JPH0530608A - Hybrid system for electric automobile - Google Patents

Hybrid system for electric automobile

Info

Publication number
JPH0530608A
JPH0530608A JP3176608A JP17660891A JPH0530608A JP H0530608 A JPH0530608 A JP H0530608A JP 3176608 A JP3176608 A JP 3176608A JP 17660891 A JP17660891 A JP 17660891A JP H0530608 A JPH0530608 A JP H0530608A
Authority
JP
Japan
Prior art keywords
battery
charging
capacitor
deceleration
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3176608A
Other languages
Japanese (ja)
Inventor
Shuzo Moroto
脩三 諸戸
Masashi Nakamura
正志 中村
Hitoshi Dogoshi
仁 堂腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP3176608A priority Critical patent/JPH0530608A/en
Publication of JPH0530608A publication Critical patent/JPH0530608A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To extend traveling distance by controlling the deceleration amount while limiting the charging amount of a battery thereby obtaining acceleration/ deceleration energy higher than the battery capacity. CONSTITUTION:In an electric automobile comprising a DC power supply 1-5, a motor 7 fixed to a wheel, a converter 6 connected with the DC power supply to drive the motor, and a controller 8 for the converter 6, the DC power supply comprises a battery 1, a large capacity capacitor 4, and means 2, 3, 5 for switching the battery 1 and the large capacity capacitor 4 between charge/ discharge operations, wherein the battery charging operation is limited under charging mode due to regenerative brake thus increasing the quick charging/ discharging load of the large capacity capacitor. Consequently, the large capacity capacitor 4 can deal with the case where the battery 1 has not enough capacity to deal with high acceleration/deceleration. Consequently, quick charging of the battery 1 can be avoided and the battery 1 is protected against deterioration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、直流電源、ホィールに
取り付けられるモータ、直流電源に接続されモータを駆
動するコンバータ、及びコンバータを制御する制御装置
を有する電気自動車のハイブリッドシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid system for an electric vehicle having a DC power supply, a motor mounted on a wheel, a converter connected to the DC power supply to drive the motor, and a control device for controlling the converter.

【0002】[0002]

【従来の技術】環境汚染が地球規模での大きな問題とな
ってきており、エンジン自動車の排気ガスにも厳しい対
応が迫られている。かかる状況にあって、排気ガスのな
いクリーンな自動車として電気自動車が一部特定の用途
として実用化されているが、より広範にエンジン自動車
に代わって実用に供し得る電気自動車の早期実現が望ま
れている。
2. Description of the Related Art Environmental pollution has become a major problem on a global scale, and exhaust gas from engine vehicles is required to be strictly controlled. Under such circumstances, electric vehicles have been put into practical use as clean vehicles with no exhaust gas in some specific applications, but it is desired to realize an electric vehicle that can be put to practical use in a wider range of places instead of engine vehicles in an early stage. ing.

【0003】電気自動車の現状は、エンジン自動車と比
較すると、連続走行距離や加速性能等の面から見てまだ
かなり劣っている。エンジン自動車と同等の走行性を保
証するには、その動力源であるバッテリーや太陽電池の
小型、大容量化が最も大きな課題の1つである。しか
し、現状のバッテリーを搭載した電気自動車でも、エン
ジン自動車に近い走行性を実現するために、様々な研究
開発がなされている。
The current state of electric vehicles is still inferior to engine vehicles in terms of continuous mileage and acceleration performance. In order to ensure the same drivability as an engine vehicle, one of the biggest challenges is to make the power source, such as a battery or a solar cell, smaller and larger in capacity. However, various researches and developments have been carried out in order to realize a running performance similar to that of an engine vehicle even in an electric vehicle equipped with a current battery.

