JPH05305061A - Circulatory organ function measuring device - Google Patents

Circulatory organ function measuring device

Info

Publication number
JPH05305061A
JPH05305061A JP11257592A JP11257592A JPH05305061A JP H05305061 A JPH05305061 A JP H05305061A JP 11257592 A JP11257592 A JP 11257592A JP 11257592 A JP11257592 A JP 11257592A JP H05305061 A JPH05305061 A JP H05305061A
Authority
JP
Japan
Prior art keywords
pressure
cuff
volume
sectional area
proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11257592A
Other languages
Japanese (ja)
Inventor
Masafumi Shimizu
優史 清水
Shinsaku Yanagi
晋作 柳
Osamu Shirasaki
修 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP11257592A priority Critical patent/JPH05305061A/en
Publication of JPH05305061A publication Critical patent/JPH05305061A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a circulatory organ function measuring device capable of measuring the blood vessel physical quantity during the blood pressure mea surement. CONSTITUTION:A blood vessel is pressurized with a cuff, the blood cross sectional area and cross sectional area pulse wave are detected with a blood vessel volume sensor during the decompression process thereafter (ST1-ST4), the blood pressure is measured in this process, the blood pressure difference DELTAP between the maximal blood pressure and the minimal blood pressure is calculated (ST5, ST6), and the amplitude envelope e0 against the cuff pressure of the cross sectional area pulse wave is generated (ST10). This envelope is shifted by the calculated blood pressure difference DELTAP (ST10), this shift is repeated until the rising point cuff pressure of the envelope becomes 0 to obtain envelopes e0, e1,..., en (ST9-ST11), and these envelopes e0, e1,..., en are added to obtain the blood vessel physical quantity L0 (ST12).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、血管の硬化度を表す
物理量(管壁内外圧差−血管断面積関係)を非侵襲的に
測定する、循環器機能計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circulatory organ function measuring device for non-invasively measuring a physical quantity indicating the degree of hardening of a blood vessel (the relationship between the pressure difference between the inside and the outside of the tube wall and the cross-sectional area of the blood vessel).

【0002】[0002]

【従来の技術】従来の動脈の硬化度を推測する方法とし
ては脈波伝播速度や生化学や眼底所見などを利用する方
法がある。
2. Description of the Related Art Conventional methods for estimating the degree of arteriosclerosis include methods utilizing pulse wave velocity, biochemistry, and fundus findings.

【0003】[0003]

【発明が解決しようとする課題】しかし、測定の手順が
煩雑であったり、観血的であったり、また、直接動脈の
硬化度を表す物理量(以下血管物理量)を測定するわけ
でなかったりしたため、動脈硬化度の定量的評価法とし
て問題があった。この発明は上記問題点に着目してなさ
れたものであって、血圧測定の過程で血管物理量を測定
し得る循環器機能計測装置を提供することを目的として
いる。
However, the measurement procedure is complicated, invasive, and the physical quantity (hereinafter referred to as vascular physical quantity) indicating the degree of arteriosclerosis is not directly measured. However, there was a problem as a quantitative evaluation method of arteriosclerosis. The present invention has been made in view of the above problems, and an object of the present invention is to provide a circulatory organ function measuring device capable of measuring a blood vessel physical quantity in the process of blood pressure measurement.

【0004】[0004]

【課題を解決するための手段及び作用】請求項1の循環
器機能計測装置は、次に説明する理論的根拠に基づいて
発明されたものである。図1の(i)に示されるよう
に、血管断面積の脈動による変化成分ΔAの包絡線e0
は、血圧が脈動せず最高血圧値で一定であるときにカフ
圧を変化させた時描かれるカフ圧軸上の血管物理量をL
0 、同様に血圧が脈動せず最低血圧値で一定であるとき
にカフ圧を変化させた時描かれるカフ圧軸上の血管物理
量をL1 としたときL0 とL1 の差で表せる。また、L
0 とL1 は血管の特性を表しているので同形の曲線とな
る。血管物理量L0 は以下のようにして求められる。ま
ず、L0 とL1 の曲線の立ち上がり点のカフ圧をP
0 、Pc1 とし、この血圧差をΔPとする。このカフ
圧区間はL1 が存在しないのでe0 とL0 が等しくな
る。
Means and Action for Solving the Problems The circulatory organ function measuring device of claim 1 was invented on the basis of the theoretical basis described below. As shown in (i) of FIG. 1, the envelope e 0 of the change component ΔA due to the pulsation of the blood vessel cross-sectional area.
Is the blood vessel physical quantity on the cuff pressure axis drawn when the cuff pressure is changed when the blood pressure does not pulsate and is constant at the systolic blood pressure value.
0, likewise expressed by the difference between the L 0 and L 1 when the vessel physical quantity on the cuff pressure axis drawn when changing the cuff pressure was L 1 when it is fixed in diastolic blood pressure without pulsation blood pressure. Also, L
Since 0 and L 1 represent the characteristics of blood vessels, they have the same shape. The blood vessel physical quantity L 0 is obtained as follows. First, set the cuff pressure at the rising point of the L 0 and L 1 curves to P
Let c 0 and Pc 1, and let this blood pressure difference be ΔP. Since L 1 does not exist in this cuff pressure section, e 0 and L 0 are equal.

