JPH0370484A - Regenerative braking device - Google Patents

Regenerative braking device

Info

Publication number
JPH0370484A
JPH0370484A JP20656189A JP20656189A JPH0370484A JP H0370484 A JPH0370484 A JP H0370484A JP 20656189 A JP20656189 A JP 20656189A JP 20656189 A JP20656189 A JP 20656189A JP H0370484 A JPH0370484 A JP H0370484A
Authority
JP
Japan
Prior art keywords
storage battery
regenerative braking
voltage
control circuit
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20656189A
Other languages
Japanese (ja)
Inventor
Kazunari Yamakoshi
山越 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP20656189A priority Critical patent/JPH0370484A/en
Publication of JPH0370484A publication Critical patent/JPH0370484A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

PURPOSE:To delete a booster and to improve power recovery efficiency by providing two or more storage batteries, and altering a connecting method for the batteries at the times of driving a motor and regenerating. CONSTITUTION:When a motor 1 is driven, a transistor(Tr) switch 5 is closed, Tr switches 6, 7 are opened to connect first and second storage batteries 2, 3 in series, and the motor 1 is driven by the voltage of the first and second batteries 2, 3 by a controller 4. When the motor 1 is controlled by regeneration, the switches 6, 7 are closed, and the switch 5 is opened to alter a connecting method for the batteries 2, 3 to connect the batteries 2, 3 in parallel, and the batteries 2, 3 are charged by the controller 4.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、回生制動装置に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a regenerative braking device.

[従来の技術] 従来の回生制動装置は第6図に示すように、制動時に電
動機61に発生した回生電力を、制御回路62を経由し
蓄電池63に充電する。電動機61の回生電圧は駆動電
圧より低いため、制御回路62は昇圧回路64を有して
おり、蓄電池63に充電可能な電圧に昇圧する構成であ
った。
[Prior Art] As shown in FIG. 6, a conventional regenerative braking device charges a storage battery 63 with regenerative power generated in an electric motor 61 during braking via a control circuit 62. Since the regenerative voltage of the electric motor 61 is lower than the driving voltage, the control circuit 62 has a booster circuit 64 and is configured to boost the voltage to a voltage that can charge the storage battery 63.

[発明が解決しようとする課題] しかし従来技術による回生制動装置では、回生電圧を蓄
電池充電可能な電圧に昇圧する昇圧回路が必要となり、
回生制動装置が大きく複雑になるという問題点、および
昇圧回路における電力損失が大きいという問題点を有す
る。
[Problems to be Solved by the Invention] However, the regenerative braking device according to the prior art requires a boost circuit that boosts the regenerative voltage to a voltage that can charge the storage battery.
This has the problem that the regenerative braking device is large and complicated, and the power loss in the booster circuit is large.

本発明はかかる問題点に鑑みてなされたものであって、
その目的とするところは回生制動装置から昇圧回路をな
くし、制御回路をを小型化し、かつ電力の回収効率を向
上させることにある。
The present invention has been made in view of such problems, and includes:
The purpose is to eliminate the booster circuit from the regenerative braking system, downsize the control circuit, and improve the efficiency of power recovery.

[課題を解決するための手段] 上記課題を解決するため、本発明の回生制動装置は、電
動機駆動時と回生時とで蓄電池の接続方法を変更するこ
とを特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the regenerative braking device of the present invention is characterized in that the connection method of the storage battery is changed between when the electric motor is driven and when regenerating.

[作用コ 本発明の上記の構成によれば、蓄電池の接続方法を変更
することにより、蓄電池の充電に必要な電圧が低くなり
、昇圧回路が不要となる。そのため昇圧回路による電力
損失がなく、電力の回収効率の向上が可能となった。
[Operations] According to the above configuration of the present invention, by changing the connection method of the storage battery, the voltage required for charging the storage battery is lowered, and a booster circuit is not required. As a result, there is no power loss due to the booster circuit, making it possible to improve power recovery efficiency.

[実施例コ 以下本発明の実施例について図面に基づいて詳細に説明
する。第1図において、1は電動機、2は第1の蓄電池
であり、電圧は48V、3は第2の蓄電池であり、電圧
は48Vである、4は制御回路、5.6および7は接続
変更手段であるトランジスタスイッチであり、制御回路
4により制御される。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In Fig. 1, 1 is a motor, 2 is a first storage battery with a voltage of 48V, 3 is a second storage battery with a voltage of 48V, 4 is a control circuit, and 5.6 and 7 are connection changes. It is a transistor switch which is a means, and is controlled by a control circuit 4.

