JPH05306161A - Non-fired refractory heat insulating furnace material and its production - Google Patents

Non-fired refractory heat insulating furnace material and its production

Info

Publication number
JPH05306161A
JPH05306161A JP4105476A JP10547692A JPH05306161A JP H05306161 A JPH05306161 A JP H05306161A JP 4105476 A JP4105476 A JP 4105476A JP 10547692 A JP10547692 A JP 10547692A JP H05306161 A JPH05306161 A JP H05306161A
Authority
JP
Japan
Prior art keywords
heat insulating
layer
refractory
furnace material
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4105476A
Other languages
Japanese (ja)
Inventor
Mitsukane Nakajima
光謙 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEICHIYUU SEIKI KK
Original Assignee
MEICHIYUU SEIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEICHIYUU SEIKI KK filed Critical MEICHIYUU SEIKI KK
Publication of JPH05306161A publication Critical patent/JPH05306161A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the rigid furnace material which can be simply and easily produced, can shorten working time and can improve a working environment by integrally forming a refractory layer or plural heat insulating layers. CONSTITUTION:This furnace material 10, which is the non-fired refractory heat insulating-furnace material, is constituted by integrally forming the refractory layer 20 and/or the plural heat insulating layers 30. The furnace material 10 can be produced by respectively compression molding the refractory layer 20 and/or the plural heat insulating layers 30 and integrally laminating the respective layers via joining materials 40 (41, 42). The furnace material 10 can be obtd. by another process of compression molding either one layer of the refractory layer 20 and/or the plural heat insulating layers 30, then successively compression molding the other layers atop the above-mentioned layer, thereby integrally laminating and forming the furnace material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は不焼成耐火断熱炉材お
よびその製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an unfired fireproof heat insulating furnace material and a method for producing the same.

【0002】[0002]

【従来の技術】アルミニウム等の金属溶解炉、ガラス溶
解炉あるいは熱処理炉等のいわゆる反射炉の築炉に際し
ては、一般に、炉内側から、耐火材および断熱材の炉材
をそれぞれ個別に張りつけて構築している。断熱材は必
要に応じて耐火度の高い耐火断熱材を含む複数の層によ
って形成されることがしばしばある。
2. Description of the Related Art In constructing a so-called reverberatory furnace such as a metal melting furnace for aluminum or the like, a glass melting furnace or a heat treatment furnace, generally, a refractory material and a heat insulating material are separately attached from the inside of the furnace. is doing. Insulation is often formed by multiple layers that optionally include a refractory insulation that is highly refractory.

【0003】しかるに、この従来の築炉作業にあって
は、各炉材を通常二層または三層に張り詰めて行うもの
であるから、煩雑で時間がかかり、大変な作業であっ
た。特に、この種の作業を行う熟練者の不足ならびに訓
練の困難性は、厳しい作業環境ともあいまって、ますま
す深刻なものとなっている。
However, in the conventional furnace construction work, since each furnace material is usually put up in two or three layers, it is troublesome and time-consuming. In particular, the shortage of skilled persons who perform this kind of work and the difficulty of training are becoming more and more serious in combination with a severe working environment.

【0004】[0004]

【発明が解決しようとする課題】この考案は、このよう
な状況に鑑みて、この種の築炉作業の煩雑さを大幅に改
善して簡単かつ容易に行うことができ、作業時間を短縮
し、あわせてその作業環境を大幅に改善することができ
る新規で堅牢な炉材を提案しようとするものである。
In view of such a situation, the present invention has greatly improved the complexity of this type of furnace construction work and can be performed easily and easily, thus shortening the work time. At the same time, we are going to propose a new and robust furnace material that can greatly improve the working environment.

【0005】[0005]

【課題を解決するための手段】上の目的を達成するため
に、この発明の不焼成耐火断熱炉材は、耐火層および一
または複数の断熱層が一体に形成されてなる。
In order to achieve the above object, the non-fired refractory insulation material of the present invention comprises a refractory layer and one or more insulation layers integrally formed.

【0006】また、この不焼成耐火断熱炉材の製法とし
て、耐火層および一または複数の断熱層をそれぞれ圧縮
成型し、前記各層を接合材を介して一体に積層重合する
ことが提案される。
Further, as a method for producing the non-fired refractory heat insulating furnace material, it is proposed that the fire resistant layer and one or a plurality of heat insulating layers are respectively compression-molded and the layers are integrally laminated and polymerized via a bonding material.