【0005】L1 とL0 は同形の曲線であるからPc1
〜Pc1 −ΔPの区間のL1 は図1の(ii)のように
0 をΔPだけカフ圧の小さい方へ移動することにより
定まる。包絡線e0 をこのL1 に加算することによりΔ
Pc1 −ΔPまでのL0 が求まる。次のΔPc1 −ΔP
〜ΔPc1 −2×ΔPの区間のL1 も同様に、上述の方
法によって得られたL0 をΔPだけカフ圧の小さい方へ
移動することにより図1の(iii)のように定まり、
包絡線e0 をこのL1 に加算することによりΔPc1
2×ΔPまでのL0 が求まる。上述したのと同様の操作
をn回繰り返すことにより、Pc0 〜Pc1 −n×ΔP
の区間の血管物理量L0 を求めることができる。また、
この処理手順を簡略化すると図1の(iv)のように包
絡線e0をΔPずつカフ圧の小さい方に移動した包絡線
0 、e1 、…enを全て加算することによって血管物
理量L0 を求めることができる。
Since L 1 and L 0 are curves of the same shape, Pc 1
To Pc L 1 of 1 -DerutaP interval is determined by moving the L 0 to the smaller of only the cuff pressure ΔP as the (ii) FIG. By adding the envelope e 0 to this L 1 , Δ
L 0 up to Pc 1 −ΔP is obtained. Next ΔPc 1 −ΔP
Similarly, L 1 in the section of ΔPc 1 −2 × ΔP is determined as shown in (iii) of FIG. 1 by moving L 0 obtained by the above-described method by ΔP toward the smaller cuff pressure.
By adding the envelope e 0 to this L 1 , ΔPc 1
L 0 up to 2 × ΔP can be obtained. By repeating the same operation as described above n times, Pc 0 to Pc 1 −n × ΔP
The blood vessel physical quantity L 0 in the section can be obtained. Also,
If this processing procedure is simplified, as shown in (iv) of FIG. 1, by adding all the envelope curves e 0 , e 1 , ... En obtained by moving the envelope curve e 0 by ΔP toward the smaller cuff pressure, the blood vessel physical quantity L is added. You can ask for 0 .

【0006】請求項1の循環器機能計測装置は、この原
理を採用したもので、カフと、カフ圧を変化させる圧力
制御手段と、カフ圧を検出する圧力センサと、血圧を測
定する測定手段あるいは血圧値を入力する入力手段と、
カフ下生体内の動脈容積あるいは前記容積に比例する物
理量を検出する容積検出手段と、容積信号上の心拍に同
期した容積脈波を抽出する脈波抽出手段と、徐々にカフ
圧力を変化させる過程に捉えた1拍または複数の容積脈
波振幅を圧力軸上に並べて包絡線を作成する包絡線作成
手段と、前記包絡線を圧力軸上に沿って移動しながら前
記包絡線に1回または複数回加算する加算手段とから構
成され、加算手段の加算値を血管物理量として得るよう
にしている。
The circulatory organ function measuring apparatus according to claim 1 adopts this principle, and includes a cuff, a pressure control means for changing the cuff pressure, a pressure sensor for detecting the cuff pressure, and a measuring means for measuring the blood pressure. Or an input means for inputting a blood pressure value,
Volume detection means for detecting the arterial volume in the cuff living body or a physical quantity proportional to the volume, pulse wave extraction means for extracting a volume pulse wave synchronized with the heartbeat on the volume signal, and a process of gradually changing the cuff pressure Envelope creating means for creating an envelope by arranging one or a plurality of volume pulse wave amplitudes captured on the pressure axis, and one or a plurality of times with respect to the envelope while moving the envelope along the pressure axis. It is composed of adding means for performing addition twice, and the added value of the adding means is obtained as a physical quantity of blood vessel.

【0007】また請求項2の循環器機能計測装置は、カ
フと、カフ圧を変化させる圧力制御手段と、カフ圧を検
出する圧力センサと、カフ圧変化過程に於いて血圧を測
定する血圧測定手段と、カフ下生体内の動脈容積を検出
する容積検出センサと、心拍に同期した容積信号上の容
積脈波を抽出する脈波抽出手段とを備えることによっ
て、加圧あるいは減圧中に捉えた1拍または複数の容積
脈波振幅から圧力−血管断面積及びそれに比例する量曲
線を測定する特性曲線測定手段を持つものにおいて、前
記圧力−血管断面積及びそれに比例する量曲線の、第1
の所定の圧力点を圧力軸の基準とし、第2の所定の圧力
点での断面積及びそれに比例する成分が所定断面積と一
致するように前記圧力−血管断面積及びそれに比例する
量曲線を正規化した新しい第1の圧力−血管断面積及び
それに比例する量曲線を求める手段と、その第1の圧力
−血管断面積及びそれに比例する量曲線の第3の所定圧
力点での傾斜角、あるいはそれに比例する要素、あるい
は第3の所定圧力点から第4の所定圧力点までの所定圧
力区間での断面積の変化成分あるいはそれに比例する要
素から各個人の動脈硬化度を定量的に評価する手段を備
えている。
The circulatory function measuring apparatus according to a second aspect of the present invention is a cuff, pressure control means for changing the cuff pressure, a pressure sensor for detecting the cuff pressure, and blood pressure measurement for measuring blood pressure in the process of changing the cuff pressure. Means, a volume detection sensor for detecting the in-vivo arterial volume in the living body, and a pulse wave extracting means for extracting a volume pulse wave on a volume signal synchronized with the heartbeat, thereby capturing during pressurization or depressurization In a device having characteristic curve measuring means for measuring a pressure-blood vessel cross-sectional area and a volume curve proportional thereto from one pulse or a plurality of volume pulse wave amplitudes, a first curve of the pressure-blood vessel cross-sectional area and a volume curve proportional thereto is provided.
The pressure-blood vessel cross-sectional area and the proportional amount curve thereof are set so that the cross-sectional area at the second predetermined pressure point and the component proportional thereto coincide with the predetermined cross-sectional area with the predetermined pressure point of the above as a reference of the pressure axis. Means for obtaining a new normalized first pressure-vessel cross-sectional area and a volume curve proportional thereto, and an inclination angle at the third predetermined pressure point of the first pressure-vessel cross-sectional area and proportional volume curve, Alternatively, the degree of arteriosclerosis of each individual is quantitatively evaluated from an element proportional to it, or a change component of the cross-sectional area in a predetermined pressure section from the third predetermined pressure point to the fourth predetermined pressure point or an element proportional thereto. Equipped with means.