電動機の駆動時は、第2図に示すごとくトランジスタス
イッチ5をオンに、トランジスタスイッチ6および7を
オフにして、第1の蓄電池と第2の蓄電池を直列に接続
する。制御回路4は、直列に接続された第1の蓄電池2
および第2の蓄電池3の電源電圧96Vを用い、電動機
1を駆動する。
When the motor is driven, as shown in FIG. 2, transistor switch 5 is turned on, transistor switches 6 and 7 are turned off, and the first storage battery and the second storage battery are connected in series. The control circuit 4 includes first storage batteries 2 connected in series.
The electric motor 1 is driven using the power supply voltage of 96V from the second storage battery 3.

回生制動時は電動機1が発電機として作用し、第1の蓄
電池2と第2の蓄電池3を充電して電力を回生ずる。特
に、電動車両の場合、積み込める蓄電池に限りがあるた
め、走行距離を伸ばすためには、制動時にエネルギーを
回収する回生制動を効率よく行うことが重要である。
During regenerative braking, the electric motor 1 acts as a generator, charges the first storage battery 2 and the second storage battery 3, and regenerates electric power. In particular, in the case of electric vehicles, there is a limit to the number of storage batteries that can be loaded, so in order to extend the travel distance, it is important to efficiently perform regenerative braking that recovers energy during braking.

蓄電池に充電する場合は、充電電圧を蓄電池の電圧より
高くする必要がある。しかし一般に、電源電圧96Vで
効率が良くなるように電動機を設計すると、回生電圧は
96V以下にしかならない。
When charging a storage battery, the charging voltage must be higher than the voltage of the storage battery. However, in general, if a motor is designed to be efficient at a power supply voltage of 96V, the regenerative voltage will only be 96V or less.

本発明による場合は、電動機を回生制動する場合は、第
3図に示すごとくトランジスタスイッチ6および7をオ
ンに、トランジスタスイッチ5をオフして、蓄電池の接
続方法を変更し、第1の蓄電池と第2の蓄電池を並列に
接続する。制御回路4にかかる蓄電池の電圧は48Vと
なり、蓄電池を充電するための電圧は48V以上であれ
ばよい。
According to the present invention, when regeneratively braking the electric motor, the transistor switches 6 and 7 are turned on and the transistor switch 5 is turned off, as shown in FIG. A second storage battery is connected in parallel. The voltage of the storage battery applied to the control circuit 4 is 48V, and the voltage for charging the storage battery only needs to be 48V or higher.

このため、電動機で発生する電圧のままで蓄電池の充電
が可能となり、昇圧回路が不要となった。
This makes it possible to charge the storage battery with the voltage generated by the motor, eliminating the need for a booster circuit.

そのため昇圧回路による電力損失がなく、電力の回収効
率の向上が可能となった。なお、制御回路4は蓄電池の
接続方法の制御の他、回生制動時には回生電流を制御し
て制動力を調整しており、駆動時には駆動電流の制御を
している。
As a result, there is no power loss due to the booster circuit, making it possible to improve power recovery efficiency. In addition to controlling the connection method of the storage battery, the control circuit 4 also controls the regenerative current to adjust the braking force during regenerative braking, and controls the drive current during driving.

第4図は本発明の別の実施例を示す図であり、8は第1
の蓄電池であり、電圧は60V、9は第2の蓄電池であ
り、電圧は36Vである。10は制御回路、11.12
および13はトランジスタスイッチである。第4図(a
)は電動機を駆動する時の蓄電池の接続方法を示す図で
あり、第4図(a)に示すごとくトランジスタスイッチ
11をオンに、トランジスタスイッチ12および13を
オフにして、第1の蓄電池8と第2の蓄電池9を直列に
接続する。制御回路10は、直列に接続された第1の蓄
電池8および第2の蓄電池9の電源電圧96Vを用い、
電動機1を駆動する。
FIG. 4 is a diagram showing another embodiment of the present invention, and 8 is a diagram showing another embodiment of the present invention.
9 is a storage battery with a voltage of 60V, and 9 is a second storage battery with a voltage of 36V. 10 is a control circuit, 11.12
and 13 are transistor switches. Figure 4 (a
) is a diagram showing how to connect the storage battery when driving the electric motor, and as shown in FIG. 4(a), the transistor switch 11 is turned on, the transistor switches 12 and 13 are turned off, and the first storage battery A second storage battery 9 is connected in series. The control circuit 10 uses a power supply voltage of 96V from the first storage battery 8 and the second storage battery 9 connected in series,
The electric motor 1 is driven.