【0004】図6は電気自動車の駆動制御回路の従来例
を示す図であり、DCブラシレスモータ68の回転シャ
フトに車輪のホィールを取り付け、バッテリー(DC電
源)61を電源としブリッジ回路63を介してDCブラ
シレスモータ68を駆動するものである。DCブラシレ
スモータ68には、回転位置を検出するためのレゾルバ
69が取り付けられ、レゾルバ回路68によりレゾルバ
69を励磁してレゾルバ信号を取り出し、磁極位置(回
転位置)を検出する。また、ブリッジ回路63とDCブ
ラシレスモータ68との間には電流センサ67を接続し
てUV相の電流を検出する。そして、与えられた電流指
令、回転方向指令、回生指令、運転指令に基づき電流波
形制御回路65により磁極位置と検出電流をフィードバ
ック信号として入力してUVW相のPWM信号を生成
し、ベースドライバ回路64によりUVW相のPWM信
号に基づいてブリッジ回路63の駆動信号を生成する。
これらブリッジの駆動電源や制御電源は、バッテリー6
1に接続された電源回路62により所定の電圧に変換し
て供給される。また、バッテリー61と並列に平滑用と
してコンデンサCが接続される。
FIG. 6 is a diagram showing a conventional example of a drive control circuit for an electric vehicle. Wheels of wheels are attached to a rotating shaft of a DC brushless motor 68, and a battery (DC power source) 61 is used as a power source via a bridge circuit 63. The DC brushless motor 68 is driven. A resolver 69 for detecting a rotational position is attached to the DC brushless motor 68, and the resolver circuit 68 excites the resolver 69 to extract a resolver signal and detect a magnetic pole position (rotational position). A current sensor 67 is connected between the bridge circuit 63 and the DC brushless motor 68 to detect the UV-phase current. Then, based on the given current command, rotation direction command, regeneration command, and operation command, the current waveform control circuit 65 inputs the magnetic pole position and the detected current as a feedback signal to generate a UVW-phase PWM signal, and the base driver circuit 64. Thus, a drive signal for the bridge circuit 63 is generated based on the UVW-phase PWM signal.
The drive power and control power of these bridges are battery 6
The power supply circuit 62 connected to 1 converts the voltage into a predetermined voltage and supplies the voltage. A capacitor C is connected in parallel with the battery 61 for smoothing.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の電気自
動車の駆動回路は、上記のようにバッテリーを電源とし
て駆動しているだけであるため、種々の問題が生じてい
る。例えば減速時に回生制動をかけると、急速充電によ
るバッテリーの劣化が生じるが、その対策がなされてい
ないため、バッテリーの寿命が著しく短くなってしま
う。また、電気的に減速量をコントロールする手段も備
えていないため、摩擦ブレーキに負担がかかり高速走行
からの速やかな減速が難しく、繰り返し減速に対する耐
久性が低くなってしまう。
However, since the conventional drive circuit for an electric vehicle is driven only by the battery as a power source as described above, various problems occur. For example, when regenerative braking is applied during deceleration, deterioration of the battery due to rapid charging occurs, but since no countermeasure has been taken, the life of the battery is significantly shortened. Further, since there is no means for electrically controlling the amount of deceleration, the friction brake is burdened, it is difficult to quickly decelerate from high speed running, and durability against repeated deceleration becomes low.

【0006】このようにバッテリーの劣化や減速性能等
の問題から長距離、長時間の走行が難しく、エンジン自
動車と同じような加速、減速性能を期待することが難し
かった。
As described above, it is difficult to travel a long distance for a long time due to problems such as deterioration of the battery and deceleration performance, and it is difficult to expect the same acceleration and deceleration performance as an engine vehicle.

【0007】本発明の目的は、バッテリーへの充電量を
制限しながら減速量をコントロールできるようにするこ
とである。本発明の他の目的は、バッテリーの容量以上
の加速、減速エネルギーを得ることである。本発明のさ
らに他の目的は、走行距離の増大を可能にすることであ
る。
An object of the present invention is to control the amount of deceleration while limiting the amount of charge to the battery. Another object of the present invention is to obtain acceleration and deceleration energy exceeding the capacity of the battery. Yet another object of the present invention is to enable an increase in mileage.

【0008】[0008]

【課題を解決するための手段】本発明の電気自動車のハ
イブリッドシステムは、直流電源、ホィールに取り付け
られるモータ、直流電源に接続されモータを駆動するコ
ンバータ、及びコンバータを制御する制御装置を有する
電気自動車において、直流電源として、バッテリーと大
容量コンデンサと加速/減速に応じてバッテリー及び大
容量コンデンサを放電/充電の切り換えを行う切り換え
手段とを有し、回生制動による充電モード時にはバッテ
リーへの充電を制限して大容量コンデンサに急速放電/
充電の分担を大きくするように構成したことを特徴とす
る。
A hybrid system for an electric vehicle according to the present invention includes a DC power source, a motor mounted on a wheel, a converter connected to the DC power source for driving the motor, and a control device for controlling the converter. In the above, a DC power source has a battery, a large-capacity capacitor, and a switching means for switching between discharging and charging the battery and the large-capacity capacitor in accordance with acceleration / deceleration, and limits charging to the battery in a charging mode by regenerative braking. And then rapidly discharge to a large-capacity capacitor /
It is characterized in that it is configured to increase the charge sharing.