【0008】[0008]

【実施例】以下、実施例により、この発明をさらに詳細
に説明する。 〈実施例1〉図2は、この発明が実施される循環器機能
計測装置のハード構成を示すブロック図である。この循
環器機能計測装置は、血管容積センサ2を付設したカフ
1と、カフ1内を加圧するための加圧ポンプ3と、カフ
1内の空気圧を減圧するためのコントロール弁4と、カ
フ1の空気圧を検出する圧力センサ5と、増幅器6と、
ローパスフィルタ7と、A/Dコンバータ8と、循環器
機能計測のための種々の処理機能を有するCPU9と、
電源オン、スタート等に使用されるスイッチ10と、表
示器11と、さらに血管容積センサ2からの信号を増幅
する増幅器12はと、ローパスフィルタ13と、A/D
コンバータ14とから構成されている。
The present invention will be described in more detail with reference to the following examples. <Embodiment 1> FIG. 2 is a block diagram showing a hardware configuration of a circulatory organ function measuring apparatus in which the present invention is implemented. This circulatory organ function measuring device includes a cuff 1 provided with a blood vessel volume sensor 2, a pressurizing pump 3 for pressurizing the inside of the cuff 1, a control valve 4 for reducing the air pressure inside the cuff 1, and a cuff 1. A pressure sensor 5 for detecting the air pressure of the
A low-pass filter 7, an A / D converter 8, a CPU 9 having various processing functions for measuring a circulatory organ function,
A switch 10 used for power-on, start, etc., an indicator 11, an amplifier 12 for amplifying a signal from the blood vessel volume sensor 2, a low-pass filter 13, and an A / D.
It is composed of a converter 14.

【0009】血管容積センサ2としては、よく知られた
インピーダンス検知式のものや、光電式のものを使用す
る。インピーダンス検知式のものは、カフの内面中枢側
と末梢側の両端に、印加電極を設けて交流電圧を印加
し、印加電極の間に、さらに一対の検出電極を設け、こ
の検出電極間のインピーダンス検出により、血管容積を
算出するものである。
As the blood vessel volume sensor 2, a well-known impedance detection type or photoelectric type is used. In the impedance detection type, the inner surface of the cuff is provided with an application electrode at both ends of the center side and the peripheral side to apply an AC voltage, and a pair of detection electrodes is further provided between the application electrodes, and the impedance between the detection electrodes is set. The blood vessel volume is calculated by the detection.

【0010】次に、この実施例装置のソフト構成及び処
理動作を図3に示すフローチャートに基づいて、図7、
図8を用いて説明する。図7の(i)に示すように最高
血圧Ps、最低血圧Pdの被測定者を想定する。スター
トスイッチが押されると、図3に示すように、先ずステ
ップST(以下ST)1で変数の初期化を行う。ここ
で、n、m、kは脈波番号等を示す変数、ΔA*ma
x、ΔA*minは各脈波毎のΔAの振幅の最大値、最
小値を保有するための変数の全領域を表している。ST
2でCPU9から加圧ポンプ3とコントロール弁4に信
号が送られ、コントロール弁4を閉じた後、図7の
(i)のようにあらかじめPsよりも高く設定されてい
る設定圧力になるまでカフ圧Pcを検出しながらカフを
加圧する。加圧が目標値まで達すると、つまり加圧が終
了すると、以後ST3からST7のループの処理に移
る。ST3では、CPU9からコントロール弁4に信号
を送り、排気流量を制御してカフ圧Pcが0になるまで
徐々に減圧する。減圧の過程において、ST4で、血管
断面積脈波ΔAを検出する(詳細に後述)。ST5でオ
シロメトリック法による血圧算出処理を行い最高血圧P
sと最低血圧Pdを決定する。この血圧測定はK音法で
あってもよい。血圧値が決定したらST6で最高血圧P
sと最低血圧Pdの圧力差ΔPを算出し、Ps、ΔPを
メモリに保存する。ST7ではカフ圧Pcが0になった
か否かの判定を行い、0となるまで、ST3、…、ST
7の処理を繰り返す。
Next, the software configuration and processing operation of the apparatus of this embodiment will be described with reference to the flow chart shown in FIG.
This will be described with reference to FIG. As shown in (i) of FIG. 7, it is assumed that the subject has a systolic blood pressure Ps and a diastolic blood pressure Pd. When the start switch is pressed, as shown in FIG. 3, first, in step ST (hereinafter referred to as ST) 1, variables are initialized. Here, n, m, and k are variables indicating pulse wave numbers and the like, ΔA * ma
x and ΔA * min represent all areas of variables for holding the maximum and minimum values of the amplitude of ΔA for each pulse wave. ST
At step 2, a signal is sent from the CPU 9 to the pressurizing pump 3 and the control valve 4, and the control valve 4 is closed. The cuff is pressurized while detecting the pressure Pc. When the pressurization reaches the target value, that is, when the pressurization is completed, the process shifts to the loop from ST3 to ST7. In ST3, a signal is sent from the CPU 9 to the control valve 4 to control the exhaust flow rate and gradually reduce the cuff pressure Pc until it becomes zero. In the process of decompression, in ST4, the blood vessel cross-sectional area pulse wave ΔA is detected (details will be described later). In ST5, blood pressure calculation processing by the oscillometric method is performed and the maximum blood pressure P
s and the minimum blood pressure Pd are determined. This blood pressure measurement may be the K-tone method. When the blood pressure value is determined, in ST6, the maximum blood pressure P
The pressure difference ΔP between s and the minimum blood pressure Pd is calculated, and Ps and ΔP are stored in the memory. In ST7, it is determined whether or not the cuff pressure Pc has become 0, and until it becomes 0, ST3, ..., ST
The process of 7 is repeated.