電動機が発生する回生電圧は、電動機の回転数が高いほ
ど高く、回転数が低くなるにしたがって回生電圧も低く
なる。
The higher the rotational speed of the motor, the higher the regenerative voltage generated by the electric motor, and the lower the rotational speed, the lower the regenerative voltage.

回生制動時で電動機1が高速回転している場合には、制
御回路10は、第4図(b)のごとくトランジスタスイ
ッチ12をオンに、トランジスタスイッチ11および1
3をオフにして蓄電池8を接続する。制御回路10にか
かる蓄電池の電圧は60Vとなり、回転数が高い場合に
回生制動が可能である。
When the electric motor 1 is rotating at high speed during regenerative braking, the control circuit 10 turns on the transistor switch 12 as shown in FIG.
3 is turned off and the storage battery 8 is connected. The voltage of the storage battery applied to the control circuit 10 is 60V, and regenerative braking is possible when the rotation speed is high.

回生制動時で電動機1が低速回転になった場合には、制
御回路10は第4図(C)のごとくトランジスタスイッ
チ13をオンに、トランジスタスイッチ12および13
をオフにして蓄電池9を接続する。制御回路10にかか
る蓄電池の電圧は36■となり、回転数が低い場合でも
回生制動が可能である。
When the electric motor 1 rotates at a low speed during regenerative braking, the control circuit 10 turns on the transistor switch 13 as shown in FIG.
Turn off and connect the storage battery 9. The voltage of the storage battery applied to the control circuit 10 is 36 cm, and regenerative braking is possible even when the rotational speed is low.

本実施例の場合、第1の蓄電池8と第2の蓄電池9の電
圧を変え、高速回転時は第4図(b)の接続方法、低速
回転時は第4図(c)の接続方法にすることにより、先
の実施例の場合よりも、より低速回転まで回生制動が可
能となる。
In the case of this embodiment, the voltages of the first storage battery 8 and the second storage battery 9 are changed, and the connection method shown in FIG. 4(b) is used during high-speed rotation, and the connection method shown in FIG. 4(c) is used during low-speed rotation. By doing so, regenerative braking is possible up to a lower rotation speed than in the case of the previous embodiment.

第5図は本発明の別の実施例を示す図であり、14は第
1の蓄電池、15は第2の蓄電池、16は第3の蓄電池
、17は第4の蓄電池であり、それぞれ電圧は24Vで
ある。18.19.20゜21.22.23.24.2
5および26はトランジスタスイッチ、27は制御回路
である。第5図(a)は電動機の駆動時の蓄電池の接続
方法を示す図であり、トランジスタスイッチ19.22
および25を第5図(a)に示すごとくオンに、その他
のトランジスタスイッチをオフにして、第1の蓄電池1
4、第2の蓄電池15、第3の蓄電池16および第4の
蓄電池17を直列に接続する。
FIG. 5 is a diagram showing another embodiment of the present invention, in which 14 is a first storage battery, 15 is a second storage battery, 16 is a third storage battery, and 17 is a fourth storage battery, each of which has a voltage. It is 24V. 18.19.20゜21.22.23.24.2
5 and 26 are transistor switches, and 27 is a control circuit. FIG. 5(a) is a diagram showing how to connect the storage battery when driving the electric motor, and shows the transistor switch 19.22.
and 25 are turned on as shown in FIG. 5(a), the other transistor switches are turned off, and the first storage battery 1
4. Connect the second storage battery 15, the third storage battery 16, and the fourth storage battery 17 in series.

制御回路27は、直列に接続された第1の蓄電池14、
第2の蓄電池15、第3の蓄電池16および第4の蓄電
池17の電源電圧96Vを用い、電動機lを駆動する。
The control circuit 27 includes a first storage battery 14 connected in series,
The electric motor 1 is driven using the power supply voltage of 96 V of the second storage battery 15, the third storage battery 16, and the fourth storage battery 17.

回生制動時で電動機1が高速回転している場合には、制
御回路27は第5図(b)のごとくトランジスタスイッ
チ19.21.23および25をオンに、その他のトラ
ンジスタスイッチをオフにして、第1の蓄電池14、第
2の蓄電池15、第3の蓄電池16および第4の蓄電池
17を直並列に接続する。制御回路27にかかる蓄電池
の電圧は24Vとなり、回生制動が可能である。
When the electric motor 1 is rotating at high speed during regenerative braking, the control circuit 27 turns on the transistor switches 19, 21, 23 and 25 and turns off the other transistor switches, as shown in FIG. 5(b). The first storage battery 14, the second storage battery 15, the third storage battery 16, and the fourth storage battery 17 are connected in series and parallel. The voltage of the storage battery applied to the control circuit 27 is 24V, and regenerative braking is possible.