【0009】[0009]

【作用及び発明の効果】本発明の電気自動車のハイブリ
ッドシステムでは、直流電源として、バッテリーと大容
量コンデンサと加速/減速に応じてバッテリー及び大容
量コンデンサを放電/充電の切り換えを行う切り換え手
段とを有し、回生制動による充電モード時にはバッテリ
ーへの充電を制限して大容量コンデンサに急速放電/充
電の分担を大きくするように構成したので、バッテリー
が大きな加速/減速に対応できる容量がなくても、大容
量コンデンサで対応できる。したがって、バッテリーの
急速充電を避けることができ、バッテリーの劣化を防ぐ
ことができる。
In the hybrid system for the electric vehicle of the present invention, the battery, the large-capacity capacitor, and the switching means for switching between discharging and charging the battery and the large-capacity capacitor according to acceleration / deceleration are provided as the DC power source. Also, in the charging mode by regenerative braking, the charging of the battery is limited and the large-capacity capacitor is configured to increase the share of rapid discharge / charging, so that even if the battery does not have a large capacity for acceleration / deceleration. A large capacity capacitor can be used. Therefore, rapid charging of the battery can be avoided, and deterioration of the battery can be prevented.

【0010】[0010]

【実施例】以下、本発明の実施例を図面により説明す
る。図1は本発明の電気自動車のハイブリッドシステム
の1実施例を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a hybrid system for an electric vehicle according to the present invention.

【0011】図1(イ)において、バッテリー1は、エ
ネルギーレベリング回路2を介して定常低電流充・放電
によりモータ7を駆動するものであり、コンデンサ4
は、並直切換回路5を介して非定常高電流充・放電によ
りモータ7を駆動する大容量コンデンサである。充電コ
ントローラ3は、バッテリー1からコンデンサ4への充
電を制御するものであり、コンバータ6は、バッテリー
1及びコンデンサ4によるモータ7の駆動を制御するも
のである。コントローラ8は、加速、減速、定速走行に
応じてコンバータ6を制御するものである。本発明は、
特に、加速/減速時において、コンデンサ4に大電流の
急速充・放電を行うようにし、バッテリー1からの放電
電流をエネルギーレベリング回路2で制限して、バッテ
リー1の急速充電による劣化を防止するように構成して
いる。
In FIG. 1A, a battery 1 drives a motor 7 through a constant low current charge / discharge via an energy leveling circuit 2 and a capacitor 4
Is a large-capacity capacitor that drives the motor 7 through unsteady high-current charging / discharging via the parallel / serial switching circuit 5. The charge controller 3 controls charging from the battery 1 to the capacitor 4, and the converter 6 controls driving of the motor 7 by the battery 1 and the capacitor 4. The controller 8 controls the converter 6 according to acceleration, deceleration, and constant speed traveling. The present invention is
In particular, during acceleration / deceleration, a large current is rapidly charged / discharged in the capacitor 4, and the discharge current from the battery 1 is limited by the energy leveling circuit 2 to prevent deterioration of the battery 1 due to rapid charging. Is configured.

【0012】例えば今、交差点のように図1(ロ)に示
す速度曲線で繰り返し加速、減速しようとする場合のバ
ッテリー1とコンデンサ4のエネルギー分担の例を示し
たのが図1(ハ)である。
FIG. 1C shows an example of energy sharing between the battery 1 and the capacitor 4 when repeatedly accelerating and decelerating with the speed curve shown in FIG. 1B like an intersection. is there.

【0013】まず、(ロ)の速度曲線で示すようにt1
から直線的に加速を開始しt2 で定速走行に移行する場
合、(ハ)のエネルギー分担で示すように最終値のe1
に対し、そのうちバッテリーではe2 だけ分担して残り
(e1 −e2 )をコンデンサが分担する。定速走行に移
行するとe3 を全部バッテリーで分担する。そして、t
3 から減速を開始しt4 で停止するまでの間は、回生制
動をかけることによりe5 のうちe4 だけバッテリーが
回収し残り(e5 −e4 )をコンデンサに回収する。一
時停止後再度t5 からスタートしてt6 で定速走行に移
行し、t7 から減速を開始しt8 で停止するまでも同様
である。このように大量の急速放出、急速回収をコンデ
ンサで分担することによって、バッテリーではほぼ定常
値の範囲内で放出、回収を行えばよいので、バッテリー
の利用効率を高め、寿命も延ばすことができる。
First, as shown by the velocity curve (b), t 1
When linear acceleration is started from and the vehicle moves to constant speed running at t 2 , the final value e 1 as shown in (c) Energy sharing
On the other hand, in the battery, only e 2 is shared and the rest (e 1 -e 2 ) is shared by the capacitor. When shifting to constant speed driving, all e 3 is shared by the battery. And t
During the period from the start of deceleration from 3 until the stop at t 4 , regenerative braking is applied to recover the battery by e 4 of e 5 and the remaining (e 5 −e 4 ) is collected in the capacitor. The same applies until the vehicle starts again from t 5 after a temporary stop, shifts to constant speed traveling at t 6 , starts decelerating from t 7 , and stops at t 8 . By thus sharing a large amount of rapid release and rapid recovery by the capacitor, it is sufficient for the battery to release and recover within a range of a substantially constant value, so that the utilization efficiency of the battery and the life thereof can be extended.