【0011】減圧が完了したら、ST8で上記血管断面
積脈波ΔAを利用し、図7の(iii)のように血管断
面積脈波ΔAの包絡線e0 (=ΔA(Pc)が得られる
(詳細は後述)。図8のように、ST10で包絡線e0
をカフ圧の小さい方へΔPずつシフトして包絡線e0
1 、e2 、…、en (=ΔA(Pc+n×ΔP)(n
=0、1、2、…k)を作成する(詳細は後述)。ただ
し、シフトする回数は、包絡線e n の立ち上がりポイン
トのカフ圧を図7、図8のようにPcn(n=0、1、
2、…k)とすると、Pcn≧0の条件を満たす最大の
K回とST9で定義される。
After the decompression is completed, in ST8, the above blood vessel cross section
By using the product pulse wave ΔA, the blood vessel disconnection as shown in (iii) of FIG.
Envelope e of area pulse wave ΔA0(= ΔA (Pc) is obtained
(See below for details). As shown in FIG. 8, in ST10, the envelope e0
Is shifted toward the smaller cuff pressure by ΔP and the envelope e0,
e1, E2, ..., en(= ΔA (Pc + n × ΔP) (n
= 0, 1, 2, ... K) (details will be described later). However
However, the number of shifts depends on the envelope e nRising point
As shown in FIGS. 7 and 8, Pcn (n = 0, 1,
2, ... k), the maximum condition that satisfies Pcn ≧ 0
Defined as K times and ST9.

【0012】ST12でカフ圧0より大きい範囲につい
て包絡線e0 、e1 、…、en を全て加算するとカフ圧
0より大きい範囲について図8のような血管物理量A−
Pt1曲線を得る(詳細は後述)。次に、ST4での血
管断面積脈波ΔA検出ルーチンの詳細を図4のフローチ
ャートに沿って図7を用いて説明する。
At ST12, when all envelopes e 0 , e 1 , ..., E n are added for the range larger than 0, the blood vessel physical quantity A- as shown in FIG.
Obtain a Pt1 curve (details are given below). Next, details of the blood vessel cross-sectional area pulse wave ΔA detection routine in ST4 will be described with reference to the flowchart of FIG. 4 and FIG. 7.

【0013】このST4のルーチンに入ると、先ずST
22でカフにセットされた血管容積センサ2によってカ
フ下生体のインピーダンスZの変化を検出し、CPU9
内で以下の式から血管断面積の変化量に換算する。そこ
で図7の(i)
When the routine of ST4 is entered, first, ST
The change in impedance Z of the living body under the cuff is detected by the blood vessel volume sensor 2 set in the cuff at 22, and the CPU 9
The amount of change in the blood vessel cross-sectional area is converted from the following equation within. Therefore, (i) of FIG.

【0014】[0014]

【数1】 [Equation 1]

【0015】のような血管断面積波形Aを得る。ST2
3で血管断面積波形Aに対して高周波分離のデジタルフ
ィルタをかけることで血管断面積波形Aに重上している
脈動成分(血管断面積脈波)ΔAを分離する。ST24
で図7の(ii)のようにΔAのスレッシヨルドのロウ
レベルからハイレベルに変化した点を検出して脈波を一
拍毎に区切る。
A blood vessel cross-sectional area waveform A as described above is obtained. ST2
By applying a high-frequency separation digital filter to the blood vessel cross-sectional area waveform A at 3, the pulsating component (blood vessel cross-sectional area pulse wave) ΔA superimposed on the blood vessel cross-sectional area waveform A is separated. ST24
Then, as shown in (ii) of FIG. 7, the point where the threshold level of ΔA changes from the low level to the high level is detected, and the pulse wave is divided into beats.

【0016】ST25とST26で一拍脈波内の最大値
を検出してΔAmmax(m=1、2、…、k)に保存
し、ST27とST28で一拍脈波内の最小値を検出し
てΔAmmin(m=1、2、…、k)で保存する。S
T29で、ST24で発生した新たな脈拍区切りの一拍
前の脈波内のΔAの最大振幅を以下の式から算出し、Δ
Am(m=1、2、…、k)に保存する。
In ST25 and ST26, the maximum value in one pulse wave is detected and stored in ΔAmmax (m = 1, 2, ..., K), and in ST27 and ST28, the minimum value in one pulse wave is detected. And save as ΔAmmin (m = 1, 2, ..., K). S
At T29, the maximum amplitude of ΔA in the pulse wave immediately before the new pulse break generated in ST24 is calculated from the following equation, and Δ
Save in Am (m = 1, 2, ..., K).

【0017】ΔAm=ΔAmmax−ΔAmmin(m
=1、2、…、k) ST30でmを1つインクリメントする。ST31で脈
拍区切りの発生した点でのカフ圧PcをPcm(m=
1、2、…、k)に保存する。ST32で脈拍区切りの
発生した時間tをtm(m=1、2、…、k)に保存す
る。ST33で脈波を何回検出したかkに保存する。
ΔAm = ΔAmmax−ΔAmmin (m
= 1, 2, ..., K) In ST30, m is incremented by one. In ST31, the cuff pressure Pc at the point where the pulse separation occurs is Pcm (m =
Save to 1, 2, ..., k). In ST32, the time t at which the pulse break has occurred is stored in tm (m = 1, 2, ..., K). The number of times the pulse wave is detected in ST33 is stored in k.

【0018】続いて、ST8での包絡線e0 作成ルーチ
ンの詳細を図5のフローチャートに沿って図7を用いて
説明する。ST41で変数に初期値を代入する。ST4
2でmを1つインクリメントする。ST43で、ST4
で検出された脈波数のk回だけST42、…、ST44
のループを繰り返すように条件付ける。ST44で図7
の(iii)のようにPc−ΔAグラフ上に、対応する
Pcm、ΔAm(m=1、2、…k)を順次プロットし
ていく。
Next, details of the envelope e 0 creating routine in ST8 will be described with reference to the flowchart of FIG. 5 and FIG. In ST41, the initial value is assigned to the variable. ST4
In 2 increments m by one. ST43, ST4
ST42, ..., ST44 only k times of the pulse wave number detected in
Condition the loop to repeat. Figure 7 in ST44
The corresponding Pcm and ΔAm (m = 1, 2, ... K) are sequentially plotted on the Pc-ΔA graph as shown in (iii).