【0007】さらに、他の製法として、耐火層および一
または複数の断熱層が一体に形成されてなる耐火断熱炉
材を得るに際して、前記耐火材層および一または複数の
断熱層のいずれか一層を圧縮成型し、次いで前記層の上
面に他の層を順次圧縮成型して一体に積層形成すること
が提案される。
Further, as another manufacturing method, when obtaining a refractory heat insulating furnace material in which a fire resistant layer and one or more heat insulating layers are integrally formed, one of the fire resistant material layer and one or more heat insulating layers is formed. It is proposed to compression mold and then sequentially compression mold other layers onto the top surface of the layer to form an integral laminate.

【0008】さらにまた、他の製法として、耐火層およ
び一または複数の断熱層が一体に形成されてなる耐火断
熱炉材を得るに際して、前記各層を形成する材料を順次
積層し、前記材料全体を圧縮成型して一体に積層形成す
ることが提案される。
Further, as another manufacturing method, when obtaining a refractory heat insulating furnace material in which a fire resistant layer and one or a plurality of heat insulating layers are integrally formed, the materials forming the respective layers are sequentially laminated, and the entire material is formed. It is proposed to perform compression molding to integrally form a laminate.

【0009】[0009]

【実施例】以下図に基づいて説明すると、図1はこの発
明の一実施例を示す不焼成耐火断熱炉材の斜視図、図2
はその他の例を示す斜視図、図3はこの発明製法の一例
である圧縮成形工程を示す断面図、図4はその接合工程
を示す断面図、図5はその他の例を示す断面図、図6は
この発明製法の他の例を示す成形型の断面図、図7は同
じく他の例を示す成形型の断面図、図8はさらに他の例
を示す成形型の断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, FIG. 1 is a perspective view of an unfired fireproof heat insulating furnace material showing an embodiment of the present invention, and FIG.
Is a perspective view showing another example, FIG. 3 is a cross-sectional view showing a compression molding step as an example of the manufacturing method of the present invention, FIG. 4 is a cross-sectional view showing the joining step, and FIG. 5 is a cross-sectional view showing another example. 6 is a sectional view of a forming die showing another example of the manufacturing method of the present invention, FIG. 7 is a sectional view of a forming die showing the other example, and FIG. 8 is a sectional view of a forming die showing still another example.

【0010】また、図9以下はさらにこの発明および製
法の他の例を示したもので、図9はこの発明の不焼成耐
火断熱炉材の他の例を示す一部を切り欠いた斜視図、図
10は同じく他の例を示す一部を切り欠いた斜視図、図
11は凸凹状部の他の例を示す斜視図、図12はこの発
明製法の他の例を示す成形型の断面図、図13はその他
の例を示す成形型の断面図、図14はさらに他の例を示
す成形型の断面図、図15はこの発明の不焼成耐火断熱
炉材を炉体に構成した例を示す炉の断面図、図16は炉
材の連接状態を示す斜視図である。
Further, FIG. 9 and subsequent figures show another example of the present invention and the manufacturing method, and FIG. 9 is a partially cutaway perspective view showing another example of the non-fired fireproof heat insulating furnace material of the present invention. FIG. 10 is a partially cutaway perspective view showing another example, FIG. 11 is a perspective view showing another example of the uneven portion, and FIG. 12 is a cross section of a molding die showing another example of the manufacturing method of the present invention. FIG. 13, FIG. 13 is a sectional view of a forming die showing another example, FIG. 14 is a sectional view of a forming die showing still another example, and FIG. 15 is an example in which the unfired refractory heat insulating furnace material of the present invention is constructed in a furnace body FIG. 16 is a cross-sectional view of the furnace, and FIG. 16 is a perspective view showing a connected state of the furnace materials.

【0011】図1に示されるように、この発明の不焼成
耐火断熱炉材10は耐火層20に断熱層30が一体に形
成されている。
As shown in FIG. 1, in the non-fired refractory heat insulating furnace material 10 of the present invention, a heat insulating layer 30 is integrally formed with a fire resistant layer 20.