【0014】上記のようなコンデンサとしては、例えば
スーパーキャパシタと呼ばれる電極/電解質界面形成に
よる電気化学コンデンサを用いることができる。この電
気化学コンデンサは、従来のソリッドステート等のもの
と比較して3桁程度容量が大きいことから、最近注目さ
れているものであり、このような大容量の電気化学コン
デンサを使用することによって上記本発明の実現が容易
になった。
As the above-mentioned capacitor, for example, an electrochemical capacitor by forming an electrode / electrolyte interface called a supercapacitor can be used. This electrochemical capacitor has recently been attracting attention because it has a capacity of about three orders of magnitude larger than that of a conventional solid state or the like. By using such a large capacity electrochemical capacitor, Implementation of the present invention has been facilitated.

【0015】図2乃至図4は本発明の電気自動車のハイ
ブリッドシステムの具体的な回路の構成例を示す図であ
る。
2 to 4 are diagrams showing a concrete circuit configuration example of the hybrid system of the electric vehicle of the present invention.

【0016】図2(イ)に示す例は、バッテリー12の
回収充電回路をスイッチSW2と電流制御回路13との
直列回路で構成し、放電回路をスイッチSW1と整流回
路Dとの直列回路で構成したものであり、これらの回路
を通してコンデンサ11と共にブリッジ回路からなるコ
ンバータ14に接続してモータ15を駆動している。充
電回路及び放電回路をトランジスタで構成した例を示し
たのが図2(ロ)である。PNPタイプのトランジスタ
TR1、TR2をバッテリー12の出力端子に逆並列接
続したものであり、トランジスタTR1が、ベースに印
加されるオン/オフ信号によりスイッチングを行う
(イ)の放電回路を構成し、トランジスタTR2が、ト
ランジスタTR4のオン/オフによりスイッチングと電
流制御を行う(イ)の回収充電回路を構成している。す
なわち、抵抗R1、R2及びトランジスタTR3、TR
4 からなるトランジスタTR2のベース駆動回路は、ト
ランジスタTR4をオン/オフすることにより駆動する
ものであり、抵抗R1、R2、あるいはトランジスタT
R4のベースバイアスを制御することにより電流を制御
する。
In the example shown in FIG. 2A, the recovery charging circuit for the battery 12 is composed of a series circuit of a switch SW2 and a current control circuit 13, and the discharging circuit is composed of a series circuit of a switch SW1 and a rectifying circuit D. Through these circuits, the motor 15 is driven by being connected to the converter 14 including the capacitor 11 and the bridge circuit. FIG. 2B shows an example in which the charging circuit and the discharging circuit are formed using transistors. The PNP type transistors TR1 and TR2 are connected in anti-parallel to the output terminal of the battery 12, and the transistor TR1 constitutes a discharge circuit of (a) which performs switching by an on / off signal applied to the base, TR2 constitutes a recovery / charging circuit (a) that performs switching and current control by turning on / off the transistor TR4. That is, the resistors R1 and R2 and the transistors TR3 and TR
The base drive circuit of the transistor TR2 composed of 4 drives by turning on / off the transistor TR4. The base drive circuit includes resistors R1 and R2, or a transistor T2.
The current is controlled by controlling the base bias of R4.

【0017】図3(イ)に示す例は、コンデンサ11及
びバッテリー12と、コンバータ14との間に減速量に
応じて回収電流を制御する電流制御回路21を接続した
ものである。基本的には図2においてバッテリー12に
接続したスイッチSW2と電流制御回路13からなる回
収充電回路と、スイッチSW1と整流回路Dからなる放
電回路と同じ構成となり、(ロ)に示すようにトランジ
スタTR5〜TR8及び抵抗R3、R4からなる。そし
て、抵抗R4又はトランジスタTR8のベースバイアス
を制御することによって減速量に応じた電流制御が行わ
れる。
In the example shown in FIG. 3A, a current control circuit 21 for controlling the recovery current according to the deceleration amount is connected between the capacitor 11 and the battery 12 and the converter 14. Basically, the configuration is the same as that of the recovery charging circuit including the switch SW2 and the current control circuit 13 connected to the battery 12 and the discharging circuit including the switch SW1 and the rectifying circuit D in FIG. ~ TR8 and resistors R3 and R4. Then, by controlling the base bias of the resistor R4 or the transistor TR8, current control according to the deceleration amount is performed.