【0019】ST45、ST46で一拍脈波の平均周期
を求め、Δtmeanに保存する。ST47で図7の
(ii)に示したように、t1よりΔtmean時間前
のカフ圧Pcをメモリ上から読み出し、そのカフ圧をS
T48で、図7の(iii)のように包絡線e0 の立ち
上がり点でのカフ圧Pc0 として採用しPc−ΔAグラ
フ上にプロットする。
In ST45 and ST46, the average period of one pulse wave is obtained and stored in Δtmean. In ST47, as shown in (ii) of FIG. 7, the cuff pressure Pc Δtmean time before t1 is read from the memory, and the cuff pressure is S.
At T48, it is adopted as the cuff pressure Pc 0 at the rising point of the envelope e 0 as shown in (iii) of FIG. 7 and plotted on the Pc-ΔA graph.

【0020】ST49で、前ステップでプロットされた
点を直線で補間すると、包絡線e0がカフ圧Pcに関す
る関数として以下のように求められる。
In ST49, the points plotted in the previous step are interpolated by a straight line, and the envelope e 0 is obtained as a function of the cuff pressure Pc as follows.

【0021】[0021]

【数2】 [Equation 2]

【0022】このままでは煩雑なので、上記説明ではe
0 =ΔA(Pc)として表示した。ST10での包絡線
enをΔPずつ圧力軸方向へシフトする操作は、上述し
た関数e0 =ΔA(Pc)から以下の式で表現される。
Since it is complicated as it is, in the above description, e
It was displayed as 0 = ΔA (Pc). The operation of shifting the envelope en in the pressure axis direction by ΔP in ST10 is expressed by the following equation from the above-mentioned function e 0 = ΔA (Pc).

【0023】[0023]

【数3】 [Equation 3]

【0024】ST12での全包絡線e0 、e1 、…、e
n 加算ルーチンの詳細について図6のフローチャートに
沿って説明する。ST51で初期値を変数に代入する。
ただし、A* は血管物理量による血管断面積の保存領域
全体を意味する。ST52、53、54、55で、包絡
線en を包絡線e0 の立ち上がり圧Pc 0 からカフ圧の
小さい方に1mmHg刻みで加算しながら、血管物理量
による血管断面積の保存領域Arに保存。ただし、圧力
の刻み幅1mmHgは、必要に応じて変えることが可能
である。
Total envelope e in ST120, E1, ..., e
nDetails of the addition routine are shown in the flowchart of FIG.
I will explain along. In ST51, the initial value is assigned to the variable.
However, A*Is the storage area of the blood vessel cross-sectional area based on the physical quantity of the blood vessel
Means the whole. Envelope in ST52, 53, 54, 55
Line enThe envelope e0Rising pressure Pc 0From cuff pressure
Physical quantity of blood vessel is added to the smaller one by 1mmHg increments
Stored in the storage area Ar of the blood vessel cross-sectional area by. However, the pressure
The step width of 1 mmHg can be changed as required
Is.

【0025】ST56、57、58で、上述ステップS
T52、53、54、55の処理を包絡線をシフトした
回数n+1回繰り返す。ST59、60、61、62
で、全包絡線e0 、e1 、…、en を1mmHg刻みで
加算した値ArをA−Pc軸グラフ上にプロットする。
ST63で、プロットした各点を直線で補間し、カフ圧
Pcに対する血管物理量A−Pt1の関数を以下のよう
に得る。
In ST56, 57, 58, the above-mentioned step S
The processing of T52, 53, 54, 55 is repeated n + 1 times the number of times the envelope is shifted. ST59, 60, 61, 62
In total envelope e 0, e 1, ..., plotting the value Ar obtained by adding e n in 1mmHg increments on A-Pc axis graph.
In ST63, the plotted points are interpolated with a straight line to obtain a function of the vascular physical quantity A-Pt1 with respect to the cuff pressure Pc as follows.

【0026】[0026]

【数4】 [Equation 4]

【0027】また、圧力軸は図8のようにPt=Ps−
Pcの換算式を用いることで、カフ圧軸Pcからトラン
スミューラルプレッシャーPt軸に変換することができ
る。 〈実施例2〉この実施例の循環器機能計測装置のハード
構成も、図2に示すものと同様のものである。
The pressure axis is Pt = Ps- as shown in FIG.
By using the conversion formula of Pc, the cuff pressure axis Pc can be converted to the trans-mural pressure Pt axis. <Second Embodiment> The hardware configuration of the circulatory organ function measuring apparatus of this embodiment is the same as that shown in FIG.

【0028】この実施例のソフト構成及び処理動作を、
図9に示すフローチャートに沿って、図10、…図13
を用いて説明する。ST1で最高血圧以上の目標値まで
加圧する。ST2、…、ST7のループによる減圧過程
のST3で血圧値を測定して、ST4で最高血圧と最低
血圧の血圧差ΔPを求め、ST5、ST6で図10のよ
うなP−A曲線A−Ptrを得る。
The software configuration and processing operation of this embodiment are
According to the flowchart shown in FIG. 9, FIG.
Will be explained. In ST1, the pressure is increased to a target value above the systolic blood pressure. The blood pressure value is measured in ST3 of the depressurization process by the loop of ST2, ..., ST7, the blood pressure difference ΔP between the systolic blood pressure and the diastolic blood pressure is calculated in ST4, and the PA curve A-Ptr as shown in FIG. 10 is calculated in ST5 and ST6. To get

【0029】図10のようにA−Ptrの最大傾斜角点
ΔA−Ptr/ΔPtmaxをST8で検出し、ST9
でその点のトランスミューラルプレッシャー(=血管壁
内圧−血管壁外圧)Ptを0とする。図11のようにP
t=P0 (P0 は統計的に得られた最高血圧の平均値)
のときのA−Ptr断面積がArとすると、ST10で
以下の式によってPt=P0 のときのA−Ptr断面積
成分がA0 (A0 は統計的に得られたPt=P0 の時の
平均血管断面積)と一致するように正規化したA−Pt
r’を作成する。
As shown in FIG. 10, the maximum inclination angle point ΔA-Ptr / ΔPtmax of A-Ptr is detected in ST8 and ST9.
Then, the trans-mural pressure (= blood vessel wall inner pressure−blood vessel wall outer pressure) Pt at that point is set to zero. P as shown in FIG.
t = P 0 (P 0 is the average value of the systolic blood pressure obtained statistically)
Assuming that the A-Ptr cross-sectional area at this time is Ar, the A-Ptr cross-sectional area component at Pt = P 0 at ST10 is A 0 (A 0 is the statistically obtained Pt = P 0 A-Pt normalized to match the average blood vessel cross-sectional area)
Create r '.

