ
ち、一次元イメ−ジセンサの一次元配列されたピクセル
(最小単位の光電変換エレメント)の受光信号を、配列
順に順次に読出すパルス(シフトパルス)をカウントし
て読出し位置を把握し、受光強度がピ−クの位置Daに
レ−ザ反射光が結像していると見なす。該シフトパルス
は一定周期であるのでこのカウント値(Da)は読み出
しスタ−トパルスが発生してからの経過時間を表わすも
のでもある。
Further, as a laser range finder based on the principle of triangulation using this thickness meter, one using an image sensor in which a charge-coupled image pickup device (CCD) or the like is one-dimensionally arranged in a light receiver is comparatively used. Recently, it has been widely used because it can ensure the accuracy even for the measuring object at a long distance. Therefore, the measurement principle of a thickness meter using such a laser rangefinder will be described with reference to FIG. As shown in FIG. 3, in the upper laser rangefinder 1A, first, laser light 7A is emitted from the laser generator 2A toward the measurement target 9. At this time, an irradiation spot 8A is generated on the measurement surface 9A of the measuring object 9 by the laser light 7A. Then, the reflected light from this irradiation spot is received by the light receiver 3A. In the light receiver 3A, the reflected light is condensed by a condenser lens 4A composed of a convex lens and focused on the image sensor 5A. In the image sensor 5A, when the read start pulse is input, the electric charge accumulated by receiving the reflected light until then is sequentially discharged to the signal processing circuit 6A from one end a 1 to the other end a 2 and newly reflected. Light is received and begins to accumulate. Therefore,
As shown in FIG. 4, in the signal processing circuit 6A, a signal of the received light intensity is obtained in time series with the read start pulse as a reference, and the number Ta of pixels from the read start end of the one-dimensional image sensor to the image forming position is calculated. By counting
The image forming position Da on the image sensor 5A is obtained. That is, the light receiving signals of the pixels (minimum unit photoelectric conversion elements) arranged one-dimensionally in the one-dimensional image sensor are sequentially read in the order of arrangement to count the pulses (shift pulses), grasp the read position, and detect the light receiving intensity. It is assumed that the laser reflected light is imaged at the peak position Da. Since the shift pulse has a constant cycle, the count value (Da) also represents the elapsed time after the read start pulse is generated.

【0004】前記受光器3Aは、レーザ発生器2Aに対
して、予め、所定の位置に固定され、且つ、レーザ光7
Aの照射方向に対して受光器3Aの視野方向も定められ
ているため、結像位置Daと前記測定面9A上の照射ス
ポットまでの距離Laとの間には、三角測量の原理か
ら、La=f(Da)という関係があり、Daを求めれ
ば、前記距離Laを算出することができる。また、下部
レーザ距離計1Bにおいても同様に、一次元イメ−ジセ
ンサ上のレ−ザ反射光の結像位置Dbを求めることで、
距離Lbを算出することができる。測定対象物9を挟ん
で、しかも光軸を同一直線上に置いて2台のレーザ距離
計1A,1Bを相対向して配設し、両距離計1A,1B
間の距離L0 とすると、次の(1)式から測定物の厚さt
が得られる。
The light receiver 3A is fixed in advance to a predetermined position with respect to the laser generator 2A, and the laser light 7
Since the visual field direction of the light receiver 3A is also determined with respect to the irradiation direction of A, the distance La between the imaging position Da and the irradiation spot on the measurement surface 9A is La according to the principle of triangulation. = F (Da), and the distance La can be calculated by obtaining Da. Similarly, in the lower laser rangefinder 1B, the image forming position Db of the laser reflected light on the one-dimensional image sensor is obtained.
The distance Lb can be calculated. Two laser rangefinders 1A and 1B are arranged so as to face each other with the measurement object 9 sandwiched therebetween and the optical axes thereof are arranged on the same straight line.
If the distance is L0, the thickness t of the measured object can be calculated from the following equation (1).
Is obtained.