回生制動時で電動機1が低速回転になった場合には、制
御回路27は第5図(C)のごとくトランジスタスイッ
チ18.20.21.23.24および26をオンに、
その他のトランジスタスイッチをオフにして、第1の蓄
電池14、第2の蓄電池15、第3の蓄電池16および
第4の蓄電池17を並列に接続する。制御回路27にか
かる蓄電池の電圧は24Vとなり、回転数が低い場合で
も回生制動が可能である。本実施例の場合、蓄電地を4
個にしたため、より細かい回生制動の制御が可能となっ
た。
When the electric motor 1 rotates at a low speed during regenerative braking, the control circuit 27 turns on the transistor switches 18, 20, 21, 23, 24 and 26 as shown in FIG. 5(C).
The other transistor switches are turned off, and the first storage battery 14, second storage battery 15, third storage battery 16, and fourth storage battery 17 are connected in parallel. The voltage of the storage battery applied to the control circuit 27 is 24V, and regenerative braking is possible even when the rotation speed is low. In the case of this example, the power storage area is 4
This makes it possible to control regenerative braking more precisely.

なお、蓄電地の個数は2個や4個に限るものではなく、
3個やもっと多数でも可能であることは言うまでもない
。また、本実施例では、回生時のみ蓄電地の接続方法を
変更したが、駆動時にも蓄電池の接続方法を変更するこ
とも可能であることは言うまでもない。また、このトラ
ンジスタスイッチを駆動時の電動機制御に用いることも
可能である。接続変更手段として、本実施例ではトラン
ジスタスイッチを用いたが、接続変更手段としてはトラ
ンジスタスイッチに限るものではなく、サイリスタなど
さまざまな半導体素子やリレーなどを用いることが可能
である。
Note that the number of power storage areas is not limited to 2 or 4,
Needless to say, it is possible to use three or more. Further, in this embodiment, the method of connecting the storage battery is changed only during regeneration, but it goes without saying that the method of connecting the storage battery can also be changed during driving. It is also possible to use this transistor switch for controlling the motor during driving. Although a transistor switch is used as the connection change means in this embodiment, the connection change means is not limited to the transistor switch, and various semiconductor elements such as thyristors, relays, etc. can be used.

[発明の効果] 本発明の回生制動装置は、以上説明したように、電動機
駆動時と回生時とで蓄電池の接続方法を変更することに
より回生制動装置から昇圧回路をなくし、かつ電力の回
収効率を向上させるという効果を有する。
[Effects of the Invention] As explained above, the regenerative braking device of the present invention eliminates the step-up circuit from the regenerative braking device by changing the connection method of the storage battery during motor drive and during regeneration, and improves power recovery efficiency. It has the effect of improving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による回生制動装置の回路図。 第2図は、駆動時の接続方法を示す図。 第3図は、回生制動時の接続方法を示す図。 第4図(a)は、駆動時の接続方法を示す図。 第4図(b)は、高速回転回生制動時の接続方法を示す
図。 第4図(C)は、低速回転回生制動時の接続方法を示す
図。 第5図(a)は、駆動時の接続方法を示す図。 第5図(b)は、高速回転回生制動時の接続方法を示す
図6 第5図(C)は、低速回転回生制動時の接続方法を示す
図3 第6図は、従来の回生制動装置の回路図。 ・電動機 ・第1の蓄電池 ・第2の蓄電池 ・制御回路 ・トランジスタスイ ・トランジスタスイ ・トランジスタスイ ッチ ツチ ッチ 以  上
FIG. 1 is a circuit diagram of a regenerative braking device according to the present invention. FIG. 2 is a diagram showing a connection method during driving. FIG. 3 is a diagram showing a connection method during regenerative braking. FIG. 4(a) is a diagram showing a connection method during driving. FIG. 4(b) is a diagram showing a connection method during high-speed rotation regenerative braking. FIG. 4(C) is a diagram showing a connection method during low-speed rotation regenerative braking. FIG. 5(a) is a diagram showing a connection method during driving. Fig. 5(b) shows the connection method during high-speed rotation regenerative braking. Fig. 5(C) shows the connection method during low-speed rotation regenerative braking. Fig. 6 shows the conventional regenerative braking device. Schematic diagram.・Electric motor ・First storage battery ・Second storage battery ・Control circuit ・Transistor switch ・Transistor switch ・Transistor switch switch

Claims (1)