【0030】 A−Ptr’=A−Ptr×(As/A0 ) 図11のように、ST11でPt=P1 (P1 は統計的
に得られた平均血圧の平均値)の点でのA−Ptr’の
傾斜角αを検出する。P−A曲線の傾斜角αと血管硬化
度の間には、図12、図13のような関係がある。そこ
で、あらかじめ収集しておいた複数の基礎データに対す
る、傾斜角αの標準偏差をST12で算出し、血管の硬
化度を評価する。つまり、平均血圧値P1 における傾斜
角αが小さいと、血管硬化度が高いと評価する。
A-Ptr ′ = A-Ptr × (As / A 0 ) As shown in FIG. 11, at ST 11, Pt = P 1 (P 1 is the average value of statistically obtained average blood pressure). The tilt angle α of A-Ptr 'is detected. There is a relationship as shown in FIGS. 12 and 13 between the inclination angle α of the PA curve and the degree of vascular hardening. Therefore, the standard deviation of the inclination angle α with respect to the plurality of basic data collected in advance is calculated in ST12, and the degree of hardening of the blood vessel is evaluated. That is, when the inclination angle α at the average blood pressure value P 1 is small, it is evaluated that the degree of blood vessel hardening is high.

【0031】[0031]

【発明の効果】請求項1記載の発明によれば、その構成
をカフと、カフ内の圧力(以下カフ圧)を変化させる圧
力制御手段と、血圧を測定する測定手段あるいは血圧値
を入力する入力手段と、カフ圧を検出する圧力センサ
と、カフ下生体内の動脈容積を検出する容積検出センサ
と、容積信号上の心拍に同期した容積脈波を抽出する脈
波抽出手段と、前記容積脈波と前記血圧値から血管物理
量を測定する測定手段としたので通常の血圧測定の過程
で容易に血管物理量を測定することができるという効果
が得られる。
According to the first aspect of the present invention, the cuff having the structure, the pressure control means for changing the pressure in the cuff (hereinafter referred to as the cuff pressure), the measuring means for measuring the blood pressure, or the blood pressure value is input. Input means, a pressure sensor to detect the cuff pressure, a volume detection sensor to detect the arterial volume in the body under the cuff, a pulse wave extraction means to extract a volume pulse wave synchronized with the heartbeat on the volume signal, and the volume Since the measuring means is used to measure the blood vessel physical quantity from the pulse wave and the blood pressure value, the effect that the blood vessel physical quantity can be easily measured in the normal blood pressure measurement process is obtained.

【0032】請求項2記載の発明によれば、カフとカフ
圧を変化させる圧力制御手段と、カフ圧を検出する圧力
センサと、カフ圧変化過程に於いて血圧を測定する血圧
測定手段と、カフ下生体内の動脈容積を検出する容積検
出センサと、容積信号上の心拍に同期した容積脈波を抽
出する脈波抽出手段とを備えることによって、加圧ある
いは減圧中に捉えた一拍または複数の容積脈波振幅から
圧力−血管断面積及びそれに比例する量曲線を測定する
特性曲線測定手段を持つものにおいて、前記圧力−血管
断面積及びそれに比例する量曲線の、第1の所定の圧力
点を圧力軸の基準とし、第2の所定の圧力点での断面積
及びそれに比例する成分が所定断面積と一致するように
前記圧力−血管断面積及びそれに比例する量曲線を正規
化した新しい第1の圧力−血管断面積及びそれに比例す
る量曲線を求める手段と、その第1の圧力−血管断面積
及びそれに比例する量曲線の第3の所定圧力点での傾斜
角、あるいはそれに比例する要素、あるいは第3の所定
圧力点から第4の所定圧力点までの所定圧力区間での断
面積の変化成分あるいはそれに比例する要素から各個人
の動脈硬化度を定量的に評価する手段とを備えているの
で、圧力−血管断面積及びそれに比例する量曲線から各
個人の動脈硬化度を定量的に評価できるという効果が得
られる。
According to the second aspect of the present invention, the cuff and the pressure control means for changing the cuff pressure, the pressure sensor for detecting the cuff pressure, and the blood pressure measuring means for measuring the blood pressure in the process of changing the cuff pressure, By providing a volume detection sensor for detecting the arterial volume in the body under the cuff, and a pulse wave extracting means for extracting a volume pulse wave synchronized with the heartbeat on the volume signal, one pulse captured during pressurization or depressurization or In a device having characteristic curve measuring means for measuring a pressure-blood vessel cross-sectional area and a volume curve proportional thereto from a plurality of volume pulse wave amplitudes, a first predetermined pressure of the pressure-blood vessel cross-sectional area and a volume curve proportional thereto Using the point as a reference of the pressure axis, the pressure-vessel cross-sectional area and the proportional volume curve are normalized so that the cross-sectional area at the second predetermined pressure point and the proportional component thereof coincide with the predetermined cross-sectional area. First A means for obtaining a pressure-blood vessel cross-sectional area and a volume curve proportional thereto, and an inclination angle at a third predetermined pressure point of the first pressure-blood vessel cross-sectional area and a volume curve proportional thereto, or an element proportional thereto, or Since it is provided with a means for quantitatively evaluating the degree of arteriosclerosis of each individual from the change component of the cross-sectional area in a predetermined pressure section from the third predetermined pressure point to the fourth predetermined pressure point or an element proportional thereto. The pressure-vessel cross-sectional area and the amount curve proportional thereto can be quantitatively evaluated for the degree of arteriosclerosis of each individual.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1記載の循環器機能計測装置の採用する
理論的根拠を説明するための図である。
FIG. 1 is a diagram for explaining a theoretical basis adopted by the circulatory organ function measuring apparatus according to claim 1.