【0005】t=L0−La−Lb ・・・(1) ところで、このようなレーザ距離計におけるレーザ発生
器には、連続発振のレーザ(例えば He-Neレーザ)を
用いており、上部レーザ距離計1A及び下部レーザ距離
計1Bのレーザ発生器2A,2Bの発振タイミングとイ
メージセンサ5A,5Bの読出しタイミングを図5に示
す。測定スタートと同時に測定対象物9に向けレーザ光
7A,7Bが連続照射し、上下のイメージセンサ5A,
5Bの読出しを同一時間に間欠的に行い、各タイミング
毎にレーザ距離計1A,1Bから測定対象物表面9A,
9Bまでの距離La,Lbを求め、測定対象物9の厚さ
tを求めている。従って、イメージセンサ5A,5Bの
各素子から信号処理回路6A,6Bへ払い出される電荷
は、一つ前の読出しタイミングに同一素子から払い出さ
れた直後から現タイミングに払い出されるまでの時間内
に反射光を受光して蓄積された電荷ということになる。
ところが、測定対象物9の厚さ及び位置により、測定対
象物表面9A,9Bのレーザ光の照射スポット8A,8
Bを受光するイメージセンサ5A,5Bの素子の結像位
置長さDa,Db及びそれに伴う前記時間Ta、Tbは
異なってくる。従って、例えば図5に示すような上部レ
ーザ距離計1A及び下部レーザ距離計1Bの受光強度波
形が得られたとすると、上部レーザ距離計1Aのに相
当する時間Daから求めた距離値と、下部レーザ距離計
1Bのに相当する時間Dbから求めた距離値とでは、
反射光を受光した時間が、Tu,Tdと異なることにな
る。
T = L0-La-Lb (1) By the way, a continuous wave laser (for example, He-Ne laser) is used for the laser generator in such a laser rangefinder, and the upper laser distance is used. FIG. 5 shows the oscillation timings of the laser generators 2A and 2B and the readout timings of the image sensors 5A and 5B of the total 1A and the lower laser rangefinder 1B. Simultaneously with the start of the measurement, laser light 7A, 7B is continuously emitted toward the object 9 to be measured, and the upper and lower image sensors 5A,
5B is read out intermittently at the same time, and the laser rangefinders 1A, 1B to the measurement object surface 9A,
The distances La and Lb to 9B are obtained, and the thickness t of the measuring object 9 is obtained. Therefore, the charges discharged from the respective elements of the image sensors 5A and 5B to the signal processing circuits 6A and 6B are reflected within a time period from immediately after being discharged from the same element at the previous read timing to being discharged at the current timing. It is the charge that is received and accumulated.
However, depending on the thickness and position of the measurement object 9, the laser light irradiation spots 8A, 8 on the measurement object surfaces 9A, 9B.
The image forming position lengths Da and Db of the elements of the image sensors 5A and 5B that receive B and the times Ta and Tb accompanying them are different. Therefore, if the received light intensity waveforms of the upper laser rangefinder 1A and the lower laser rangefinder 1B as shown in FIG. 5 are obtained, the distance value obtained from the time Da corresponding to the upper laser rangefinder 1A and the lower laser rangefinder 1A are obtained. With the distance value obtained from the time Db corresponding to the distance meter 1B,
The time when the reflected light is received is different from Tu and Td.

【0006】このように、反射光の受光タイミングある
いは受光時間が上下のレーザ距離計で異なると、測定対
象物が静止状態であれば問題ないが、例えば、鉄鋼プロ
セスにおいてラインを搬送する鋼板の厚みを測定するよ
うな場合には、上部レーザ距離計と下部レーザ距離計と
で鋼板移動方向で一部異なった表面までの距離を測定し
た値で鋼板厚さを求めることになり、真の厚さを測定で
きないことになる。また、鋼板は上下に振動しながら搬
送されることがほとんどであり、その場合には、原理的
にキャンセルされる振動成分が、測定タイミングが異な
るために完全にキャンセルされなくなり、大幅に誤差を
生じることになる。その結果、鋼板の振動が実質上ない
ときには図7の(a)に示すように厚み測定値の変動は
小さいが、鋼板の振動が大きくなると図7の(b)に示
すように厚み測定値の変動が大きくなり、測定誤差が大
きくなる。
As described above, when the reception timing or the reception time of the reflected light differs between the upper and lower laser rangefinders, there is no problem as long as the object to be measured is in a stationary state. In the case of measuring, the steel plate thickness is obtained by measuring the distance to the surface that is partially different in the steel plate moving direction with the upper laser range finder and the lower laser range finder. Cannot be measured. In most cases, the steel plate is conveyed while vibrating up and down. In that case, the vibration component that is canceled in principle cannot be canceled completely because the measurement timing is different, which causes a large error. It will be. As a result, when the vibration of the steel sheet is substantially absent, the variation in the thickness measurement value is small as shown in FIG. 7A, but when the vibration of the steel sheet is large, the thickness measurement value becomes smaller as shown in FIG. Fluctuation increases and measurement error increases.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前記従来の
問題点を解消するべくなされたものであり、測定対象物
の振動による測定誤差を低減することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to reduce the measurement error due to the vibration of the object to be measured.