【0018】図4に示す例は、図3の変形例を示したも
のであり、コンバータ14を構成するブリッジ回路で電
流制御を行うようにしたものである。従来は、先に説明
したようにブリッジ回路のトランジスタを電流波形制御
回路で生成されたPWM信号によりオン/オン制御して
いたが、回収充電回路を構成するトランジスタTRU
2、TRV2、TRW2の駆動回路は、例えば図3
(ロ)のトランジスタTR7、TR8、及び抵抗R3、
R4からなる駆動回路と同様な構成とする。
The example shown in FIG. 4 shows a modification of FIG. 3, in which the bridge circuit constituting the converter 14 controls the current. Conventionally, as described above, the transistor of the bridge circuit is ON / ON-controlled by the PWM signal generated by the current waveform control circuit, but the transistor TRU forming the recovery charging circuit is used.
2, TRV2, and TRW2 drive circuits are shown in FIG.
(B) transistors TR7 and TR8, and a resistor R3,
The configuration is similar to that of the drive circuit made up of R4.

【0019】図5はコンデンサとバッテリーの直並列切
換回路を備えた本発明の他の実施例を示す図であり、コ
ンデンサ31は、スイッチSWC1〜SWC4で切り換
え接続可能な複数の直列回路から構成され、また、バッ
テリー32もレベリング回路33の下に複数の直列回路
から構成されると共に、スイッチSWC4、SWB1に
よりバッテリー32とコンデンサ31をブリッジ回路3
4に直列に接続できるように構成されている。そして、
回生制動によりモータ35からエネルギーを回収する場
合には、スイッチSWC1〜SWC3、SWB1をそれ
ぞれ閉にすると共にスイッチSWC4をアース側のa接
点に切り換え、コンデンサ31の各直列回路C11
1n、C21〜C2n、C31〜C3nとバッテリー32の直列
回路を全て並列にしてブリッジ回路34に接続する。ま
た、モータ35へエネルギーを放出する加速時には、ス
イッチSWB1を開にし、スイッチSWC4をバッテリ
ー32とコンデンサ31とが直列接続されるb接点に切
り換えると共に、スイッチSWC1〜SWC3を順次切
り換えて開閉する。このようにしてバッテリー31を切
離して残りにコンデンサ31の各直列回路C11〜C1n
21〜C2n、C31〜C3nを順次接続して時系列的にコン
デンサ31の各直列回路C11〜C1n、C21〜C2n、C31
〜C3nのエネルギーを放出する。なお、バッテリー32
は、3個以上あってもよいし、スイッチSWB1は、レ
ベリング回路33とバッテリー32にあって、そのスイ
ッチSWB1とバッテリー32との接続点にスイッチS
WC4の接点bを接続するように構成したもよい。
FIG. 5 is a diagram showing another embodiment of the present invention provided with a capacitor / battery serial / parallel switching circuit. The capacitor 31 is composed of a plurality of series circuits which can be switched and connected by switches SWC1 to SWC4. Also, the battery 32 is composed of a plurality of series circuits below the leveling circuit 33, and the bridge circuit 3 connects the battery 32 and the capacitor 31 by the switches SWC4 and SWB1.
4 can be connected in series. And
When recovering energy from the motor 35 by regenerative braking, the switches SWC1 to SWC3 and SWB1 are closed, and the switch SWC4 is switched to the contact a on the ground side, and the series circuits C 11 to C 11 of the capacitor 31 are connected.
All the series circuits of C 1n , C 21 to C 2n , C 31 to C 3n and the battery 32 are connected in parallel and connected to the bridge circuit 34. Further, at the time of acceleration for releasing energy to the motor 35, the switch SWB1 is opened, the switch SWC4 is switched to the b-contact in which the battery 32 and the capacitor 31 are connected in series, and the switches SWC1 to SWC3 are sequentially switched to open and close. In this way, the battery 31 is separated, and the remaining series circuits C 11 to C 1n of the capacitor 31 are
C 21 -C 2n, the series circuits of the time series capacitor 31 are sequentially connected to C 31 ~C 3n C 11 ~C 1n , C 21 ~C 2n, C 31
Emit energy of ~ C3n . The battery 32
May be three or more, and the switch SWB1 is provided in the leveling circuit 33 and the battery 32, and the switch SB1 is provided at the connection point between the switch SWB1 and the battery 32.
It may be configured to connect the contact b of the WC4.