【図2】この発明が実施される循環器機能計測装置のハ
ード構成を示すブロック図である。
FIG. 2 is a block diagram showing a hardware configuration of a circulatory organ function measuring device in which the present invention is implemented.

【図3】実施例1の循環器機能計測装置のソフト構成及
び処理動作を説明するためのフローチャートである。
FIG. 3 is a flowchart for explaining a software configuration and a processing operation of the circulatory organ function measuring apparatus according to the first embodiment.

【図4】同フローチャートの血管断面積脈波検出の処理
ルーチンを詳細に示すフローチャートである。
FIG. 4 is a flowchart showing in detail a processing routine for detecting a blood vessel cross-sectional area pulse wave in the flowchart.

【図5】図3のフローチャートの包絡線e0 の作成の処
理ルーチンを詳細に示すフローチャートである。
5 is a flowchart showing in detail a processing routine for creating an envelope curve e 0 of the flowchart of FIG.

【図6】図3のフローチャートの全包絡線の加算の処理
ルーチンを詳細に示すフローチャートである。
FIG. 6 is a flowchart showing in detail a processing routine for adding all envelopes in the flowchart of FIG.

【図7】実施例1の循環器機能計測装置の動作を説明す
るための図である。
FIG. 7 is a diagram for explaining the operation of the circulatory organ function measuring apparatus according to the first embodiment.

【図8】実施例1の循環器機能計測装置の動作を説明す
るための図である。
FIG. 8 is a diagram for explaining the operation of the circulatory organ function measuring apparatus according to the first embodiment.

【図9】実施例2の循環器機能計測装置のソフト構成及
び処理動作を説明するための図である。
FIG. 9 is a diagram for explaining the software configuration and processing operation of the circulatory organ function measuring apparatus according to the second embodiment.

【図10】同実施例循環器機能計測装置の動作を説明す
るための図である。
FIG. 10 is a view for explaining the operation of the circulatory organ function measuring apparatus according to the embodiment.

【図11】同実施例循環器機能計測装置の動作を説明す
るための図である。
FIG. 11 is a view for explaining the operation of the circulatory organ function measuring apparatus according to the embodiment.

【図12】同実施例循環器機能計測装置の動作を説明す
るための図である。
FIG. 12 is a view for explaining the operation of the circulatory organ function measuring apparatus according to the embodiment.

【図13】同実施例循環器機能計測装置の動作を説明す
るための図である。
FIG. 13 is a view for explaining the operation of the circulatory organ function measuring apparatus according to the embodiment.

【符号の説明】[Explanation of symbols]

1 カフ 2 容積センサ 3 加圧ポンプ 4 コントロール弁 5 圧力センサ 9 CPU 1 Cuff 2 Volume sensor 3 Pressurizing pump 4 Control valve 5 Pressure sensor 9 CPU

