JPH0530618B2 - - Google Patents

Info

Publication number
JPH0530618B2
JPH0530618B2 JP27959088A JP27959088A JPH0530618B2 JP H0530618 B2 JPH0530618 B2 JP H0530618B2 JP 27959088 A JP27959088 A JP 27959088A JP 27959088 A JP27959088 A JP 27959088A JP H0530618 B2 JPH0530618 B2 JP H0530618B2
Authority
JP
Japan
Prior art keywords
water
pva
nonwoven fabric
acetalization
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27959088A
Other languages
Japanese (ja)
Other versions
JPH02125725A (en
Inventor
Yosuke Sekya
Shinta Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP27959088A priority Critical patent/JPH02125725A/en
Publication of JPH02125725A publication Critical patent/JPH02125725A/en
Publication of JPH0530618B2 publication Critical patent/JPH0530618B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ポリビニルアセタール化多孔物質と
不織布との複合体からなる高抱水性物質およびそ
の製造方法に関し、さらに詳しくはタオル、ワイ
パー等の洗拭具、各種保水材、吸水材等に有用な
微細な気孔を有するポリビニルアセタール(以下
PVAF)化多孔物質と不織布との複合体に関す
る。 〔従来の技術〕 ポリビニルアルコール水溶液に予めアルデヒド
類、気孔生成助剤を配合しておき、この水溶液を
加熱することによりポリビニルアルコールをアセ
タール化した後、洗浄し均一な微細孔を持つ
PVAF系スポンジを製造する方法は既に周知であ
る(特開昭47−57088号公報、特公昭48−20019号
公報、特公昭52−10147号公報、特開昭54−99167
号公報等)。また繊維構造基本(編物、織物ある
いは不織布)又は多孔質弾性体とPVAF多孔質体
との複合体に関する製造方法も既に提案されてい
る(特公昭51−7954号公報、特開昭58−141132号
公報、特開昭59−76247号公報、特開昭51−38351
号公報、特開昭63−46240号公報等)。 これら公知の方法は、一般にケン化度80〜100
%、重合度500〜3000程度のポリビニルアルコー
ルを水に溶解して4〜18%程度の水溶液とし、こ
れに用途に応じて気孔助剤を添加し、そしてアル
デヒド類及び触媒として鉱酸を添加し、さらに必
要に応じて着色料、防腐剤、香料等を加え、これ
を単独、又は繊維構造基体に付与した後、室温以
上、一般には反応速度を上げるため40〜90℃、好
ましくは50〜70℃で、4〜40時間、通常6〜24時
間加熱することにより徐々にアセタール化反応を
行ない、その後未反応物質、不純物等を除去、水
洗することによつてPVAF系多孔質体を得るもの
である。 〔発明が解決しようとする課題〕 一般に多孔質体における気孔の状態は多孔質体
の性質に大きな影響を与え、製品の用途に応じて
多孔質体の気孔径およびその均一性が重要な問題
となる。そのため前記の製造方式に加えて反応温
度を特定のパターン制御する方法(特開昭49−
63755号公報)あるいは分級したデンプンを用い
る方法(特開昭50−6663号公報)などが提案され
ており、非常に厳密な管理を必要とする上、前記
の通り長時間のアセタール化を必要とするため生
産性が著しく低い。 本発明はこれらのわずらわしい管理を省き、ま
た短時間のアセタール化時間で抱水性の優れた多
孔物質の複合体を製造する方法を提供するもので
ある。 〔課題を解決するための手段〕 すなわち本発明は、不織布およびその内部と表
面に付与されたアセタール化度35〜70モル%のポ
リビニルアルコールの多孔質体からなり、その表
面には開放型の孔を有しており、その80%以上が
開放孔径20〜200μの範囲にあり、かつ抱水率が
700%以上であることを特徴とする高抱水性複合
体であり、また空隙率80%以上の不織布に2倍以
上に発泡したポリビニルアルコール水溶液を該不
織布重量に対してポリビニルアルコール量で50〜
600重量%塗布または含浸し、該ポリビニルアル
コールを凝固させた後、ホルムアルデヒドおよび
鉱酸を含む水溶液で処理することにより該ポリビ
ニルアルコールをアセタール化度35〜70モル%に
アセタール化し、しかる後に水洗することを特徴
とする高抱水性複合体の製造方法であり、特に好
ましくは、上記方法により得られた高抱水性複合
体をPH6以上に調整したコロイダルシリカ水分散
液で処理し、キユアリングする高抱水性複合体の
製造方法であり、また該高抱水性複合体をグルタ
ルアルデヒドと鉱酸を含む水溶液で処理する高抱
水性複合体の製造方法である。 本発明の高抱水性複合体の製造法について詳し
く説明すると、まず不織布(以下基体と称する場
合がある)に塗布又は含浸するポリビニルアルコ
ール(以下PVAと略す)水溶液は5〜15%、特
に7〜9%のPVA濃度水溶液が好ましい。本発
明では、このようなPVA水溶液に気体、好まし
くは空気を混合し発泡体とし見掛け体積を2倍以
上、好ましくは3〜6倍に調整する。泡の大きさ
はPVA水溶液の粘度、泡の混合条件で変わつて
くる。従来公知の方法、すなわちPVA水溶液に
予めアルデヒドおよび酸を配合しておく方法の場
合、アセタール化が進行するにつれて泡の径が変
つてくるため、均一な発泡体を得るには温度、基
体への賦与及び含浸までの時間に充分のコントロ
ールが必要とされた。しかるに本発明の方法で
は、泡の状態を大きく変化させるアルデヒドおよ
び鉱酸が実質的に添加されていないため常温付近
であればかなりの時間同じ発泡状態で維持でき
る。なおさらに発泡状態を安定に保つために界面
活性剤を配合することは好都合である。その種類
としては、ポリオキシエチレン、アルキルエーテ
ル、脂肪酸アミド、アルキルホスフエート塩、ア
ルキルアミン、硫酸エステル塩型両性活性剤、ア
ルキル硫酸エステル塩、プロピレングリコールな
どが挙げられ、それ単独で又は二種以上を混合し
て用いられる。界面活性剤の添加量としては、
PVAに対して10重量%以下でよい。また基体へ
のPVA発泡体の付与量については基体に対して
PVA量で50〜600重量%、特に80〜400重量%が
適当である。付与量が少ないと基体表面の形状が
複合体表面に出て均一な表面にならず、また基体
繊維の毛羽も表面に出てくるためワイパーとして
使用する場合に拭つたあとに毛羽が残る欠点があ
る。またPVA発泡体の付与量を多くした場合に
は複合体としての抱水量は大きくなるが複合体
PVA発泡体部分の強力が低下する。また、必要
なアセタール化の時間が長くなるとともに深さ方
向でのアセタール化度斑により、表面を適度なア
セタール化度に抑えた場合内部のアセタール化が
不充分となり、乾燥時の複合体としての柔らかさ
をそこなうとともに表面に未反応PVAの一部が
滲出して複合体を重ね合せた際に表面同志が接着
する原因ともなる。 基体に対して50〜600重量%のPVAを付与した
のち凝固浴に浸漬して該PVAを凝固させる。そ
の際の凝固浴として芒硝、硫安等の中性又は酸性
の塩類の水溶液からなる浴を使用して短時間で
PVAを凝固する。複合体表面の気孔状態を均一
に保つためにはPVAを基体表面に含浸・塗布し
た後、そのままの状態で直ちに凝固浴に導入し、
凝固させるのが好ましい。 凝固浴から取出した複合体は常法によりアセタ
ール化される。すなわち凝固浴から取出した複合
体をホルムアルデヒドおよび鉱酸を含む水溶液中
に浸漬することによりアセタール化される。その
際の水溶液中のホルムアルデヒド濃度は15〜60
g/、鉱酸濃度としては150〜300g/が一般
的であり、鉱酸としては一般に硫酸、硝酸、塩酸
などが用いられる。水溶液温度としては40〜60℃
が好ましく、また処理時間としては30〜60分が好
ましい。さらに水溶液中に無機塩がPVA発泡体
が基体から剥離するのを防ぐ目的で添加されてい
てもよく、その添加量としては60〜250g/、
そしてその具体的化合物としては、芒硝、硫安、
硫酸亜鉛などが挙げられる。 PVAの発泡体部分のアセタール化度は35〜70
モル%が適当である。アセタール化度が高くなる
とペーパーライクな感触になるとともに抱水率が
低下し、また吸水性も低下するため洗拭浄具とし
ては機能が不充分となる。一方、アセタール化度
が低いと柔らかく、抱水率も高く、吸水性も良好
であるものの、乾燥したとき硬化程度が厳しく湿
潤状態で巻いたり、折り重ねた状態で乾燥すると
表面同志が接着することがありえる。そのため発
泡体部分のアセタール化度は35〜70モル%、でき
れば45〜60モル%にコントロールするのが好まし
い。 しかし本発明者等は、低アセタール化度におけ
るPVA発泡体の抱水力、触感、弾性が極めて優
れていることに注目し、この抱水力、触感、弾性
を維持しつつ乾燥時の表面同志の接着を防止する
手段についても研究を重ねた結果、アセタール化
度を35〜50モル%で停止し、その後グルタルアル
デヒドで追加アセタール化するのが好ましいこと
を見出した。たとえば、グルタルアルデヒド2〜
6g/および硫酸40〜140g/を含む20〜40
℃の水溶液中に15〜30分間浸漬することで乾燥時
の表面同志の接着を防止することができる。なお
硫酸の代りに塩酸、硝酸等を用いることもでき
る。グルタルアルデヒドによるアセタール化度と
しては2〜6モル%が好ましい。 またグルタルアルデヒド処理に代えて、PVA