【0008】[0008]

【課題を解決するための手段】本願発明は、それぞれ
が、レ−ザ光源(2A/2B),イメ−ジセンサ(5A/5B),前記
レ−ザ光源(2A/2B)が発し対象物(9)から反射したレ−ザ
を前記イメ−ジセンサ(5A/5B)に結像する光学系(4A,4
B)、および、前記イメ−ジセンサ(5A/5B)上のレ−ザ結
像位置(Da/Db)を検出し該位置(Da/Db)より三角測量の原
理に基づきレ−ザ光源(2A/2B)から対象物(9)までの距離
(La/Lb)を算出する距離演算手段(6A/6B)を有し、レ−ザ
光源(2A/2B)の光投射光軸(7A/7B)を一直線上に置いて対
象物(9)を挟んで対向配置された2組のレ−ザ距離計(1A
/1B);および、これらのレ−ザ距離計(1A/1B)が算出す
る対象物(9)までの各距離(La/Lb)より対象物(9)の厚さ
(t)を演算する厚み演算手段(13);を備える、レーザ距
離計を用いた厚さ測定装置において、各レーザ距離計(1
A/1B)のレーザ光源(2A/2B)からパルス状のレーザを放射
するために各レ−ザ光源(2A/2B)をパルス付勢するパル
ス変調器(12A/12B)と、該パルス変調器(12A/12B)に、各
レーザ距離計(1A/1B)のレーザ光源(2A/2B)から同時に同
一時間幅(Tu=Td)のパルス状のレ−ザを放射するための
レ−ザ放射指示パルス(レ-ザ発振パルス)を与え、前記
イメ−ジセンサ(5A/5B)には前記パルス状レ−ザ放射の
区間外での受光信号読出しを指示する信号(読出しスタ-
トパルス)を与えるタイミング制御手段(11)と、を備え
ることを特徴とする。
According to the present invention, the laser light source (2A / 2B), the image sensor (5A / 5B), the laser light source (2A / 2B) emits an object ( Optical system (4A, 4A for imaging the laser reflected from 9) on the image sensor (5A / 5B)
B), and the laser image forming position (Da / Db) on the image sensor (5A / 5B) is detected, and the laser light source (2A) is detected from the position (Da / Db) based on the principle of triangulation. / 2B) to the object (9)
(La / Lb) has a distance calculating means (6A / 6B) to calculate, the light projection optical axis (7A / 7B) of the laser light source (2A / 2B) is placed on a straight line (9) Two sets of laser rangefinders (1A
/ 1B); and the thickness of the object (9) from each distance (La / Lb) to the object (9) calculated by these laser rangefinders (1A / 1B)
In a thickness measuring device using a laser rangefinder, which comprises a thickness calculating means (13) for calculating (t), each laser rangefinder (1
(A / 1B) laser light source (2A / 2B) pulse laser modulator (12A / 12B) for pulsing each laser light source (2A / 2B) to emit a pulsed laser, and the pulse modulation Laser (2A / 2B) of each laser rangefinder (1A / 1B) to simultaneously emit a pulsed laser of the same time width (Tu = Td) to the instrument (12A / 12B). A radiation instruction pulse (laser oscillation pulse) is given to the image sensor (5A / 5B), which is a signal (readout star) for instructing reading of a light reception signal outside the section of the pulsed laser radiation.
And a timing control means (11) for giving a pulse).

【0009】なお、カッコ内の記号は、図面に示し後述
する実施例の対応要素又は対応事項を示す。
Symbols in parentheses indicate corresponding elements or corresponding matters in the embodiments shown in the drawings and described later.