【特許請求の範囲】[Claims] (1)電動機、蓄電池、制御回路を有する回生制動装置
において、蓄電池を2個またはそれ以上有し、電動機駆
動時と回生時とで蓄電池の接続方法を変更することを特
徴とする回生制動装置。
(1) A regenerative braking device having an electric motor, a storage battery, and a control circuit, which has two or more storage batteries, and is characterized in that the connection method of the storage batteries is changed between when the electric motor is driven and when regeneration is performed.
JP20656189A 1989-08-09 1989-08-09 Regenerative braking device Pending JPH0370484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20656189A JPH0370484A (en) 1989-08-09 1989-08-09 Regenerative braking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20656189A JPH0370484A (en) 1989-08-09 1989-08-09 Regenerative braking device

Publications (1)

Publication Number Publication Date
JPH0370484A true JPH0370484A (en) 1991-03-26

Family

ID=16525432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20656189A Pending JPH0370484A (en) 1989-08-09 1989-08-09 Regenerative braking device

Country Status (1)

Country Link
JP (1) JPH0370484A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388530B1 (en) 1998-12-28 2002-05-14 Nec Corporation Microwave amplifier implemented by heterojunction field effect transistors
JP2007244093A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Power supply control method for power supply devices for vehicles and power supply device for vehicles
JP2008160378A (en) * 2006-12-22 2008-07-10 Victor Co Of Japan Ltd Sound reproducing apparatus
JP2008211267A (en) * 2007-01-31 2008-09-11 Noritz Corp Audio device
JP2016519561A (en) * 2013-04-30 2016-06-30 台湾立凱緑能移動股▲ふん▼有限公司 Power drive system
JP2020150763A (en) * 2019-03-15 2020-09-17 矢崎総業株式会社 Vehicle power supply device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388530B1 (en) 1998-12-28 2002-05-14 Nec Corporation Microwave amplifier implemented by heterojunction field effect transistors
JP2007244093A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Power supply control method for power supply devices for vehicles and power supply device for vehicles
JP4650305B2 (en) * 2006-03-08 2011-03-16 日産自動車株式会社 Power supply control method for vehicle power supply device, and vehicle power supply device
JP2008160378A (en) * 2006-12-22 2008-07-10 Victor Co Of Japan Ltd Sound reproducing apparatus
JP2008211267A (en) * 2007-01-31 2008-09-11 Noritz Corp Audio device
JP2016519561A (en) * 2013-04-30 2016-06-30 台湾立凱緑能移動股▲ふん▼有限公司 Power drive system
US9688158B2 (en) 2013-04-30 2017-06-27 Aleees Eco Ark (Cayman) Co., Ltd. Power driving system
JP2020150763A (en) * 2019-03-15 2020-09-17 矢崎総業株式会社 Vehicle power supply device
US11117490B2 (en) 2019-03-15 2021-09-14 Yazaki Corporation Vehicle power supply device

Similar Documents

Publication Publication Date Title
US4423794A (en) Flywheel assisted electro-mechanical drive system
US7049792B2 (en) Method and apparatus for a hybrid battery configuration for use in an electric or hybrid electric motive power system
CN100506587C (en) Electric power control system for a hybrid vehicle
CN100438289C (en) Voltage conversion device and computer-readable recording medium having program recorded thereon for computer to control voltage conversion by voltage conversion device
US4330742A (en) Circuitry for recovering electrical energy with an electric vehicle DC propulsion motor when braking
JPH061067B2 (en) Engine starter
CN102076539A (en) Hybrid vehicle
JPS5961402A (en) Charger for battery driven vehicle
JPH0530608A (en) Hybrid system for electric automobile
JPH05236608A (en) Main circuit system for electric automobile
JPH0370484A (en) Regenerative braking device
CN103826952A (en) Vehicle and control method for vehicle
JP3463791B2 (en) Electric vehicle drive system
CN1554545A (en) Construction method for electric car flying wheel battery auxiliary power system
EP0002116A1 (en) Control circuit for a D.C. motor for example in an electrically powered vehicle
JP3612572B2 (en) Motor drive power supply
CN1473724A (en) Auxiliary energy regenertion power system for electric automobile
JP3558546B2 (en) Electric vehicle power system
JPH06178407A (en) Vehicle-borne charger for electric vehicle
JP3532437B2 (en) Hybrid vehicle
JPH04145808A (en) Energy conserving device for electric motor vehicle
JPH0795701A (en) Rotary electric machine controller
JPH11285105A (en) Electric system of electric vehicle
JP3558159B2 (en) Electric vehicle power system
JPH04185205A (en) Regenerative braking apparatus