【0012】耐火層20はAl2 3 とSiO2 の化合
物、あるいはZrO2 とSiO2 の化合物を主成分とす
る公知の耐火材よりなり、前記炉材10において炉内側
に配されて1500℃から2000℃の高温に耐える。
The refractory layer 20 is made of a known refractory material containing a compound of Al 2 O 3 and SiO 2 or a compound of ZrO 2 and SiO 2 as a main component. The refractory material 10 is disposed inside the furnace at 1500 ° C. Withstands high temperatures of up to 2000 ° C.

【0013】断熱層30は一または複数の層が前記耐火
層20に一体に形成されていて、この実施例では、耐火
断熱層31と断熱層32の二層よりなる。
The heat insulating layer 30 has one or a plurality of layers integrally formed with the refractory layer 20. In this embodiment, the heat insulating layer 30 comprises two layers, a fire resistant heat insulating layer 31 and a heat insulating layer 32.

【0014】耐火断熱層31はAl2 3 とSiO2
化合物よりなり、600℃から1200℃の耐火度を有
している。
The refractory heat insulating layer 31 is made of a compound of Al 2 O 3 and SiO 2 and has a fire resistance of 600 ° C. to 1200 ° C.

【0015】断熱層32は珪酸カルシウムなどからな
り、炉材10の外側に配されて600℃から1000℃
の耐火度を有している。
The heat insulating layer 32 is made of calcium silicate or the like and is disposed outside the furnace material 10 and is 600 ° C. to 1000 ° C.
It has a fire resistance of.

【0016】図2はこの発明の不焼成耐火断熱炉材の他
の例を示したものである。ここで示される炉材11は断
熱層が単一の層33によって形成されている。符号21
は耐火層である。
FIG. 2 shows another example of the non-fired fireproof heat insulating furnace material of the present invention. In the furnace material 11 shown here, the heat insulating layer is formed by a single layer 33. Reference numeral 21
Is a refractory layer.

【0017】図3にこの発明の炉材の製造方法の一例を
示す。成形型50内に、耐火層20(21)を構成する
耐火材20A(21A)が投入される。そして、プレス
型60によって前記耐火材20Aを圧縮成型し、耐火層
20(21)を得る。同様に、断熱層30を構成する断
熱材30A(31A,32A,33A)を成形型50内
に投入し、それぞれ圧縮成型することにより断熱層31
(32,33)を得る。
FIG. 3 shows an example of the method for manufacturing the furnace material of the present invention. A refractory material 20A (21A) forming the refractory layer 20 (21) is put into the molding die 50. Then, the refractory material 20A is compression-molded by the press die 60 to obtain the refractory layer 20 (21). Similarly, the heat insulating material 30A (31A, 32A, 33A) forming the heat insulating layer 30 is put into the molding die 50, and compression molding is performed on each of the heat insulating materials 31A, 31A, 32A, 33A.
Get (32,33).

【0018】得られた耐火層20と耐火断熱層31と断
熱層32は、図4に示されるように、各層の間に接合材
40,41を介して一体に積層重合されて単一の不焼成
耐火断熱炉材12に形成される。
The fireproof layer 20, the fireproof heat insulating layer 31, and the heat insulating layer 32 thus obtained are integrally laminated and polymerized through the bonding materials 40 and 41 between the layers as shown in FIG. It is formed on the firing refractory heat insulating furnace material 12.

【0019】ここで用いられる接合材40(41,4
2)としては、Al2 3 とSiO2の混合物の水溶物
やZrO2 とSiO2 の混合物の水溶物など公知のバイ
ンダー材が好ましい。
The bonding material 40 (41, 4) used here
As 2), known binder materials such as an aqueous solution of a mixture of Al 2 O 3 and SiO 2 or an aqueous solution of a mixture of ZrO 2 and SiO 2 are preferable.

【0020】また、断熱層33を一の層によって形成
し、耐火層21との間に接合材43を介して一体に積層
重合することにより、図5に示されるような不焼成耐火
断熱炉材13が得られる。
Further, the heat insulating layer 33 is formed by one layer, and is integrally laminated and polymerized with the fire resistant layer 21 through the bonding material 43, so that the non-fired fire resistant heat insulating furnace material as shown in FIG. 13 is obtained.