【0010】[0010]

【作用】上記パルス変調器(12A/12B)を介したタイミン
グ制御手段(11)の制御により、2組のレ−ザ距離計(1A/
1B)のレ−ザ光源(2A/2B)が、同時に同一時間幅(Tu=Td)
のパルス状のレ−ザを放射する。これにより、レ−ザ距
離計(1A/1B)のイメ−ジセンサ(5A/5B)は、対象物(9)の
対向表裏の同一時刻の同一時間区間(Tu=Td)の反射光を
受光し光強度に対応するレベルの信号を維持する。
Operation: By controlling the timing control means (11) through the pulse modulator (12A / 12B), two sets of laser rangefinders (1A /
(1B) laser light source (2A / 2B), same time width (Tu = Td)
It emits a pulsed laser. As a result, the image sensor (5A / 5B) of the laser range finder (1A / 1B) receives the reflected light of the same time section (Tu = Td) at the same time on the front and back sides of the object (9). The signal of the level corresponding to the light intensity is maintained.

【0011】しかしてタイミング制御手段(11)が、イメ
−ジセンサ(5A/5B)に、前記レ−ザ反射光を受光してい
る区間(Tu=Td)外での受光信号読出しを指示する信号を
与えるので、イメ−ジセンサ(5A/5B)は、レ−ザ反射光
を受光していない区間に、前記区間(Tu=Td)の光強度対
応の信号を出力する。
However, the timing control means (11) is a signal for instructing the image sensor (5A / 5B) to read the light reception signal outside the section (Tu = Td) where the laser reflected light is being received. Therefore, the image sensor (5A / 5B) outputs a signal corresponding to the light intensity in the section (Tu = Td) to the section where the laser reflected light is not received.

【0012】以上により、イメ−ジセンサ(5A/5B)が出
力する信号は、対象物(9)の対向表裏の同一時刻の同一
時間区間(Tu=Td)の反射光レベルを示すものであり、表
裏のもので位置ずれがなく、しかもレ−ザ反射光信号の
蓄積時間に差を生じない。したがって、一部異なった表
面までの距離を測定することもなく、また鋼板が上下に
振動しても、振動成分はイメ−ジセンサ(5A/5B)の出力
に現われない。
From the above, the signal output from the image sensor (5A / 5B) indicates the reflected light level in the same time section (Tu = Td) at the same time on the opposite surface of the object (9), The front and back surfaces have no positional deviation, and there is no difference in the accumulation time of the laser reflected light signal. Therefore, there is no need to measure the distances to different surfaces, and even if the steel plate vibrates up and down, the vibration component does not appear in the output of the image sensor (5A / 5B).

【0013】[0013]

【実施例】図1に本発明の一実施例を示す。2台のレー
ザ距離計1A,1BはCフレーム10に固定され、両者
の距離L0 は固定である。レーザ発生器2A,2Bは半
導体レーザであり、パルス変調器12A,12Bが、パ
ルス発生回路11が発生するレ−ザ発振パルスに応答し
てレ−ザ発生器A,2Bをパルス付勢する。したがって
鋼板9にはパルスレ−ザが投射される。
FIG. 1 shows an embodiment of the present invention. The two laser rangefinders 1A and 1B are fixed to the C frame 10, and the distance L 0 between them is fixed. The laser generators 2A and 2B are semiconductor lasers, and the pulse modulators 12A and 12B pulse-energize the laser generators A and 2B in response to the laser oscillation pulse generated by the pulse generation circuit 11. Therefore, the pulse laser is projected on the steel plate 9.

【0014】パルス発生回路11が発生するレ−ザ発振
パルスは、図2に示すように、Tu=Tdの間高レベル
Hのパルス信号であって、同一のパルス信号がパルス変
調器12A,12Bに与えられるので、レーザ発生器2
A,2Bは同時に同一時間幅のレ−ザパルスを鋼板9に
投射する。すなわち上下両方のレーザ発生器2A,2B
から同じタイミングで同一時間幅のパルス状のレーザが
鋼板9の対向表裏面(同一位置の表と裏)に照射され
る。
As shown in FIG. 2, the laser oscillation pulse generated by the pulse generation circuit 11 is a high-level H pulse signal during Tu = Td, and the same pulse signal is pulse modulators 12A and 12B. Is given to the laser generator 2
A and 2B simultaneously project laser pulses having the same time width on the steel plate 9. That is, both the upper and lower laser generators 2A, 2B
At the same timing, a pulsed laser having the same time width is applied to the opposite front and back surfaces (front and back at the same position) of the steel sheet 9.