発泡体を、コロイダルシリカを7〜13%含有し、
PH7以上に調整した液に浸漬した後、熱処理する
ことで乾燥時の表面同志の接着を防止することが
できる。この方法を用いる場合、得られる複合体
には、複合体重量に対して2〜10重量%のコロイ
ダルシリカが付着しているのが好ましい。 また発泡PVAを付与後アセタール化すること
により、PVAは収縮し、その結果表面の泡は開
放型の気孔となり、複合体が乾燥した後の水ぬれ
性が向上する原因ともなり、後アセタール化は従
来方法と比べて生産性の向上と性能向上の二重の
メリツトがある。開放孔の径は付与するPVAの
粘度により変つてくる。すなわち濃度を上昇する
と粘度が上昇して孔の径は小さくなつてくるが、
抱水性および触感の点で該孔径は、その80%以上
が20〜200μの範囲内にあるのが好ましい。なお
公知の前記従来方法により得られる複合体の
PVA開放孔径は20μより小さい。 本発明の複合体に利用できる繊維基体として
は、木綿、ビスコース繊維、ポリ塩化ビニリデン
繊維、ポリビニルアルコール繊維、ポリエチレン
繊維、ポリプロピレン繊維、ポリアクリロニトリ
ル系繊維、ポリウレタン繊維、ポリアミド系繊
維、ポリエステル系繊維等の繊維単独又は複合か
らなる不織布が用いられる。織物や編物の場合に
は触感、高抱水性および弾力性の点で満足するこ
とはできない。本発明において、特に温水収縮性
のポリビニルアルコール繊維を含み、収縮処理し
て面積比で80%以下に収縮させた不織布が柔らか
さおよびPVA発泡体との一体性の点で好ましい。
本発明では、抱水の大部分は不織布の空隙に入つ
ており、不織布の空隙率と抱水率には正の相関を
持つている。前述したような用途の場合には抱水
率700%以上が必要であり、この抱水率を得るた
めには80%以上、好ましくは85%以上の空隙率の
ある不織布を基体にする必要がある。また不織布
の目付としては50〜400g/m2が好ましい。 なお、ここでいう抱水率とはサンプルを常温水
に30分浸漬後、水平金網上に乗せ水滴が滴下しな
くなつた時の重量(W1)を測定、以下の式で算
出する。 抱水率=W1/サンプル絶乾重量×100(%) また不織布の空隙率は次の方法により求めた。 空隙率=ρ−ρA/ρ×100 但し ρ:繊維の比重 ρA:見掛け比重=重さ(g/m2)/1000×厚さ(mm
) なおここでいう厚さとは、不織布を水平面上に
のせ、上から押さえることなく拡大鏡により不織
布厚さ面を見て、その実質的な厚みを測定して得
られる値を意味している。 以下に実施例により本発明を説明するが、実施
例中の濃度の%は特にことわりがない限り重量に
基づく値である。 実施例 1 水溶性ビニロン(クラレ社製VPB174×44T−
13)からなる100g/m2の不織布を60℃温水中に
浸漬し面積比率で65%に収縮させ、空隙率94%の
基体とする。また完全ケン化PVA(クラレ社製
PVA−HCケン化度;99.9%、重合度:1720)の
9%溶液にPOE3モルラウリルエーテル硫酸トリ
エタノールアミンとトリエタノールアミンを60%
対40%の配合品を0.8%配合した後、スガ機械(株)
製連続発泡機にて発泡させ体積を3.5倍に増加さ
せた。この発泡PVA溶液を先の不織布からなる
基体に該基体重量に対してPVA重量が2倍量を
表・裏均一に含浸付与する。その後400g/の
芒硝溶液に1分間浸漬し凝固させた後、アセター
ル化液としてHCHO:30g/、H2SO4;300
g/、Na2SO4;120g/の水溶液を45℃に
温度調整し、この液中に該PVA付与基布を浸漬
して40分間処理しPVAを発泡状態のまま不織布
に固定した。得られた複合体をNaOH;0.2g/
溶液で5分間中和し、その後水にて複合体に残
つているホルマリン、苛性ソーダ、芒硝等を洗い
流し、高抱水性複合体を製造した。得られた高抱
水性複合体のPVA発泡体のアセタール化度は52
%であり、湿潤状態で弾力性の良好な気孔の均一
な感触な良好な複合体であり、抱水率は950%で
あつた。また表面の開放型気孔の径は40〜200μ
に80%以上が入つていた。 実施例 2 実施例1の方法において、100g/m2の不織布
を温水で収縮させる温度を変え不織布の空隙率を
変えて複合体を製造したところ、出来た複合体の
それぞれの抱水率は次の第1表の通りであつた。
なおPVA付与量、アセタール化度は実施例1と
同一である。
[Industrial Field of Application] The present invention relates to a highly hydrated material made of a composite of a polyvinyl acetalized porous material and a nonwoven fabric, and a method for producing the same, and more specifically to cleaning tools such as towels and wipers, various water-retaining materials, Polyvinyl acetal (hereinafter referred to as polyvinyl acetal) with fine pores useful for water-absorbing materials, etc.
This invention relates to a composite of a porous material (PVAF) and a nonwoven fabric. [Prior art] Aldehydes and pore generation aids are mixed in advance with an aqueous solution of polyvinyl alcohol, and the aqueous solution is heated to acetalize the polyvinyl alcohol, which is then washed to form uniform micropores.
Methods for producing PVAF sponges are already well known (Japanese Patent Application Laid-Open Nos. 1983-57088, 1982-20019, 1972-10147, and 1972-99167).
Publications, etc.). In addition, manufacturing methods for basic fiber structures (knitted fabrics, woven fabrics, or non-woven fabrics) or composites of porous elastic bodies and PVAF porous bodies have already been proposed (Japanese Patent Publication No. 51-7954, Japanese Patent Application Laid-open No. 58-141132). Publication, JP-A-59-76247, JP-A-51-38351
No. 63-46240, etc.). These known methods generally have a saponification degree of 80 to 100.
%, polyvinyl alcohol with a degree of polymerization of about 500 to 3000 is dissolved in water to make an aqueous solution of about 4 to 18%, to which a pore aid is added depending on the application, and aldehydes and mineral acids are added as a catalyst. , further add coloring agents, preservatives, fragrances, etc. as necessary, and add these alone or after applying them to the fibrous structure substrate, at room temperature or higher, generally 40 to 90 ° C., preferably 50 to 70 ° C. to increase the reaction rate. The acetalization reaction is gradually carried out by heating at ℃ for 4 to 40 hours, usually 6 to 24 hours, and then unreacted substances, impurities, etc. are removed, and a PVAF-based porous material is obtained by washing with water. be. [Problem to be solved by the invention] In general, the state of pores in a porous body has a great influence on the properties of the porous body, and the pore size and uniformity of the porous body are important issues depending on the application of the product. Become. Therefore, in addition to the above-mentioned production method, a method of controlling the reaction temperature in a specific pattern (Japanese Unexamined Patent Application Publication No. 49-1998)