【0021】図6ないし図8はこの発明製法の他の例を
示したものである。まず、図6の(a)のように、耐火
材20Aが成形型51内に配され、(b)に示されるよ
うに、プレス型61によって前記耐火材20Aを圧縮成
型して耐火層20が形成される。そして、プレス型61
によって前記耐火材20Aを圧縮成型し、耐火層20を
得る。次に、図の(c)および(d)に図示されるよう
に、成形型51内に形成された前記耐火層20の上面に
耐火断熱材31Aが投入され、プレス型61によって圧
縮し耐火断熱層31を耐火層20上側に一体に形成す
る。同様に、(e),(f)に示されるように、断熱層
32を形成する断熱材32Aを成形型51の耐火断熱層
31上面に配して、前述したように順次圧縮成型して断
熱層32を一体に形成する。なお、各層の成型順序は上
記の例と反対に行ってもよい。
6 to 8 show another example of the manufacturing method of the present invention. First, as shown in FIG. 6A, the refractory material 20A is placed in the molding die 51, and as shown in FIG. 6B, the refractory material 20A is compression-molded by the press die 61 to form the refractory layer 20. It is formed. And press die 61
The refractory material 20A is compression molded to obtain the refractory layer 20. Next, as shown in (c) and (d) of the figure, the refractory heat insulating material 31A is put on the upper surface of the refractory layer 20 formed in the molding die 51, and compressed by the press die 61 so that the fire refractory insulation is obtained. The layer 31 is integrally formed on the upper side of the refractory layer 20. Similarly, as shown in (e) and (f), the heat insulating material 32A that forms the heat insulating layer 32 is arranged on the upper surface of the fire resistant heat insulating layer 31 of the molding die 51, and compression molding is sequentially performed as described above to perform heat insulation. The layer 32 is integrally formed. The molding order of each layer may be reversed from the above example.

【0022】図7は前記断熱層を一の層によって形成し
た例である。図中の符号で21Aは耐火材、33Aは断
熱材、52は成形型、62はプレス型である。
FIG. 7 shows an example in which the heat insulating layer is formed of one layer. In the figure, 21A is a refractory material, 33A is a heat insulating material, 52 is a molding die, and 62 is a press die.

【0023】図8はさらにこの発明製法の他の例を示し
たもので、成形型53内に耐火層20を形成する耐火材
20A、耐火断熱層31を形成する耐火断熱材31Aお
よび断熱層32を形成する断熱材32Aを順次積層し、
プレス型63によって前記断熱材32A上側から全体を
一体に圧縮成型する。
FIG. 8 shows another example of the manufacturing method of the present invention. The refractory material 20A forming the refractory layer 20 in the molding die 53, the refractory heat insulating material 31A forming the fire resistant heat insulating layer 31, and the heat insulating layer 32. 32A of heat insulating materials that form
The whole of the heat insulating material 32A is integrally compression-molded by the press die 63 from the upper side.

【0024】図9はこの発明炉材の他の例を示したもの
で、耐火層22に耐火断熱層34と断熱層35とからな
る断熱層36が一体に形成された不焼成耐火断熱炉材1
4において、その各層の境界部a,bに凸凹状部Dが形
成されている。この実施例では、前記凸凹状部Dは複数
の突条部D1よりなる。この凸凹状部Dが上側に配され
る層材との接合をさらに強固にし、堅牢な炉材を提供す
ることができる。
FIG. 9 shows another example of the furnace material of the present invention, which is an unfired fireproof heat insulating furnace material in which a heat insulating layer 36 composed of a fire resistant heat insulating layer 34 and a heat insulating layer 35 is integrally formed on the fire resistant layer 22. 1
4, the uneven portions D are formed on the boundary portions a and b of the respective layers. In this embodiment, the uneven portion D is composed of a plurality of ridges D1. It is possible to further strengthen the joint between the uneven portion D and the layer material arranged on the upper side, and to provide a robust furnace material.

【0025】図10にこの発明の不焼成耐火断熱炉材の
他の例を示す。ここで示される炉材15は断熱層が単一
の層37によって形成されているとともに、耐火層23
との境界部cに凸凹状部Dを有している。
FIG. 10 shows another example of the non-fired refractory heat insulating furnace material of the present invention. In the furnace material 15 shown here, the heat insulating layer is formed by a single layer 37, and the refractory layer 23
The boundary portion c has a concave-convex portion D.