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】カフと、カフ圧を変化させる圧力制御手段
と、カフ圧を検出する圧力センサと、血圧を測定する測
定手段あるいは血圧値を入力する入力手段と、カフ下生
体内の動脈容積、あるいは前記容積に比例する物理量を
検出する容積検出手段と、容積信号上の心拍に同期した
容積脈波を抽出する脈波抽出手段と、徐々にカフ圧力を
変化させる過程に捉えた1拍または複数の容積脈波振幅
を圧力軸上に並べて包絡線を作成する包絡線作成手段
と、前記包絡線を圧力軸上に沿って移動しながら前記包
絡線に1回または複数回加算する加算手段とを備え、加
算手段の加算値を血管物理量として得ることを特徴とす
る循環器機能計測装置。
1. A cuff, a pressure control means for changing the cuff pressure, a pressure sensor for detecting the cuff pressure, a measuring means for measuring blood pressure or an input means for inputting a blood pressure value, and an arterial volume in the living body under the cuff. Alternatively, a volume detecting means for detecting a physical quantity proportional to the volume, a pulse wave extracting means for extracting a volume pulse wave synchronized with a heartbeat on the volume signal, and one beat captured in the process of gradually changing the cuff pressure or Envelope creating means for arranging a plurality of volume pulse wave amplitudes on a pressure axis to create an envelope, and adding means for adding the envelope once or a plurality of times to the envelope while moving the envelope along the pressure axis. A circulatory organ function measuring device comprising:
【請求項2】カフと、カフ圧を変化させる圧力制御手段
と、カフ圧を検出する圧力センサと、カフ圧変化過程に
於いて血圧を測定する血圧測定手段と、カフ下生体内の
動脈容積を検出する容積検出センサと、容積信号上の心
拍に同期した容積脈波を抽出する脈波抽出手段とを備え
ることによって、加圧あるいは減圧中に捉えた1拍また
は複数の容積脈波振幅から圧力−血管断面積及びそれに
比例する量曲線を測定する特性曲線測定手段を持った循
環器機能計測装置において、 前記圧力−血管断面積及びそれに比例する量曲線の第1
の所定の圧力点を圧力軸の基準とし、第2の所定の圧力
点での断面積及びそれに比例する成分が所定断面積及び
それに比例する量と一致するように前記圧力−血管断面
積及びそれに比例する量曲線を正規化した新しい第1の
圧力−血管断面積及びそれに比例する量曲線を求める手
段と、その第1の圧力−血管断面積及びそれに比例する
量曲線の第3の所定圧力点での傾斜角、あるいはそれに
比例する要素、あるいは第3の所定圧力点から第4の所
定圧力点までの所定圧力区間での断面積の変化成分、あ
るいはそれに比例する要素から各個人の動脈硬化度を定
量的に評価する手段を備えたことを特徴とする循環器機
能計測装置。
2. A cuff, pressure control means for changing the cuff pressure, a pressure sensor for detecting the cuff pressure, blood pressure measuring means for measuring blood pressure in the process of changing the cuff pressure, and arterial volume in the living body under the cuff. By including a volume detection sensor for detecting the volume pulse and a pulse wave extracting means for extracting a volume pulse wave synchronized with the heartbeat on the volume signal, one or a plurality of volume pulse wave amplitudes captured during pressurization or depressurization In a circulatory organ function measuring device having characteristic curve measuring means for measuring a pressure-blood vessel cross-sectional area and a volume curve proportional thereto, a first curve of the pressure-blood vessel cross-sectional area and a volume curve proportional thereto is provided.
Of the pressure-vascular cross-section and the cross-sectional area at the second predetermined pressure point and a component proportional to the cross-sectional area at the second predetermined pressure point are equal to the predetermined cross-sectional area and the amount proportional thereto. Means for obtaining a new first pressure-vessel cross-sectional area and a proportional quantity curve proportional thereto by normalizing the proportional quantity curve, and a third predetermined pressure point of the first pressure-vessel cross-sectional area and proportional quantity curve Of the individual arteriosclerosis degree from the inclination angle at or the element proportional to it, or the change component of the cross-sectional area in the predetermined pressure section from the third predetermined pressure point to the fourth predetermined pressure point, or the element proportional thereto. A circulatory organ function measuring device comprising means for quantitatively evaluating
【請求項3】前記第1の所定の圧力点を、前記圧力−血
管断面積及びそれに比例する量曲線の最大傾斜角の点、
あるいは立上がり点とする請求項2記載の循環器機能計
測装置。
3. The first predetermined pressure point is a point of the maximum inclination angle of the pressure-vessel cross-sectional area and the proportional curve proportional thereto,
Alternatively, the circulatory organ function measuring device according to claim 2, which is a rising point.
JP11257592A 1992-05-01 1992-05-01 Circulatory organ function measuring device Pending JPH05305061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11257592A JPH05305061A (en) 1992-05-01 1992-05-01 Circulatory organ function measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11257592A JPH05305061A (en) 1992-05-01 1992-05-01 Circulatory organ function measuring device

Publications (1)

Publication Number Publication Date
JPH05305061A true JPH05305061A (en) 1993-11-19

Family

ID=14590157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11257592A Pending JPH05305061A (en) 1992-05-01 1992-05-01 Circulatory organ function measuring device

Country Status (1)

Country Link
JP (1) JPH05305061A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102252A (en) * 2004-10-06 2006-04-20 Terumo Corp Circulatory organ function measuring device, circulatory organ function measuring method, control program and computer-readable storage medium
JP2008022995A (en) * 2006-07-19 2008-02-07 Fukuda Denshi Co Ltd Vein testing device and vein testing method
JP2013118902A (en) * 2011-12-06 2013-06-17 A & D Co Ltd Device for measuring degree of arteriosclerosis
US10238306B2 (en) 2006-02-20 2019-03-26 Everist Genomics, Inc. Method for non-evasively determining an endothelial function and a device for carrying out said method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102252A (en) * 2004-10-06 2006-04-20 Terumo Corp Circulatory organ function measuring device, circulatory organ function measuring method, control program and computer-readable storage medium
US10238306B2 (en) 2006-02-20 2019-03-26 Everist Genomics, Inc. Method for non-evasively determining an endothelial function and a device for carrying out said method
JP2008022995A (en) * 2006-07-19 2008-02-07 Fukuda Denshi Co Ltd Vein testing device and vein testing method
JP2013118902A (en) * 2011-12-06 2013-06-17 A & D Co Ltd Device for measuring degree of arteriosclerosis

Similar Documents

Publication Publication Date Title
JP4841739B2 (en) Oscillometric blood pressure monitor in the presence of arrhythmia
US7361148B2 (en) Cuff volumetric pulse wave obtaining apparatus, cuff volumetric pulse wave analyzing apparatus, pressure pulse wave obtaining apparatus, and pressure pulse wave analyzing apparatus
AU2018235369B2 (en) Central aortic blood pressure and waveform calibration method
US6443905B1 (en) Method and arrangement for blood pressure measurement
CN101765398B (en) Assessment of preload dependence and fluid responsiveness
EP0651970A1 (en) Method and apparatus for assessing cardiovascular performance
US20050119578A1 (en) Electronic hemomanometer and blood pressure measuring method of electronic hemomanometer
JP2004180910A (en) Blood pressure measurement instrument
WO2004012595A2 (en) Methods and apparatus for measuring arterial compliance
JP2003284696A5 (en)
US20030167014A1 (en) Arteriosclerosis inspecting apparatus
JP2001504362A (en) Non-destructive blood pressure measurement device without pressurized zone
JP2003144400A (en) Automatic oscillometric device and method for measuring blood pressure
US5868679A (en) Blood-pressure monitor apparatus
JP3700048B2 (en) Electronic blood pressure monitor
CN105310673A (en) Biological information measuring apparatus and biological information measuring method
US6616608B2 (en) Periodic-physical-information measuring apparatus
EP1356767A2 (en) Augmentation-index measuring apparatus
US6746405B2 (en) Blood pressure measuring apparatus with pulse wave detecting function
JPH05305061A (en) Circulatory organ function measuring device
JPH08140948A (en) Blood pressure measuring system
JP3216029B2 (en) Cardiovascular function measurement device
US20040077959A1 (en) Vital-information obtaining apparatus
JPH0538332A (en) Device for measuring degree of arteriosclerosis
JP3147584B2 (en) Electronic sphygmomanometer