63755) or a method using classified starch (Japanese Unexamined Patent Publication No. 1983-6663), which require very strict control and, as mentioned above, require a long period of acetalization. As a result, productivity is extremely low. The present invention eliminates these troublesome controls and provides a method for producing a porous material composite with excellent water-holding properties in a short acetalization time. [Means for Solving the Problems] That is, the present invention consists of a nonwoven fabric and a porous body of polyvinyl alcohol with a degree of acetalization of 35 to 70 mol% imparted to the inside and surface of the nonwoven fabric, and the surface thereof has open pores. More than 80% of them have an open pore diameter of 20 to 200μ, and a water retention rate of
It is a highly hydrophobic composite characterized by having a porosity of 700% or more, and a polyvinyl alcohol aqueous solution foamed to a volume of 50 to 50% of the weight of the nonwoven fabric is added to a nonwoven fabric with a porosity of 80% or more.
After applying or impregnating 600% by weight and solidifying the polyvinyl alcohol, the polyvinyl alcohol is acetalized to a degree of acetalization of 35 to 70 mol% by treatment with an aqueous solution containing formaldehyde and mineral acid, and then washed with water. A method for producing a highly water-retaining composite, which is characterized in that the highly water-retaining composite is particularly preferably cured by treating the highly water-retaining composite obtained by the above method with an aqueous colloidal silica dispersion adjusted to a pH of 6 or higher. The present invention is a method for producing a complex, and a method for producing a highly water-hydrating complex in which the highly water-hydrating complex is treated with an aqueous solution containing glutaraldehyde and a mineral acid. To explain in detail the method for producing the highly hydrophobic composite of the present invention, first, the aqueous solution of polyvinyl alcohol (hereinafter abbreviated as PVA) to be coated or impregnated on a nonwoven fabric (hereinafter sometimes referred to as a substrate) is 5 to 15%, especially 7 to 15%. A 9% PVA concentration aqueous solution is preferred. In the present invention, such a PVA aqueous solution is mixed with a gas, preferably air, to form a foam, and the apparent volume is adjusted to more than twice, preferably 3 to 6 times. The size of the bubbles changes depending on the viscosity of the PVA aqueous solution and the foam mixing conditions. In the conventionally known method, in which aldehyde and acid are blended in advance into a PVA aqueous solution, the diameter of the bubbles changes as acetalization progresses, so obtaining a uniform foam requires varying temperature and substrate conditions. Good control over the time to application and impregnation was required. However, in the method of the present invention, since aldehydes and mineral acids that significantly change the foam state are not substantially added, the same foam state can be maintained for a considerable period of time at around room temperature. Furthermore, it is convenient to incorporate a surfactant in order to keep the foamed state stable. The types include polyoxyethylene, alkyl ethers, fatty acid amides, alkyl phosphate salts, alkyl amines, sulfate ester salt type amphoteric surfactants, alkyl sulfate ester salts, propylene glycol, etc., and they may be used alone or in combination. It is used by mixing. The amount of surfactant added is as follows:
It may be 10% by weight or less based on PVA. Also, regarding the amount of PVA foam applied to the base,
A suitable amount of PVA is 50 to 600% by weight, particularly 80 to 400% by weight. If the applied amount is too small, the shape of the substrate surface will show up on the composite surface and the surface will not be uniform, and the fluff of the substrate fibers will also come out on the surface, so when used as a wiper, there is a drawback that fluff remains after wiping. be. In addition, when the amount of PVA foam applied is increased, the amount of water held as a composite increases, but the amount of water retained as a composite increases.