【0026】図11に凸凹状部の他の例を示す。この例
において、層Sの境界部には複数の半円形状凸部D3よ
りなる凸凹状部D2が形成されている。
FIG. 11 shows another example of the uneven portion. In this example, the boundary portion of the layer S is formed with a concave-convex portion D2 including a plurality of semicircular convex portions D3.

【0027】図12ないし図14はこの発明製法の他の
例を示したもので、上記した炉材14および15を得る
ことができる。まず、図12の(a)のように、耐火材
22Aが成形型54内に配され、(b)に示されるよう
に、プレス型64によって前記耐火材22Aを圧縮成型
して耐火層22が得られる。このプレス型64の型面は
凸凹形状に形成されていて、前記耐火層22Aを圧縮成
形した際にその圧縮面に凸凹状部Dを形成する。次に、
図の(c)および(d)に図示されるように、成形型5
4内に形成された前記耐火層22の上面に耐火断熱材3
4Aが投入され、プレス型64によって圧縮する。そし
て、前記耐火断熱層34をその圧縮面に形成された凸凹
状部Dを介して前記耐火層22上側に一体に形成する。
最後に、(e),(f)に示されるように、断熱層35
を形成する断熱材35Aを成形型54の耐火断熱層34
上面に配し、圧縮面が平面形状のプレス型60によって
前述したように順次圧縮成型して断熱層35を一体に形
成する。得られたブロック状の炉材は、その各層の境界
部d,eが凸凹状に形成されおり各層が強固に接合され
ている。なお、各層の成型順序は上記の例と反対に行っ
てもよい。
12 to 14 show another example of the manufacturing method of the present invention, in which the above-mentioned furnace materials 14 and 15 can be obtained. First, as shown in FIG. 12A, the refractory material 22A is placed in the molding die 54, and as shown in FIG. 12B, the refractory material 22A is compression-molded by the press die 64 to form the refractory layer 22. can get. The die surface of the press die 64 is formed in an uneven shape, and when the refractory layer 22A is compression-molded, an uneven portion D is formed on the compression surface. next,
As shown in (c) and (d) of the figure, the mold 5
On the upper surface of the refractory layer 22 formed in
4A is charged and compressed by the press die 64. Then, the refractory heat insulating layer 34 is integrally formed on the upper side of the refractory layer 22 via the uneven portion D formed on the compression surface thereof.
Finally, as shown in (e) and (f), the heat insulating layer 35
The heat insulating material 35A that forms the
The heat insulating layer 35 is disposed on the upper surface and is sequentially compression-molded by the press die 60 having a flat compression surface as described above to integrally form the heat insulating layer 35. In the obtained block-shaped furnace material, the boundary portions d and e of the respective layers are formed in an uneven shape, and the respective layers are firmly joined. The molding order of each layer may be reversed from the above example.

【0028】図13は前記断熱層を一の層によって形成
した例である。図中の符号で23Aは耐火材、36Aは
断熱材、55は成形型である。前記耐火材23Aは前述
したように凸凹形状を有するプレス型65によって圧縮
され、次に配される断熱材36Aとの境界部fに凸凹状
部Dが形成される。
FIG. 13 shows an example in which the heat insulating layer is formed of one layer. In the figure, 23A is a refractory material, 36A is a heat insulating material, and 55 is a mold. As described above, the refractory material 23A is compressed by the press die 65 having the uneven shape, and the uneven portion D is formed at the boundary portion f with the heat insulating material 36A to be arranged next.