【0020】なお、本発明は、上記の実施例に限定され
るものではなく、種々の変形が可能である。例えば上記
の実施例では、トランジスタを用いて説明したが、サイ
リスタその他の半導体スイッチング素子を用いてもよい
し、これらとトランジスタとを組み合わせて用いてもよ
い。また、1組のホィールを駆動する例で示したが、各
ホィール単位で駆動する所謂ホィールモータに適用して
もよいことはいうまでもない。
The present invention is not limited to the above embodiment, but various modifications can be made. For example, in the above embodiments, the description has been made using the transistor, but a thyristor or other semiconductor switching element may be used, or these may be used in combination with a transistor. Although an example of driving one set of wheels has been shown, it goes without saying that the invention may be applied to a so-called wheel motor that drives each wheel.

【0021】以上に説明したように、本発明によれば、
加速、減速時のエネルギー放出、回収に際し、バッテリ
ーの負担を抑えてコンデンサに分担させるので、減速時
のバッテリーの急速充電を抑えることができ、急速充電
に基づく劣化を防ぎ、寿命を長くすることができる。し
かも、減速時の大量のエネルギーをコンデンサに回収し
て加速時のエネルギーとして利用するので、加速時のバ
ッテリー負担を軽減することができ、バッテリーの利用
効率を高めることができる。したがって、電気自動車に
おける走行距離を長くし、加速、減速性能を高めること
ができる。
As described above, according to the present invention,
When releasing or recovering energy during acceleration or deceleration, the burden on the battery is suppressed and the capacitor is shared, so quick charging of the battery during deceleration can be suppressed, deterioration due to rapid charging can be prevented, and life can be extended. it can. Moreover, since a large amount of energy at the time of deceleration is collected in the capacitor and used as energy at the time of acceleration, it is possible to reduce the battery load at the time of acceleration, and it is possible to improve the battery utilization efficiency. Therefore, the traveling distance of the electric vehicle can be increased and the acceleration / deceleration performance can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の電気自動車のハイブリッドシステム
の1実施例を示す図である。
FIG. 1 is a diagram showing an embodiment of a hybrid system for an electric vehicle of the present invention.

【図2】乃至FIG. 2

【図4】 本発明の電気自動車のハイブリッドシステム
の具体的な回路の構成例を示す図である。
FIG. 4 is a diagram showing a configuration example of a specific circuit of a hybrid system for an electric vehicle of the present invention.

【図5】 コンデンサとバッテリーの直並列切換回路を
備えた本発明の他の実施例を示す図である。
FIG. 5 is a diagram showing another embodiment of the present invention including a series-parallel switching circuit for a capacitor and a battery.

【図6】 電気自動車の駆動制御回路の従来例を示す図
である。
FIG. 6 is a diagram showing a conventional example of a drive control circuit of an electric vehicle.

【符号の説明】[Explanation of symbols]

1…バッテリー、2…エネルギーレベリング回路、3…
充電コントローラ、4…コンデンサ、5…並直切換回
路、6…コンバータ、7…モータ、8…コントローラ
1 ... Battery, 2 ... Energy leveling circuit, 3 ...
Charge controller, 4 ... Capacitor, 5 ... Parallel-switching circuit, 6 ... Converter, 7 ... Motor, 8 ... Controller

Claims (1)

【特許請求の範囲】 【請求項1】 直流電源、ホィールに取り付けられるモ
ータ、直流電源に接続されモータを駆動するコンバー
タ、及びコンバータを制御する制御装置を有する電気自
動車において、直流電源として、バッテリーと大容量コ
ンデンサと加速/減速に応じてバッテリー及び大容量コ
ンデンサを放電/充電の切り換えを行う切り換え手段と
を有し、回生制動による充電モード時にはバッテリーへ
の充電を制限して大容量コンデンサに急速放電/充電の
分担を大きくするように構成したことを特徴とする電気
自動車のハイブリッドシステム。
Claims: 1. An electric vehicle having a DC power supply, a motor mounted on a wheel, a converter connected to the DC power supply for driving the motor, and a control device for controlling the converter. Has a large-capacity capacitor and switching means for switching between discharging and charging the battery and the large-capacity capacitor in accordance with acceleration / deceleration, and limits the charging of the battery in the charging mode by regenerative braking to rapidly discharge the large-capacity capacitor. / A hybrid system for electric vehicles, which is configured to increase the charge sharing.
JP3176608A 1991-07-17 1991-07-17 Hybrid system for electric automobile Pending JPH0530608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3176608A JPH0530608A (en) 1991-07-17 1991-07-17 Hybrid system for electric automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3176608A JPH0530608A (en) 1991-07-17 1991-07-17 Hybrid system for electric automobile