The strength of the PVA foam part is reduced. In addition, as the required acetalization time becomes longer, the degree of acetalization is uneven in the depth direction, and if the surface is suppressed to a moderate degree of acetalization, the acetalization inside becomes insufficient, resulting in the formation of a composite material during drying. In addition to impairing the softness, a portion of unreacted PVA oozes out onto the surface, causing the surfaces to adhere to each other when the composites are stacked together. After applying 50 to 600% by weight of PVA to the substrate, the substrate is immersed in a coagulation bath to coagulate the PVA. At that time, a bath consisting of an aqueous solution of neutral or acidic salts such as Glauber's salt and ammonium sulfate is used as a coagulation bath.
Solidify PVA. In order to maintain a uniform pore condition on the surface of the composite, after impregnating and applying PVA to the surface of the substrate, immediately introduce it into the coagulation bath as it is.
Preferably, it is coagulated. The complex removed from the coagulation bath is acetalized by conventional methods. That is, the composite taken out from the coagulation bath is acetalized by immersing it in an aqueous solution containing formaldehyde and mineral acid. The formaldehyde concentration in the aqueous solution at that time is 15 to 60
g/, the mineral acid concentration is generally 150 to 300 g/, and sulfuric acid, nitric acid, hydrochloric acid, etc. are generally used as the mineral acid. The temperature of the aqueous solution is 40-60℃
is preferable, and the treatment time is preferably 30 to 60 minutes. Furthermore, an inorganic salt may be added to the aqueous solution for the purpose of preventing the PVA foam from peeling off from the substrate, and the amount added is 60 to 250 g/,
Specific compounds include mirabilite, ammonium sulfate,
Examples include zinc sulfate. The degree of acetalization of the PVA foam part is 35-70
Mol% is appropriate. When the degree of acetalization increases, it becomes paper-like in feel, and its water holding rate decreases, and its water absorption also decreases, resulting in an insufficient function as a cleaning tool. On the other hand, when the degree of acetalization is low, it is soft, has a high water holding rate, and has good water absorption, but when it dries, the degree of hardening is severe and when it is rolled in a wet state or dried after being folded, the surfaces may adhere to each other. is possible. Therefore, it is preferable to control the degree of acetalization of the foam portion to 35 to 70 mol%, preferably 45 to 60 mol%. However, the present inventors focused on the extremely excellent water-holding power, tactile sensation, and elasticity of PVA foam at a low degree of acetalization. As a result of repeated research on means for preventing this, it was found that it is preferable to stop the degree of acetalization at 35 to 50 mol%, and then perform additional acetalization with glutaraldehyde. For example, glutaraldehyde 2~
20-40 containing 6g/ and sulfuric acid 40-140g/
By immersing it in an aqueous solution at ℃ for 15 to 30 minutes, it is possible to prevent surfaces from adhering to each other during drying. Note that hydrochloric acid, nitric acid, etc. can also be used instead of sulfuric acid. The degree of acetalization by glutaraldehyde is preferably 2 to 6 mol%. Also, instead of glutaraldehyde treatment, PVA
The foam contains 7 to 13% colloidal silica,
After immersing in a solution adjusted to pH 7 or higher, heat treatment can prevent surfaces from adhering to each other during drying. When this method is used, it is preferred that the resulting composite has colloidal silica attached thereto in an amount of 2 to 10% by weight based on the weight of the composite. In addition, by acetalizing foamed PVA after applying it, the PVA shrinks, and as a result, the bubbles on the surface become open pores, which also causes improved water wettability after the composite dries. Compared to conventional methods, this method has the dual advantages of improved productivity and improved performance. The diameter of the open pores varies depending on the viscosity of the PVA applied. In other words, as the concentration increases, the viscosity increases and the pore diameter decreases, but
From the viewpoint of water-holding property and texture, it is preferable that 80% or more of the pore diameter is within the range of 20 to 200 μm. Furthermore, the complex obtained by the above-mentioned conventional method is