【0029】図14はさらにこの発明製法の他の例を示
したもので、成形型56内に耐火層24を形成する耐火
材24A、耐火断熱層38を形成する耐火断熱材38A
および断熱層39を形成する断熱材39Aを順次積層す
る。その際、図中の鎖線で示されるように、各層を適宜
の大きさの網目を有するたとえば篩状の治具などを介し
て成形型56内に配することにより、前記各層の境界部
g,hに凸凹状部Dが形成される。そして、プレス型6
0によって前記断熱材39A上側から全体を一体に圧縮
成型しブロック状の炉材を得る。
FIG. 14 shows another example of the manufacturing method of the present invention. A refractory material 24A for forming the refractory layer 24 and a refractory insulation material 38A for forming the refractory heat insulating layer 38 in the molding die 56.
And the heat insulating material 39A which forms the heat insulating layer 39 is sequentially laminated. At that time, as shown by the chain line in the drawing, by arranging each layer in the molding die 56 via a jig having a mesh of an appropriate size, for example, a jig g, the boundary portion g of each layer, The uneven portion D is formed in h. And press die 6
By 0, the entire heat insulating material 39A is integrally compression-molded from the upper side to obtain a block-shaped furnace material.

【0030】図15にこの発明の不焼成耐火断熱炉材を
炉形状に構成した例を示す。符号70はブロック形状に
成形された炉材で、炉内側に耐火層71、炉の外側に断
熱層72が配されて一体に形成されている。また、前記
耐火層71と断熱層72との境界部には凸凹状部Dが形
成されている。この炉材70は、公知の耐火材よりなる
接合材を介して、その側面側73,73、および図示は
省略するが上下面側を連接され積み上げられて所定形状
の炉体形状に構築されている。なお、符号77は炉体外
側を被覆する金属板などの外郭材である。
FIG. 15 shows an example in which the unfired refractory heat insulating furnace material of the present invention is formed in a furnace shape. Reference numeral 70 is a block-shaped furnace material, which is integrally formed by disposing a refractory layer 71 inside the furnace and a heat insulating layer 72 outside the furnace. Further, an uneven portion D is formed at the boundary between the refractory layer 71 and the heat insulating layer 72. The furnace material 70 is formed into a predetermined furnace body shape by connecting side surfaces 73, 73, and upper and lower surface sides (not shown) connected to each other through a bonding material made of a known refractory material. There is. Reference numeral 77 is an outer shell material such as a metal plate that covers the outside of the furnace body.

【0031】この炉材70は、図16からよりよく理解
されるように、前記炉材70の側面側73には凹部75
が設けられている。この凹部75は後述する耐火材80
を充填するためのもので、隣接するブロック炉材70a
の凹部75aとによって形成された空隙76に耐火材8
0が充填される。
This furnace material 70 has a recessed portion 75 on the side surface 73 of the furnace material 70, as will be better understood from FIG.
Is provided. This concave portion 75 is a refractory material 80 described later.
Adjacent to the block furnace material 70a
Of the refractory material 8 into the void 76 formed by the concave portion 75a of
0 is filled.

【0032】前記耐火材80がパウダー状またはペース
ト状などの不定形である場合は、当該耐火材80を連接
された前記ブロック炉材70,70aの凹部75,75
aによって形成された空隙76に充填する。また、耐火
材80が定形品である場合には、図16のように、前記
空隙76の大きさに成形され当該空隙76に接合材を介
して充填される。
When the refractory material 80 has an irregular shape such as powder or paste, the refractory material 80 is connected to the concave portions 75, 75 of the block furnace materials 70, 70a.
The voids 76 formed by a are filled. When the refractory material 80 is a standard product, as shown in FIG. 16, the refractory material 80 is molded into the size of the void 76 and filled in the void 76 via a bonding material.

【0033】[0033]

【発明の効果】以上図示し説明したように、この発明の
不焼成耐火断熱炉材およびその製法によれば、耐火材お
よび断熱材を個別に張り合わせる必要がないので、築炉
作業がきわめて簡単かつ容易になり、作業時間を短縮
し、あわせてその作業環境を大幅に改善することができ
る。また、得られた炉材は堅牢で、各層の剥離や炉内か
らの溶湯漏れを生じることがなく、安全な炉を提供する
ことができる。
As shown and described above, according to the non-fired refractory heat insulating furnace material and the manufacturing method thereof of the present invention, it is not necessary to separately bond the fire resistant material and the heat insulating material, so that the furnace construction work is extremely simple. Moreover, the work environment can be shortened and the working environment can be greatly improved. In addition, the obtained furnace material is robust and does not cause peeling of each layer or leakage of molten metal from the furnace, and thus a safe furnace can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す不焼成耐火断熱炉材
の斜視図である。
FIG. 1 is a perspective view of an unfired fireproof heat insulating furnace material showing an embodiment of the present invention.