【0015】パルス発生回路11は、レ−ザ発振パルス
の低レベル(レ−ザ発生なし)区間に、しかもイメ−ジ
センサ5A,5Bの受光信号読出しが該低レベル区間内
で終了するタイミングで、読出しスタ−トパルスを、イ
メ−ジセンサ5A,5Bに与える。イメ−ジセンサ5
A,5Bはこのスタ−トパルスに応答して、センサ内各
ピクセル(最小単位の光電変換素子)の受光信号を、配
列順に読出して信号処理回路6A,6Bに与える。この
読出し中にはレ−ザパルスは発生せず、読出し終了後に
レ−ザパルスが発生する。
The pulse generation circuit 11 operates in the low level section (without laser generation) of the laser oscillation pulse, and at the timing when the reading of the light receiving signals of the image sensors 5A and 5B is completed within the low level section. A read start pulse is applied to the image sensors 5A and 5B. Image sensor 5
In response to the start pulse, A and 5B read the light receiving signals of each pixel (minimum unit photoelectric conversion element) in the sensor in the order of arrangement and give them to the signal processing circuits 6A and 6B. A laser pulse is not generated during this reading, but a laser pulse is generated after the reading is completed.

【0016】信号処理回路6A,6Bは、イメ−ジセン
サ5A,5Bから読出し開始信号に応答してそれらの受
光信号のピ−ク位置(Da:図4)を検出し、すなわち
イメ−ジセンサ5A,5B上のレ−ザ反射光の結像位置
Da,Dbを検出し、これらから距離La,Lbを算出
し、これらの距離La,Lbを示すデ−タを出力ラッチ
に更新メモリする。
The signal processing circuits 6A and 6B detect the peak positions (Da: FIG. 4) of the light receiving signals of the image sensors 5A and 5B in response to the read start signals, that is, the image sensors 5A and 5B. The imaging positions Da and Db of the laser reflected light on 5B are detected, the distances La and Lb are calculated from them, and the data indicating these distances La and Lb are updated and stored in the output latch.

【0017】演算器13が、パルス発生回路11が発生
する演算スタ−トパルスに応答して信号処理回路6A,
6Bの出力ラッチのデ−タLa,Lbを読込み、予め設
定されているL0 を示すデ−タをも用いて、鋼板9の板
厚tを算出し、これを出力ラッチに更新メモリする。な
お、演算スタ−トパルスは、信号処理回路6A,6Bが
距離La,Lbの算出を終了する時刻よりやや後のタイ
ミングで発生される。パルス発生回路11の上述のパル
ス発生により、レ−ザ投射とイメ−ジセンサの受光信号
読出しは図2に示すタイミングとなる。
The arithmetic unit 13 is responsive to the arithmetic start pulse generated by the pulse generating circuit 11 to generate a signal processing circuit 6A,
The data La and Lb of the output latch 6B are read, the plate thickness t of the steel plate 9 is calculated using the preset data indicating L 0 , and this is updated and stored in the output latch. The arithmetic start pulse is generated at a timing slightly after the time when the signal processing circuits 6A and 6B finish calculating the distances La and Lb. Due to the above-mentioned generation of the pulse by the pulse generation circuit 11, the laser projection and the reading of the light receiving signal of the image sensor become the timings shown in FIG.

【0018】[0018]

【効果】本発明の効果を確かめるために、約5.15mmの
板厚の厚板材について、振幅約5mmの振動を与えた場
合の結果を図6(本発明の実施例)及び図7(従来例)
に示す。本発明の実施例でのイメージセンサの読出しス
タートパルスの周期は2msec、読み出しに要する時間は
約1msec、パルスレーザの時間幅(図2のTu=Td)
は約0.4msecである。従来法(図7)では、振動がある
と板厚測定値にかなりばらつきが生じているのに対し、
図6の本発明の一実施例では、振動があっても振動なし
の場合とはほとんど変わりない測定値を示しており、振
動の影響による誤差が非常に小さいことがわかる。
[Effect] In order to confirm the effect of the present invention, the results of applying a vibration having an amplitude of about 5 mm to a thick plate having a thickness of about 5.15 mm are shown in FIG. 6 (Example of the present invention) and FIG. )
Shown in. In the embodiment of the present invention, the cycle of the read start pulse of the image sensor is 2 msec, the time required for the read is about 1 msec, and the time width of the pulse laser (Tu = Td in FIG. 2).
Is about 0.4 msec. In the conventional method (Fig. 7), when there is vibration, the thickness measurement values vary considerably, whereas
In the embodiment of the present invention shown in FIG. 6, the measured value is almost the same as the case without vibration even if there is vibration, and it can be seen that the error due to the influence of vibration is very small.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】 図1に示す測定装置の各種信号の発生タイミ
ングを示すタイムチャートである。
FIG. 2 is a time chart showing generation timings of various signals of the measuring apparatus shown in FIG.