PVA open pore diameter is smaller than 20μ. Examples of fiber substrates that can be used in the composite of the present invention include cotton, viscose fiber, polyvinylidene chloride fiber, polyvinyl alcohol fiber, polyethylene fiber, polypropylene fiber, polyacrylonitrile fiber, polyurethane fiber, polyamide fiber, polyester fiber, etc. A nonwoven fabric made of fibers alone or in combination is used. In the case of woven or knitted fabrics, they are unsatisfactory in terms of feel, high water retention, and elasticity. In the present invention, a nonwoven fabric containing hot-water shrinkable polyvinyl alcohol fibers and subjected to shrinkage treatment to shrink to 80% or less in terms of area ratio is particularly preferred in terms of softness and integrity with the PVA foam.
In the present invention, most of the hydrated water enters the voids of the nonwoven fabric, and there is a positive correlation between the porosity and the hydrated rate of the nonwoven fabric. For the above-mentioned applications, a water retention rate of 700% or more is required, and in order to achieve this water retention rate, it is necessary to use a nonwoven fabric as a base material with a porosity of 80% or more, preferably 85% or more. be. Moreover, the basis weight of the nonwoven fabric is preferably 50 to 400 g/m 2 . The water retention rate referred to here is calculated by immersing the sample in room temperature water for 30 minutes, placing it on a horizontal wire mesh, measuring the weight (W 1 ) when water drops stop falling, and using the following formula. Water retention rate = W 1 / sample bone dry weight x 100 (%) The porosity of the nonwoven fabric was determined by the following method. Porosity = ρ - ρ A / ρ × 100, where ρ: Specific gravity of fiber ρ A : Apparent specific gravity = Weight (g/m 2 ) / 1000 × Thickness (mm
Note that the thickness here means the value obtained by placing the nonwoven fabric on a horizontal surface, looking at the thickness side of the nonwoven fabric with a magnifying glass without pressing it from above, and measuring its substantial thickness. The present invention will be explained below with reference to Examples, in which the concentration percentages in the Examples are based on weight unless otherwise specified. Example 1 Water-soluble vinylon (manufactured by Kuraray Co., Ltd. VPB174×44T-
A nonwoven fabric of 100 g/m 2 consisting of 13) is immersed in 60°C hot water to shrink to 65% in terms of area ratio, resulting in a substrate with a porosity of 94%. In addition, fully saponified PVA (manufactured by Kuraray)
POE3 mol lauryl ether sulfate triethanolamine and 60% triethanolamine in a 9% solution of PVA-HC saponification degree: 99.9%, polymerization degree: 1720)
After mixing 0.8% of the 40% compounded product, Suga Machinery Co., Ltd.
The volume was increased by 3.5 times by foaming using a continuous foaming machine manufactured by the company. This foamed PVA solution is uniformly impregnated on the front and back surfaces of the substrate made of the nonwoven fabric in an amount twice the weight of the PVA relative to the weight of the substrate. After that, it was immersed in 400g/g of Glauber's salt solution for 1 minute to solidify, and then the acetalization solution was HCHO: 30g/, H 2 SO 4 ; 300
The temperature of an aqueous solution of 120 g/g/Na 2 SO 4 was adjusted to 45° C., and the PVA-applied base fabric was immersed in this solution for 40 minutes to fix the PVA in a foamed state to the nonwoven fabric. The obtained complex was mixed with NaOH; 0.2 g/
The mixture was neutralized with a solution for 5 minutes, and then formalin, caustic soda, Glauber's salt, etc. remaining in the composite were washed away with water to produce a highly hydrated composite. The degree of acetalization of the resulting highly hydrated composite PVA foam is 52.
%, it was a good composite with good elasticity and uniform feel of pores in the wet state, and the water retention rate was 950%. In addition, the diameter of the open pores on the surface is 40 to 200μ.
More than 80% of them were included. Example 2 In the method of Example 1, composites were manufactured by changing the temperature at which a 100 g/m 2 nonwoven fabric was shrunk with hot water and changing the porosity of the nonwoven fabric. The results were as shown in Table 1.
The amount of PVA applied and the degree of acetalization are the same as in Example 1.