Publications (1)

Publication Number Publication Date
JPH0530608A true JPH0530608A (en) 1993-02-05

Family

ID=16016546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3176608A Pending JPH0530608A (en) 1991-07-17 1991-07-17 Hybrid system for electric automobile

Country Status (1)

Country Link
JP (1) JPH0530608A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563479A (en) * 1993-10-29 1996-10-08 Aisin Seiki Kabushiki Kaisha Power supply apparatus for electric vehicle
US5883496A (en) * 1996-05-08 1999-03-16 Toyota Jidosha Kabushiki Kaisha Electric vehicle power supply
US5948327A (en) * 1996-04-05 1999-09-07 Hoya Corporation Lens injection-compression-molding method
WO2001008921A1 (en) * 1999-08-02 2001-02-08 Nissan Diesel Co., Ltd. Power source system for driving vehicle
KR100423217B1 (en) * 1995-09-27 2004-05-17 모토로라 인코포레이티드 Hybrid energy storage system
WO2008007626A1 (en) 2006-07-10 2008-01-17 Toyota Jidosha Kabushiki Kaisha Vehicle power control device
JP2011097771A (en) * 2009-10-30 2011-05-12 Honda Motor Co Ltd Electric vehicle and power supply control method for the same
WO2011056999A2 (en) * 2009-11-05 2011-05-12 Ise Corporation Expandable energy storage control system architecture
US20120022736A1 (en) * 1992-04-13 2012-01-26 Conrad Oliver Gardner Extended range motor vehicle having ambient pollutant processing
WO2012105754A2 (en) * 2011-01-31 2012-08-09 주식회사 에코카 Energy recovery method and device for an electrical motorbike
JP2013233002A (en) * 2012-04-27 2013-11-14 Mitsubishi Electric Corp Power storage system and method of controlling charge/discharge thereof
JP2015208178A (en) * 2014-04-23 2015-11-19 富士通株式会社 Electric motor control device and method of controlling electric motor
JP2016517258A (en) * 2013-03-15 2016-06-09 デザイン フラックス テクノロジーズ, エルエルシーDesign Flux Technologies, Llc Method and apparatus for creating a dynamically reconfigurable energy storage device
US9434273B2 (en) 2013-03-22 2016-09-06 Toyota Jidosha Kabushiki Kaisha Electrical source control apparatus
JPWO2014181631A1 (en) * 2013-05-08 2017-02-23 日本電気株式会社 Power supply device and power supply method
US9669727B2 (en) 2013-03-22 2017-06-06 Toyota Jidosha Kabushiki Kaisha Electrical source control apparatus
JP2017135797A (en) * 2016-01-26 2017-08-03 本田技研工業株式会社 Power supply system, transportation equipment, and power transmission method
JP2017210040A (en) * 2016-05-23 2017-11-30 本田技研工業株式会社 Power system and transportation apparatus as well as electricity transmitting method
JP2017210041A (en) * 2016-05-23 2017-11-30 本田技研工業株式会社 Power system and transportation apparatus as well as electricity transmitting method
WO2019219555A1 (en) * 2018-05-15 2019-11-21 Wabco Gmbh System for an electrically driven vehicle, and vehicle therewith and method therefor
JPWO2021149193A1 (en) * 2020-01-22 2021-07-29