【図3】 図1に示す測定装置のレーザ距離計の部分を
拡大して示すブロック図である。
3 is an enlarged block diagram showing a portion of a laser range finder of the measuring apparatus shown in FIG.

【図4】 図3に示すイメージセンサ5Aから出力され
る受光信号を示すタイムチャートである。
FIG. 4 is a time chart showing a light receiving signal output from the image sensor 5A shown in FIG.

【図5】 従来の測定装置の各種信号の発生タイミング
を示すタイムチャートである。
FIG. 5 is a time chart showing generation timings of various signals of a conventional measuring apparatus.

【図6】 従来の測定装置による板厚測定値を示すグラ
フである。
FIG. 6 is a graph showing plate thickness measurement values by a conventional measuring device.

【図7】 図1に示す本発明の測定装置による板厚測定
値を示すグラフである。
FIG. 7 is a graph showing plate thickness measurement values by the measuring apparatus of the present invention shown in FIG.

【符号の説明】[Explanation of symbols]

1A,1B:レーザ距離計 2A,2B:レー
ザ発生器 3A,3B:受光器 4A,4B:集光
レンズ 5A,5B:イメージセンサ 6A,6B:信号
処理回路 7A,7B:レーザ光 8A,8B:レー
ザ光の照射スポット 9:測定対象物 9A,9B:測定
対象物の測定面 10:Cフレーム 11:パルス発
生回路 12A,12B:パルス変調器 13:演算器
1A, 1B: Laser distance meter 2A, 2B: Laser generator 3A, 3B: Light receiver 4A, 4B: Condensing lens 5A, 5B: Image sensor 6A, 6B: Signal processing circuit 7A, 7B: Laser light 8A, 8B: Laser light irradiation spot 9: measurement target 9A, 9B: measurement surface of measurement target 10: C frame 11: pulse generation circuit 12A, 12B: pulse modulator 13: calculator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大 塚 祐 二 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 (72)発明者 木 沢 満 兵庫県神戸市中央区明石町32 三波工業株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Otsuka 1 Kimitsu, Kimitsu-shi Kimitsu Works, Nippon Steel Co., Ltd. Industrial stock company

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】それぞれが、レ−ザ光源,イメ−ジセン
サ,前記レ−ザ光源が発し対象物から反射したレ−ザを
前記イメ−ジセンサに結像する光学系、および、前記イ
メ−ジセンサ上のレ−ザ結像位置を検出し該位置より三
角測量の原理に基づきレ−ザ光源から対象物までの距離
を算出する距離演算手段を有し、レ−ザ光源の光投射光
軸を一直線上に置いて対象物を挟んで対向配置された2
組のレ−ザ距離計;および、これらのレ−ザ距離計が算
出する対象物までの各距離より対象物の厚さを演算する
厚み演算手段;を備える、レーザ距離計を用いた厚さ測
定装置において、 各レーザ距離計のレーザ光源からパルス状のレーザを放
射するために各レ−ザ光源をパルス付勢するパルス変調
器と、 該パルス変調器に、各レーザ距離計のレーザ光源から同
時に同一時間幅のパルス状のレ−ザを放射するためのレ
−ザ放射指示パルスを与え、前記イメ−ジセンサには前
記パルス状レ−ザ放射の区間外での受光信号読出しを指
示する信号を与えるタイミング制御手段と、を備えるこ
とを特徴とするレーザ距離計を用いた厚さ測定装置。
1. A laser light source, an image sensor, an optical system for forming an image of the laser emitted from the laser light source and reflected from an object on the image sensor, and the image sensor. It has a distance calculation means for detecting the laser image formation position on the upper side and calculating the distance from the laser light source to the object based on the principle of triangulation from the position. 2 placed on a straight line and facing each other with the object in between
A thickness using a laser rangefinder, which includes a set of laser rangefinders; and a thickness calculation means for calculating the thickness of the target from each distance to the target calculated by these laser rangefinders. In the measuring device, a pulse modulator for energizing each laser light source so as to emit a pulsed laser from the laser light source of each laser rangefinder, and the pulse modulator to the laser light source of each laser rangefinder At the same time, a laser emission instruction pulse for emitting a pulsed laser having the same time width is given, and a signal for instructing the image sensor to read out a light reception signal outside the section of the pulsed laser emission. And a timing control means for providing a thickness measurement device using a laser range finder.
JP4218941A 1992-08-18 1992-08-18 Thickness measuring device using laser range finder Expired - Lifetime JP2519375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4218941A JP2519375B2 (en) 1992-08-18 1992-08-18 Thickness measuring device using laser range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4218941A JP2519375B2 (en) 1992-08-18 1992-08-18 Thickness measuring device using laser range finder