【表】 実施例 3 実施例1の方法において、アセタール化の時間
を種々変更して複合体を作製した。その結果を第
2表に示す。
[Table] Example 3 In the method of Example 1, complexes were prepared by varying the acetalization time. The results are shown in Table 2.

【表】 吸水性;100×100mmサンプルを常温水に30分浸漬
後、3000RPMで1分間遠心脱水し常温水面
上に平行置き、全体が完全に吸水するまでの
時間で表わす。 実施例 4 クラレ社製ビニロンVPB204×51T−13(30%)
とクラレ社製ポリエステル1.5dr×51mm(70%)と
を配合した120g/m2の不織布を65℃の温水中に
浸漬し面積比で50%収縮させ空隙率91%の不織布
を得た。次にクラレ社製PVA(PVA−HC)を水
に溶解して9%水溶液とし、これをスガ機械(株)製
連続発泡機にて4.0倍に発泡させ発泡PVA水溶液
を作製した。この発泡PVA水溶液を前記不織布
に、不織布重量に対してPVA量として0.5倍、1
倍、3倍、5倍、7倍量を付与含浸し実施例1と
同様に凝固し40分間アセタール化、洗浄し、複合
体を得た。その結果を次の第3表に示す。
[Table] Water absorption: A 100 x 100 mm sample is immersed in room temperature water for 30 minutes, centrifuged at 3000 RPM for 1 minute, placed parallel to the water surface at room temperature, and expressed as the time until the entire sample completely absorbs water. Example 4 Kuraray vinylon VPB204×51T-13 (30%)
A nonwoven fabric of 120 g/m 2 containing polyester 1.5 dr × 51 mm (70%) manufactured by Kuraray Co., Ltd. was immersed in warm water at 65°C and shrunk by 50% in area ratio to obtain a nonwoven fabric with a porosity of 91%. Next, PVA manufactured by Kuraray Co., Ltd. (PVA-HC) was dissolved in water to make a 9% aqueous solution, and this was foamed to a volume of 4.0 times using a continuous foaming machine manufactured by Suga Kikai Co., Ltd. to prepare a foamed PVA aqueous solution. This foamed PVA aqueous solution was applied to the nonwoven fabric at a rate of 0.5 times the amount of PVA based on the weight of the nonwoven fabric.
It was impregnated in an amount of 2 times, 3 times, 5 times, and 7 times, solidified in the same manner as in Example 1, acetalized for 40 minutes, and washed to obtain a composite. The results are shown in Table 3 below.