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120022736A1 (en) * 1992-04-13 2012-01-26 Conrad Oliver Gardner Extended range motor vehicle having ambient pollutant processing
US5563479A (en) * 1993-10-29 1996-10-08 Aisin Seiki Kabushiki Kaisha Power supply apparatus for electric vehicle
KR100423217B1 (en) * 1995-09-27 2004-05-17 모토로라 인코포레이티드 Hybrid energy storage system
US5948327A (en) * 1996-04-05 1999-09-07 Hoya Corporation Lens injection-compression-molding method
US5883496A (en) * 1996-05-08 1999-03-16 Toyota Jidosha Kabushiki Kaisha Electric vehicle power supply
WO2001008921A1 (en) * 1999-08-02 2001-02-08 Nissan Diesel Co., Ltd. Power source system for driving vehicle
US6777912B1 (en) 1999-08-02 2004-08-17 Nissan Diesel Motor Co, Ltd. Power source system for driving vehicle
WO2008007626A1 (en) 2006-07-10 2008-01-17 Toyota Jidosha Kabushiki Kaisha Vehicle power control device
US7923951B2 (en) 2006-07-10 2011-04-12 Toyota Jidosha Kabushiki Kaisha Vehicle power controller
JP2011097771A (en) * 2009-10-30 2011-05-12 Honda Motor Co Ltd Electric vehicle and power supply control method for the same
WO2011056999A2 (en) * 2009-11-05 2011-05-12 Ise Corporation Expandable energy storage control system architecture
WO2011056999A3 (en) * 2009-11-05 2011-08-25 Ise Corporation Expandable energy storage control system architecture
US8245801B2 (en) 2009-11-05 2012-08-21 Bluways Usa, Inc. Expandable energy storage control system architecture
WO2012105754A3 (en) * 2011-01-31 2012-09-27 주식회사 에코카 Energy recovery method and device for an electrical motorbike
WO2012105754A2 (en) * 2011-01-31 2012-08-09 주식회사 에코카 Energy recovery method and device for an electrical motorbike
JP2013233002A (en) * 2012-04-27 2013-11-14 Mitsubishi Electric Corp Power storage system and method of controlling charge/discharge thereof
JP2016517258A (en) * 2013-03-15 2016-06-09 デザイン フラックス テクノロジーズ, エルエルシーDesign Flux Technologies, Llc Method and apparatus for creating a dynamically reconfigurable energy storage device
US9669727B2 (en) 2013-03-22 2017-06-06 Toyota Jidosha Kabushiki Kaisha Electrical source control apparatus
US9434273B2 (en) 2013-03-22 2016-09-06 Toyota Jidosha Kabushiki Kaisha Electrical source control apparatus
JPWO2014181631A1 (en) * 2013-05-08 2017-02-23 日本電気株式会社 Power supply device and power supply method
JP2015208178A (en) * 2014-04-23 2015-11-19 富士通株式会社 Electric motor control device and method of controlling electric motor
JP2017135797A (en) * 2016-01-26 2017-08-03 本田技研工業株式会社 Power supply system, transportation equipment, and power transmission method
JP2017210040A (en) * 2016-05-23 2017-11-30 本田技研工業株式会社 Power system and transportation apparatus as well as electricity transmitting method
JP2017210041A (en) * 2016-05-23 2017-11-30 本田技研工業株式会社 Power system and transportation apparatus as well as electricity transmitting method
CN107433857A (en) * 2016-05-23 2017-12-05 本田技研工业株式会社 Dynamical system and conveying equipment and power transmission method
CN107433857B (en) * 2016-05-23 2020-01-07 本田技研工业株式会社 Power system, power transmission device, and power transmission method
WO2019219555A1 (en) * 2018-05-15 2019-11-21 Wabco Gmbh System for an electrically driven vehicle, and vehicle therewith and method therefor
US20210146780A1 (en) * 2018-05-15 2021-05-20 Wabco Gmbh System for an electrically driven vehicle, and vehicle therewith and method therefor
JPWO2021149193A1 (en) * 2020-01-22 2021-07-29

Similar Documents

Publication Publication Date Title
JPH0530608A (en) Hybrid system for electric automobile
RU2440258C2 (en) Control device for hybrid transport facility
CN101003259B (en) Vehicle propulsion system
JPH05252607A (en) Hybrid driving equipment of automobile of the like
JPH05328533A (en) Method and apparatus for controlling battery-powered vehicle
JPH06124720A (en) Hybrid power supply device
JP2001069611A (en) Battery controller for hybrid car
JPH03107532A (en) Vehicular energy recovery device
JP2004023803A (en) Voltage controller for battery pack
JPH08251714A (en) Power supply of electric automobile
JP2008162318A (en) Hybrid vehicle
JP2012070581A (en) Power supply device for vehicle
JP2013225968A (en) Power control unit for vehicle
JP4192658B2 (en) Vehicle control apparatus and control method
JP2006187160A (en) Hybrid car
JP2001119813A (en) Electric automobile and battery charger
JP2761998B2 (en) Electric car
JP2003047161A (en) Vehicle power supply device
JP3231870B2 (en) DC power supply
JPH07212910A (en) Battery exchange charging controller using braking inertia of industrial motorcar and its control
JP2011079637A (en) Electric industrial vehicle
JPH0370484A (en) Regenerative braking device
JPH0795701A (en) Rotary electric machine controller
JPH0833115A (en) Travel controller for battery-powered vehicle
JPH04145808A (en) Energy conserving device for electric motor vehicle