Publications (2)

Publication Number Publication Date
JPH0666525A true JPH0666525A (en) 1994-03-08
JP2519375B2 JP2519375B2 (en) 1996-07-31

Family

ID=16727732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4218941A Expired - Lifetime JP2519375B2 (en) 1992-08-18 1992-08-18 Thickness measuring device using laser range finder

Country Status (1)

Country Link
JP (1) JP2519375B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995287B1 (en) * 2000-04-26 2010-11-22 가부시키가이샤 도요세이키 세이사쿠쇼 Method and apparatus to measure amount of movement using granular speck pattern generated by reflecting laser beam
JP2011242366A (en) * 2010-05-21 2011-12-01 Ulvac Japan Ltd Method for measuring film thickness in deposition device
KR20190107793A (en) * 2018-03-13 2019-09-23 주식회사 해동엔지니어링 Apparatus for measuring width of rolled steel plate
CN116390364A (en) * 2023-02-06 2023-07-04 湖北全成信精密电路有限公司 Method for repairing residual copper of PCB

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995287B1 (en) * 2000-04-26 2010-11-22 가부시키가이샤 도요세이키 세이사쿠쇼 Method and apparatus to measure amount of movement using granular speck pattern generated by reflecting laser beam
JP2011242366A (en) * 2010-05-21 2011-12-01 Ulvac Japan Ltd Method for measuring film thickness in deposition device
KR20190107793A (en) * 2018-03-13 2019-09-23 주식회사 해동엔지니어링 Apparatus for measuring width of rolled steel plate
CN116390364A (en) * 2023-02-06 2023-07-04 湖北全成信精密电路有限公司 Method for repairing residual copper of PCB

Also Published As

Publication number Publication date
JP2519375B2 (en) 1996-07-31

Similar Documents

Publication Publication Date Title
Shinohara et al. Compact and high-precision range finder with wide dynamic range and its application
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JP2003194526A (en) Cross-sectional shape measuring apparatus
JP2008533478A (en) 3-D imaging system
KR0179224B1 (en) Distance measuring device
EP0332781B1 (en) Optical measuring device
JP2519375B2 (en) Thickness measuring device using laser range finder
JPH09178853A (en) Imaging laser range finder
JP2994452B2 (en) Surveying instrument
JPH06109842A (en) Distance detection apparatus
JP2853350B2 (en) Laser distance measuring device
JPH07229967A (en) Distance measuring apparatus
JPH11230699A (en) Target arrival position measuring apparatus for bullet
JPS61104202A (en) Optical displacement meter
JPS6355409A (en) Laser distance measuring instrument for vehicle
JP2002296032A (en) Position detector
JPH0921871A (en) Semiconductor laser distance measuring device
JP2799492B2 (en) Position or length measuring device
JP2887190B2 (en) Distance measuring device
JP3503233B2 (en) Optical scanning displacement sensor
JP3323963B2 (en) Measuring device
JP3394090B2 (en) Displacement gauge
JPH07234115A (en) Warpage measuring method for plate material
JPH076781U (en) Ranging device
JPS5878109A (en) Auto focusing device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960326

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130517

Year of fee payment: 17