【表】 実施例 5 実施例1と同様の操作で凝固まで行つた複合体
をHCHO;30g/、H2SO4;300g/、
Na2SO4;120g/のアセタール化液で50℃に
調節し25分間処理し、水洗して複合体を製造し
た。この発泡PVA部分のアセタール化度は37モ
ル%であり、表面に粘着性が多少認められた。次
にコロイダルシリカ(日産化学製スノーテツク
ス・O)10%水溶液にNaOHを添加してPHを10
に調整し、この液に先の複合体を浸漬し、搾液率
150%に搾る。その後130℃の熱風乾燥炉で40分間
乾燥し、その後NaOHを洗浄して製品としたが、
この製品は表面の接着性がない高い抱水性(抱水
率850%)の極めて柔軟な複合体となつた。この
場合の表面の開放型気孔の径は20〜150μが80%
以上を占めていた。 実施例 6 実施例5で得られたアセタール化度37モル%の
複合体をグルタルアルデヒド;4g/、
H2SO4;100g/含む40℃水溶液中に30分浸漬
し、その後アルデヒド、酸を水洗いして複合体を
得た。付与したPVAのグルタルアルデヒドによ
るアセタール化度は3.9%であつた。この複合体
は表面の接着性がない高い抱水性(抱水率1000
%)の極めて柔軟な触感の高い抱水性複合体とな
つた。この場合の表面の開放型気孔の径は35〜
200μが80%以上を占めていた。
[Table] Example 5 A complex obtained by coagulation in the same manner as in Example 1 was mixed with HCHO; 30 g/, H 2 SO 4 ; 300 g/,
The mixture was treated with an acetalization solution containing 120 g of Na 2 SO 4 at 50° C. for 25 minutes, and washed with water to prepare a composite. The degree of acetalization of this foamed PVA portion was 37 mol%, and some tackiness was observed on the surface. Next, add NaOH to a 10% aqueous solution of colloidal silica (Snowtex O manufactured by Nissan Chemical) and adjust the pH to 10.
Dip the composite into this solution and adjust the extraction rate.
Squeeze to 150%. After that, it was dried in a hot air drying oven at 130℃ for 40 minutes, and then the NaOH was washed away and the product was made.
This product is an extremely flexible composite with high water retention (850% water retention) and no surface adhesiveness. In this case, 80% of the open pores on the surface have a diameter of 20 to 150μ.
It accounted for more than that. Example 6 The complex obtained in Example 5 with a degree of acetalization of 37 mol% was mixed with glutaraldehyde; 4 g/
It was immersed in a 40° C. aqueous solution containing 100 g of H 2 SO 4 for 30 minutes, and then the aldehyde and acid were washed with water to obtain a composite. The degree of acetalization of the applied PVA by glutaraldehyde was 3.9%. This composite has high water-holding properties (water-holding rate of 1000
%), resulting in an extremely soft and highly tactile water-retaining composite. In this case, the diameter of the open pores on the surface is 35~
200μ accounted for more than 80%.