【図2】その他の例を示す斜視図である。FIG. 2 is a perspective view showing another example.

【図3】この発明製法の一例である圧縮成型工程を示す
断面図である。
FIG. 3 is a cross-sectional view showing a compression molding process which is an example of the manufacturing method of the present invention.

【図4】その接合工程を示す断面図である。FIG. 4 is a cross-sectional view showing the joining step.

【図5】その他の例を示す断面図である。FIG. 5 is a cross-sectional view showing another example.

【図6】この発明製法の他の例を示す断面図である。FIG. 6 is a cross-sectional view showing another example of the manufacturing method of the present invention.

【図7】同じく他の例を示す断面図である。FIG. 7 is a cross-sectional view showing another example of the same.

【図8】さらに他の例を示す断面図である。FIG. 8 is a cross-sectional view showing still another example.

【図9】この発明の不焼成耐火断熱炉材の他の例を示す
一部を切り欠いた斜視図である。
FIG. 9 is a partially cutaway perspective view showing another example of the non-fired fireproof heat insulating furnace material of the present invention.

【図10】同じく他の例を示す一部を切り欠いた斜視図
である。
FIG. 10 is a partially cutaway perspective view showing another example of the same.

【図11】凸凹状部の他の例を示す斜視図である。FIG. 11 is a perspective view showing another example of the uneven portion.

【図12】この発明製法の他の例を示す成形型の断面図
である。
FIG. 12 is a sectional view of a molding die showing another example of the production method of the present invention.

【図13】その他の例を示す成形型の断面図である。FIG. 13 is a cross-sectional view of a molding die showing another example.

【図14】さらに他の例を示す成形型の断面図である。FIG. 14 is a sectional view of a molding die showing still another example.

【図15】この発明の不焼成耐火断熱炉材を炉体に構成
した例を示す炉の断面図である。
FIG. 15 is a sectional view of a furnace showing an example in which the unfired fireproof heat insulating furnace material of the present invention is configured in a furnace body.

【図16】炉材の連接状態を示す斜視図である。FIG. 16 is a perspective view showing a connected state of furnace materials.

【符号の説明】[Explanation of symbols]

10 炉材 20 耐火層 21 耐火層 30 断熱層 31 耐火断熱層 32 断熱層 D 凸凹状部 10 furnace material 20 fireproof layer 21 fireproof layer 30 heat insulating layer 31 fireproof heat insulating layer 32 heat insulating layer D irregularities

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 耐火層および一または複数の断熱層が一
体に形成されてなることを特徴とする不焼成耐火断熱炉
材。
1. A non-fired fireproof heat insulating furnace material comprising a fireproof layer and one or more heat insulating layers integrally formed.
【請求項2】 請求項1において、各層の境界部が凸凹
状に構成された不焼成耐火断熱炉材。
2. The non-fired refractory heat insulating furnace material according to claim 1, wherein the boundary portion of each layer is uneven.
【請求項3】 耐火層および一または複数の断熱層をそ
れぞれ圧縮成型し、前記各層を接合材を介して一体に積
層重合することを特徴とする不焼成耐火断熱炉材の製
法。
3. A method for producing a non-fired refractory heat insulating furnace material, characterized in that a fire resistant layer and one or a plurality of heat insulating layers are respectively compression-molded and the layers are integrally laminated and polymerized via a bonding material.
【請求項4】 請求項3において、各層の境界部が凸凹
状に構成された不焼成耐火断熱炉材の製法。
4. The method for producing a non-fired refractory heat insulating furnace material according to claim 3, wherein the boundary portion of each layer is formed in an uneven shape.
【請求項5】 耐火層および一または複数の断熱層が一
体に形成されてなる耐火断熱炉材を得るに際して、前記
耐火材層および一または複数の断熱層のいずれか一層を
圧縮成型し、次いで前記層の上面に他の層を順次圧縮成
型して一体に積層形成することを特徴とする不焼成耐火
断熱炉材の製法。
5. When obtaining a refractory heat insulation furnace material in which a refractory layer and one or more heat insulation layers are integrally formed, one of the refractory material layer and one or more heat insulation layers is compression molded, and then, A method for producing a non-fired refractory adiabatic furnace material, characterized in that another layer is sequentially compression-molded on the upper surface of the layer to be integrally laminated.
【請求項6】 請求項5において、各層の境界部を凸凹
状に圧縮成形する不焼成耐火断熱炉材の製法。
6. The method for producing a non-fired refractory heat insulating furnace material according to claim 5, wherein the boundary portion of each layer is compression molded into an uneven shape.
【請求項7】 耐火層および一または複数の断熱層が一
体に形成されてなる耐火断熱炉材を得るに際して、前記
各層を形成する材料を順次積層し、前記材料全体を圧縮
成型して一体に積層形成することを特徴とする不焼成耐
火断熱炉材の製法。
7. When obtaining a refractory insulation furnace material in which a refractory layer and one or a plurality of heat insulation layers are integrally formed, the materials forming the respective layers are sequentially laminated, and the whole material is compression molded to be integrally formed. A method for producing a non-fired refractory heat insulating furnace material, which is characterized by forming layers.
【請求項8】 請求項7において、各層の境界部を凸凹
状に積層する不焼成耐火断熱炉材の製法。
8. The method for manufacturing an unfired refractory heat insulating furnace material according to claim 7, wherein the boundary portions of the respective layers are laminated in an uneven shape.
JP4105476A 1992-01-29 1992-03-30 Non-fired refractory heat insulating furnace material and its production Pending JPH05306161A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4-38596 1992-01-29
JP3859692 1992-01-29

Publications (1)

Publication Number Publication Date
JPH05306161A true JPH05306161A (en) 1993-11-19

Family

ID=12529668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4105476A Pending JPH05306161A (en) 1992-01-29 1992-03-30 Non-fired refractory heat insulating furnace material and its production

Country Status (1)

Country Link
JP (1) JPH05306161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1701122A2 (en) * 2005-03-11 2006-09-13 Plibrico G.m.b.H. Heat shield element and method for manufacturing the same
CN103528376A (en) * 2013-11-06 2014-01-22 宁夏新航能源环境科技有限公司 Energy-saving refractory brick

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1701122A2 (en) * 2005-03-11 2006-09-13 Plibrico G.m.b.H. Heat shield element and method for manufacturing the same
EP1701122A3 (en) * 2005-03-11 2006-12-06 Plibrico G.m.b.H. Heat shield element and method for manufacturing the same
CN103528376A (en) * 2013-11-06 2014-01-22 宁夏新航能源环境科技有限公司 Energy-saving refractory brick

Similar Documents

Publication Publication Date Title
US4833015A (en) Multilayer foam glass with dense glass surface layer and method of producing same
WO2007079298A3 (en) Method for forming layered heating element for glow plug
WO2000013890A3 (en) Bonded multi-layer composite plates and a method for producing multi-layer composite plates
JPH05306161A (en) Non-fired refractory heat insulating furnace material and its production
US3496264A (en) Method for producing decorative tile
JPS63233019A (en) Multilayered foam glass body and its production
FR2259954A1 (en) Prefabricated concrete sandwich slab - has lightweight layer between two heavy layers poured successively
JPS6076311A (en) Manufacture of gasket
JP2909170B2 (en) Manufacturing method of ceramic balls for filling molds
JPH0125684B2 (en)
JPH0615439A (en) Production of molten metal vessel
CN107268855A (en) A kind of honeycomb cored structure
JP2556487Y2 (en) Semiconductor package having translucent body
CN209179226U (en) Assembled architecture composite insulation boards
US4881314A (en) Method of explosively forming a multilayered composite material
SU1671816A1 (en) Method for making multi-layer panel
CN101672082A (en) Dual-decorative concrete building block and production method thereof
JPS5927746B2 (en) Manufacturing method of ceramic sintered body
JPH0825179B2 (en) Composite inorganic plate and its manufacturing method
JP2570368B2 (en) Method for producing glazed extruded hollow ceramic plate with sealed end face
JPH063358Y2 (en) Non-fired basic brick for rotary kiln
JPH046163A (en) Production of carrier consisting of aluminium nitride
JPS61250132A (en) Manufacture of composite member
JPH0378027U (en)
JPS63163258U (en)