Claims (1)

【特許請求の範囲】 1 不織布およびその内部と表面に付与されたア
セタール化度35〜70モル%のポリビニルアルコー
ルの多孔質体からなり、その表面には解放型の孔
を有しており、その80%以上が解放孔径20〜
200μの範囲にあり、かつ抱水率が700%以上であ
ることを特徴とする高抱水性複合体。 2 空隙率80%以上の不織布に2倍以上に発泡し
たポリビニルアルコール水溶液を該不織布重量に
対してポリビニルアルコール量で50〜600重量%
塗布または含浸し、該ポリビニルアルコールを凝
固させた後、ホルムアルデヒドおよび鉱酸を含む
水溶液で処理することにより該ポリビニルアルコ
ールをアセタール化度35〜70モル%にアセタール
化し、しかる後に水洗することを特徴とする高抱
水性複合体の製造方法。
[Scope of Claims] 1 Consists of a nonwoven fabric and a porous body of polyvinyl alcohol with a degree of acetalization of 35 to 70 mol% imparted to the inside and surface of the fabric, and has open pores on its surface. More than 80% have open pore diameter of 20~
A highly water-retaining composite characterized by a water-retaining ratio of 700% or more and in the range of 200μ. 2 Add polyvinyl alcohol aqueous solution foamed twice or more to a nonwoven fabric with a porosity of 80% or more in an amount of 50 to 600% by weight of polyvinyl alcohol based on the weight of the nonwoven fabric.
After coating or impregnating and coagulating the polyvinyl alcohol, the polyvinyl alcohol is acetalized to a degree of acetalization of 35 to 70 mol% by treatment with an aqueous solution containing formaldehyde and mineral acid, and then washed with water. A method for producing a highly hydrated complex.
JP27959088A 1988-11-04 1988-11-04 Highly hydrating composite material and its manufacture Granted JPH02125725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27959088A JPH02125725A (en) 1988-11-04 1988-11-04 Highly hydrating composite material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27959088A JPH02125725A (en) 1988-11-04 1988-11-04 Highly hydrating composite material and its manufacture

Publications (2)

Publication Number Publication Date
JPH02125725A JPH02125725A (en) 1990-05-14
JPH0530618B2 true JPH0530618B2 (en) 1993-05-10

Family

ID=17613108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27959088A Granted JPH02125725A (en) 1988-11-04 1988-11-04 Highly hydrating composite material and its manufacture

Country Status (1)

Country Link
JP (1) JPH02125725A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105229222A (en) * 2013-05-28 2016-01-06 科德宝两合公司 Cleaning cloth

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656818B2 (en) * 2003-05-01 2011-03-23 川澄化学工業株式会社 Blood filtration filter and method for producing the same
DE102013008984A1 (en) * 2013-05-28 2014-12-04 Carl Freudenberg Kg cleaning cloth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105229222A (en) * 2013-05-28 2016-01-06 科德宝两合公司 Cleaning cloth

Also Published As

Publication number Publication date
JPH02125725A (en) 1990-05-14

Similar Documents

Publication Publication Date Title
JPH08510796A (en) Non-woven fabric product and manufacturing method thereof
JPH0332507Y2 (en)
RU2555510C2 (en) Products from non-woven materials with improved transfer properties
JP2003530489A (en) Wipes containing controlled release antimicrobial agents
JPH039225B2 (en)
EP0238476B1 (en) Nubuk or velvety leather support, and process for its preparation
JP2010501716A (en) Novel water-absorbing substance and method for producing the same
JP2003531955A (en) Ion-sensitive water-dispersible polymer, method for producing the same, and articles using the same
WO2007050410A1 (en) Abrasive cleaning item containing an agent which promotes the creation of foam when in contact with water to treat surfaces
KR101813152B1 (en) Cleaning cloth
EP1749126B1 (en) Absorbent textile product
JPH0530618B2 (en)
KR20160012219A (en) Cleaning cloth
JP2002045323A (en) Wet sheet for house cleaning
JPH02200232A (en) Production of highly hydrous wiping material
JP2001040575A (en) Hydrophilic polyolefin fiber and its fiber composition
JP2980261B2 (en) Method for producing fiber sheet
JPH041103B2 (en)
US4649169A (en) Crosslinked vinyl polymer compositions and process for preparing molded shaped articles
JPH02218561A (en) Manufacture of abrasive cloth
JP4398564B2 (en) Aqueous dispersion for textile processing and adhesive fabric
JP2599114B2 (en) Polyvinyl acetal porous sheet with excellent water absorption rate
JP2000303356A (en) Method for hydrophilicizing nonwoven fabric
JPS5926693B2 (en) Manufacturing method of nonwoven fabric with coarse and dense structure
JPS6014147B2 (en) Super absorbent sheet and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees