JPH05304723A - Device for controlling ac-to-dc converter - Google Patents
Device for controlling ac-to-dc converterInfo
- Publication number
- JPH05304723A JPH05304723A JP4131544A JP13154492A JPH05304723A JP H05304723 A JPH05304723 A JP H05304723A JP 4131544 A JP4131544 A JP 4131544A JP 13154492 A JP13154492 A JP 13154492A JP H05304723 A JPH05304723 A JP H05304723A
- Authority
- JP
- Japan
- Prior art keywords
- output
- circuit
- limiter
- converter
- control circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/60—Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Direct Current Feeding And Distribution (AREA)
- Inverter Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は直流送電設備や周波数変
換装置のような交直変換器の制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an AC / DC converter such as a DC power transmission facility or a frequency converter.
【0002】[0002]
【従来の技術】図10は従来の直流送電系統の変換装置の
制御装置の例を示す概略ブロック図である。直流送電系
統の変換装置は変換器1A,1Bの直流側は夫々直流リアク
トル2A,2Bを介して直流送電線路3によって接続され、
各変換器1A,1Bの交流側は変換器用変圧器4A,4B、しゃ
断器5A,5Bを介して夫々の交流系統6A,6Bに接続される
ように構成されている。従来変換器1A,1Bには余裕角リ
ミッタ制御回路7A,7B、定電流制御回路8A,8B、定電圧
制御回路9A,9Bが具備されており、余裕角リミッタ制御
回路7A,7Bは変換器の余裕角が最小余裕角を設定してい
る余裕角設定器10A ,10B の出力以下とならないように
リミッタをかける回路である。又、直流電流設定器11の
出力である電流基準値と、直流電流検出器12A ,12B で
検出された直流電流を電流/電圧変換回路13A ,13B に
よって制御回路として取扱い易い値に変換した直流電流
検出値とが加算回路14A ,14B に入力され、その差が定
電流制御回路8A,8Bに入力されることで、直流送電線路
3に流れる直流電流が前記電流基準値に追従するように
制御される。2. Description of the Related Art FIG. 10 is a schematic block diagram showing an example of a conventional controller for a converter of a DC power transmission system. In the converter of the DC power transmission system, the DC sides of the converters 1A and 1B are connected by the DC power transmission line 3 via the DC reactors 2A and 2B, respectively.
The AC side of each converter 1A, 1B is configured to be connected to the respective AC system 6A, 6B via the converter transformers 4A, 4B and the circuit breakers 5A, 5B. Conventional converters 1A and 1B are provided with margin angle limiter control circuits 7A and 7B, constant current control circuits 8A and 8B, and constant voltage control circuits 9A and 9B, and margin angle limiter control circuits 7A and 7B are converters. This is a circuit that applies a limiter so that the margin angle does not fall below the output of the margin angle setters 10A and 10B that set the minimum margin angle. In addition, the current reference value that is the output of the DC current setter 11 and the DC current detected by the DC current detectors 12A and 12B are converted into values that are easy to handle as a control circuit by the current / voltage conversion circuits 13A and 13B. The detected value is input to the adding circuits 14A and 14B, and the difference is input to the constant current control circuits 8A and 8B, so that the direct current flowing through the direct current transmission line 3 is controlled so as to follow the current reference value. It
【0003】又、直流電圧検出器17A ,17B によって検
出された直流電圧検出値は、直流電圧設定器18の出力で
ある直流電圧設定値と共に加算回路19A ,19B に入力さ
れ、その差が定電圧制御回路9A,9Bに入力されること
で、直流送電線路3に印加される直流電圧が前記直流電
圧設定値に追従するよう制御される。スイッチ15A ,15
B は変換器を逆変換運転する変換器側のみが閉となり、
電流マージン設定器16A,16B の出力である電流マージ
ンが前記加算回路14A ,14B に入力される。前記余裕角
制御回路7A,7B、定電流制御回路8A,8B、定電圧制御回
路9A,9Bのうち、その出力として最も小さな出力のみを
選択出力する最小値選択回路20A ,20B により、今、仮
にスイッチ15B が閉で、スイッチ15A が開になっている
とすると、前記最小値選択回路20A には前記定電流制御
回路8Aの出力が選択出力され、前記最小値選択回路20B
には前記余裕角制御回路7B又は定電圧制御回路9Bの出力
が選択出力される。説明の便宜上、スイッチ15A が開
で、スイッチ15B が閉、最小値選択回路20B の出力は定
電圧制御回路9Bの出力が選択されているものとして、以
後説明する。Further, the detected value of the DC voltage detected by the DC voltage detectors 17A and 17B is input to the adder circuits 19A and 19B together with the DC voltage set value which is the output of the DC voltage setter 18, and the difference between them is a constant voltage. By being input to the control circuits 9A and 9B, the DC voltage applied to the DC power transmission line 3 is controlled so as to follow the DC voltage set value. Switch 15A, 15
B is closed only on the side of the converter that operates the converter in reverse conversion,
The current margin output from the current margin setters 16A and 16B is input to the adder circuits 14A and 14B. By the minimum value selection circuits 20A and 20B that selectively output only the smallest output among the margin angle control circuits 7A and 7B, the constant current control circuits 8A and 8B, and the constant voltage control circuits 9A and 9B, If the switch 15B is closed and the switch 15A is opened, the output of the constant current control circuit 8A is selectively output to the minimum value selection circuit 20A, and the minimum value selection circuit 20B is selected.
The output of the margin angle control circuit 7B or the constant voltage control circuit 9B is selectively output to. For convenience of explanation, it is assumed that the switch 15A is open, the switch 15B is closed, and the output of the constant voltage control circuit 9B is selected as the output of the minimum value selection circuit 20B.
【0004】前記最小値選択回路20A ,20B の出力は、
夫々位相制御回路21A ,21B に入力され、ここで変換器
1A,1Bの点弧タイミングを決めるパルス信号に変換さ
れ、パルス増幅回路22A ,22B を介して変換器1A,1Bに
ゲートパルス信号として与えられる。以上説明したよう
に変換器の制御回路は公知であり、かかる直流連系設備
の動作曲線は横軸に直流電流Id ,縦軸に直流電圧Ed
をとると、図11に示すようになることも周知である。図
11において、,,は順変換器運転している変換器
1Aの動作曲線で、,の部分は変換器用変圧器4Aを含
む転流インピーダンス等で決まるレギュレーション部分
で、,の部分は定電流制御回路8Aで決まる定電流特
性の部分である。The outputs of the minimum value selection circuits 20A and 20B are
Input to the phase control circuits 21A and 21B, respectively,
It is converted into a pulse signal that determines the firing timing of 1A, 1B, and is given as a gate pulse signal to the converters 1A, 1B via the pulse amplifier circuits 22A, 22B. As described above, the control circuit of the converter is publicly known, and the operation curve of such a DC interconnection equipment is a DC current Id on the horizontal axis and a DC voltage Ed on the vertical axis.
It is also well known that the above is obtained as shown in FIG. Figure
In 11, a forward converter is a converter operating
In the operation curve of 1A, the part of, is the regulation part determined by the commutation impedance including the converter transformer 4A, and the part of, is the part of the constant current characteristic determined by the constant current control circuit 8A.
【0005】一方、,,は逆変換器運転をしてい
る変換器1Bの動作曲線で、,の部分は定電流制御回
路8Bで決まる定電流特性部分で、,は定電圧制御回
路9Bで決まる定電圧特性の部分である。ここで、動作曲
線のとの点の直流電流の差が前記電流マージンに相
当している。この状態で直流送電系の変換装置は変換器
1Aと変換器1Bの動作曲線の交点であるA点で運転され
る。ところで図10の直流送電系統で直流反転、即ち、変
換器1Aを逆変換器運転、変換器1Bを順変換器運転させる
ためには、スイッチ15A を閉、スイッチ15B を開とす
る。これにより最小値選択回路20A の出力として定電圧
制御回路9Aの出力が選択され、一方、最小値選択回路20
B の出力として定電流制御回路8Bの出力が選択されるよ
うになる。この場合の変換器の動作曲線は図11におい
て、′,′,が順変換器運転をしている変換器1
B、,′,′が逆変換器運転をしている変換器1A
のものとなり、直流送電系統の動作点はA′となる。On the other hand, the ,, and are the operation curves of the converter 1B operating in the inverse converter, the part of, and is the constant current characteristic part determined by the constant current control circuit 8B, and the, are determined by the constant voltage control circuit 9B. This is a part of constant voltage characteristics. Here, the difference in the direct current from the point of the operation curve corresponds to the current margin. In this state, the converter of the DC transmission system is the converter
It is operated at point A, which is the intersection of the operating curves of 1A and converter 1B. By the way, in the DC transmission system of FIG. 10, in order to perform DC inversion, that is, in order to operate the converter 1A as an inverse converter and the converter 1B as a forward converter, the switch 15A is closed and the switch 15B is opened. As a result, the output of the constant voltage control circuit 9A is selected as the output of the minimum value selection circuit 20A, while the minimum value selection circuit 20A is selected.
The output of the constant current control circuit 8B is selected as the output of B. The operating curve of the converter in this case is as shown in FIG.
Converter 1A in which B, ′, ′ are in reverse converter operation
And the operating point of the DC transmission system is A '.
【0006】[0006]
【発明が解決しようとする課題】上記図11に示す動作点
A,A′は定常状態であるが、直流反転の過渡状態を図
示すると図12となる。即ち、図10において、変換器1Aが
順変換器から逆変換器へ、変換器1Bが逆変換器から順変
換器へ潮流反転するとした場合、最小値選択回路20A ,
20B の出力は夫々図12(a) の,で示されるように動
作する。この結果、直流送電線路3に印加される直流電
圧は図12(b) で示される。図において、,の部分は
潮流反転を行なう前の定常状態、〜の部分は前述し
た電流マージン操作による潮流反転の過渡状態、,
は潮流反転から完了した定常状態である。過渡状態のう
ち,の部分では直流電圧の極性を反転させるため、
絶対値が小さくなっており、これに対して前述の定電圧
制御回路を動作させたままにしておくと、定電圧制御回
路は直流電圧の絶対値を大きくする方向に動作し、かつ
遅れ要素を含むのが一般的であるから、図中,の部
分で示すように一時的に過電圧が生じることがある。こ
のような過電圧は直流送電線路のみならず、前記しなか
ったが一般的に直流側に設置される直流フィルタや避雷
器といった機器にストレスを与え、又、直流送電線路に
長距離のケーブルを含むような場合には、過電圧が拡大
して変換器の運転に支障を及ぼす等の不具合を発生させ
る。本発明は上記事情に鑑みてなされたものであり、潮
流反転時の直流過電圧を防止する交直変換器の制御装置
を提供することを目的としている。Although the operating points A and A'shown in FIG. 11 are in the steady state, the transient state of DC inversion is shown in FIG. That is, in FIG. 10, when it is assumed that the converter 1A performs power flow inversion from the forward converter to the inverse converter and the converter 1B reverses from the inverse converter to the forward converter, the minimum value selection circuit 20A,
The output of 20B operates as shown in Fig. 12 (a). As a result, the DC voltage applied to the DC transmission line 3 is shown in FIG. 12 (b). In the figure, the part of, is the steady state before power reversal, the part of is the transient state of the power reversal by the current margin operation,
Is the steady state completed from the flow reversal. In the part of the transient state, in order to reverse the polarity of the DC voltage,
The absolute value is small, and if the constant voltage control circuit described above is left operating, the constant voltage control circuit operates in the direction of increasing the absolute value of the DC voltage, and delay elements are eliminated. Since it is generally included, an overvoltage may occur temporarily as shown by the part in the figure. Such overvoltage not only stresses the DC power transmission line, but also stresses devices such as DC filters and lightning arrestors, which are generally installed on the DC side, and also include long-distance cables in the DC power transmission line. In such a case, the overvoltage expands to cause a trouble such as hindering the operation of the converter. The present invention has been made in view of the above circumstances, and an object thereof is to provide a control device for an AC / DC converter that prevents a DC overvoltage at the time of power flow reversal.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するた
め、本発明は定電圧制御系の出力リミッタ値を調整又は
切替える手段を設け、潮流反転中及び潮流反転直後の一
定期間は出力リミッタを絞るようにした。In order to achieve the above object, the present invention provides means for adjusting or switching the output limiter value of a constant voltage control system, and narrows down the output limiter during power flow reversal and for a certain period immediately after power flow reversal. I did it.
【作用】したがって潮流反転中に直流電圧の絶対値が低
下しても定電圧制御回路の出力は出力リミッタの値を超
えないため、潮流反転直後の過電圧を防止することがで
きる。Therefore, even if the absolute value of the DC voltage decreases during the power flow reversal, the output of the constant voltage control circuit does not exceed the value of the output limiter, so that the overvoltage immediately after the power flow reversal can be prevented.
【0008】[0008]
【実施例】以下図面を参照して実施例を説明する。図1
は本発明による交直変換器の制御装置の一実施例のブロ
ック図であり、図10と同一部分については同一符号を付
して説明を省略する。図1において図10と異なる部分は
一点鎖線で示した部分である。なお、図では符号B側だ
けを示しているが、A側にも同一構成があるが省略して
いる。そして符号Bも省略して示す。図1において、図
10と異なる部分は、定電圧制御回路9に上下限リミッタ
を設けた点であり、かつその上限リミッタ値は、遅延回
路37、リミッタ制御回路38、最小値選択回路39及び上限
リミッタ設定器33,34、スイッチ36によって設定される
よう構成し、又、下限リミッタ値は、下限リミッタ設定
器31,32及びスイッチ35によって設定されるよう構成し
ている。Embodiments will be described below with reference to the drawings. Figure 1
FIG. 11 is a block diagram of an embodiment of a control device for an AC / DC converter according to the present invention. The same parts as those in FIG. In FIG. 1, the portion different from FIG. 10 is the portion indicated by the alternate long and short dash line. Although only the reference symbol B side is shown in the figure, the same constitution is also omitted on the A side, but is omitted. The symbol B is also omitted. Figure 1
The difference from 10 is that upper and lower limiters are provided in the constant voltage control circuit 9, and the upper limiter values thereof are the delay circuit 37, the limiter control circuit 38, the minimum value selection circuit 39 and the upper limiter setter 33, 34 and the switch 36, and the lower limit limiter value is set by the lower limit limiter setting devices 31, 32 and the switch 35.
【0009】次に作用について説明する。ここで定電圧
制御回路9の出力リミッタは、潮流方向に応じて上限リ
ミッタ値は上限リミッタ設定器33又は34の出力がスイッ
チ36で選択され、又、下限リミッタ値は下限リミッタ設
定器31又は32の出力がスイッチ35で選択されることは公
知であるが、本発明では潮流反転指令が出ると、遅延回
路37により適当なタイミングを生成し、これら上下限リ
ミッタ値を切替えると共に、遅延回路37の出力はリミッ
タ制御回路38に入力され、これによって一定期間リミッ
タ値を絞り、かつその後は徐々にリミッタ値を戻すよう
な信号を生成する。更にリミッタ制御回路38の出力とス
イッチ36の出力のうち、小さい方の値が最小値選択回路
39で選択され、定電圧制御回路9の上限リミッタを制御
する。この結果、潮流反転中及び潮流反転直後の一定期
間は、定電圧制御回路9の出力はリミッタ制御回路38の
出力によって上限が制限されるので、変換器の出力電圧
も過電圧となることはない。本実施例によれば、潮流反
転直後の過電圧が抑制されるので、結果的に直流側機器
のストレス減少,変換器の安定運転継続という効果を有
する。Next, the operation will be described. In the output limiter of the constant voltage control circuit 9, the output of the upper limit limiter value 33 or 34 is selected by the switch 36 according to the flow direction, and the lower limit limiter value is set to the lower limit limiter setter 31 or 32. It is well known that the output of is selected by the switch 35, but in the present invention, when a power flow inversion command is issued, appropriate timing is generated by the delay circuit 37, and these upper and lower limit limiter values are switched, and at the same time, the delay circuit 37 The output is input to the limiter control circuit 38, which generates a signal that narrows the limiter value for a certain period and then gradually returns the limiter value. Further, the smaller value of the output of the limiter control circuit 38 and the output of the switch 36 is the minimum value selection circuit.
Selected at 39, the upper limiter of the constant voltage control circuit 9 is controlled. As a result, the upper limit of the output of the constant voltage control circuit 9 is limited by the output of the limiter control circuit 38 during the power flow reversal and for a certain period immediately after the power flow reversal, so that the output voltage of the converter does not become an overvoltage. According to this embodiment, the overvoltage immediately after the reversal of the power flow is suppressed, and as a result, the stress on the DC side device is reduced and the stable operation of the converter is continued.
【0010】図2は他の実施例の構成図であり、図1の
一点鎖線部分のみを示す。先の実施例(図1)では、潮
流反転時のリミッタ制御にリミッタ制御回路及び最小値
選択回路を用いたが、本実施例ではこれらを省略して、
その代わりに遅延回路37によるタイミング制御と、1次
遅れ回路40により構成されている。変換器が順変換器運
転から逆変換器運転へと潮流反転する場合は、定電圧制
御回路9の上限リミッタは広くなる(リミッタ値が大き
くなる)のが一般的であるから、本実施例はリミッタを
広げるタイミングを遅延回路37によって遅らし、かつ切
替え時にリミッタ値が徐々に変化するよう1次遅れ回路
を通している。本実施例によれば、潮流反転による電圧
反転の動作が完了してから、定電圧制御回路の上限リミ
ッタを徐々に広げるので、先に説明したような過電圧は
発生しなくなり、図1の実施例と同様の効果を得ること
ができる。FIG. 2 is a block diagram of another embodiment, showing only the one-dot chain line portion of FIG. In the previous embodiment (FIG. 1), the limiter control circuit and the minimum value selection circuit were used for the limiter control at the time of power flow reversal, but these are omitted in this embodiment.
Instead, it is composed of a timing control by the delay circuit 37 and a first-order delay circuit 40. In the case where the converter reverses the power flow from the forward converter operation to the inverse converter operation, the upper limit limiter of the constant voltage control circuit 9 is generally wide (the limiter value is large). The timing for expanding the limiter is delayed by the delay circuit 37, and the limiter value is gradually changed at the time of switching through the first-order delay circuit. According to this embodiment, since the upper limit limiter of the constant voltage control circuit is gradually widened after the voltage reversal operation by the power flow reversal is completed, the overvoltage as described above does not occur, and the embodiment of FIG. The same effect as can be obtained.
【0011】図3は更に他の実施例の構成図である。本
実施例では変換器の転流失敗時の対策を考慮したもので
ある。即ち、変換器が逆変換器運転を行なっている場合
に、何らかの理由で交流系統6の電圧が低下した場合に
は、余裕角制御回路7の出力が選択されるようになり、
変換器の転流失敗を防止する動作を行なうが、万一、転
流失敗が発生した場合や、転流失敗の発生が想定される
場合、即ち、近隣電気所での変圧器投入やスタコン投入
で電圧歪が発生すると想定される場合には、図10に示さ
れるβ進め指令回路42の指令により、β進め制御回路41
を介してβ進め制御が行なわれる。即ち、定電圧制御回
路又は定余裕角制御回路の出力に代わってβ進め制御回
路41の出力が一時的に選択される。しかし、このような
場合、直流出力電圧の絶対値は小さくなり、その結果、
定電圧制御回路9の入力となる誤差信号は大きくなる。
従って、定電圧制御回路9の出力も大きな値となり、通
常は図示していない上限リミッタの値に保持される。こ
こでβ進めが解除されると、図6に示すようにβ進め制
御回路41の出力は速やかに復帰するのに対し、定電圧
制御回路9の出力は遅れて元の出力に戻るようにな
る。結果的に図6に示すように直流電圧が一時的に過電
圧状態となる。このような過電圧は直流側の機器にとっ
てストレスとなり、寿命に影響するばかりでなく、長距
離のケーブル系を有するようなシステムでは、過電圧が
増幅されて想定以上の過電圧を引き起こすといった不具
合を生じる。なお、図6においては定余裕角制御回路
の出力である。FIG. 3 is a block diagram of still another embodiment. In the present embodiment, the countermeasure against the commutation failure of the converter is taken into consideration. That is, when the voltage of the AC system 6 drops for some reason while the converter is operating as an inverse converter, the output of the margin angle control circuit 7 is selected.
Performs operation to prevent the commutation failure of the converter, but should a commutation failure occur, or if a commutation failure is expected to occur, that is, turn on a transformer or start a static converter at a nearby electrical station. If it is assumed that the voltage distortion will occur at, the β advance control circuit 41 is instructed by the instruction of the β advance command circuit 42 shown in FIG.
The β advance control is performed via. That is, the output of the β advance control circuit 41 is temporarily selected instead of the output of the constant voltage control circuit or the constant margin angle control circuit. However, in such a case, the absolute value of the DC output voltage becomes small, and as a result,
The error signal input to the constant voltage control circuit 9 becomes large.
Therefore, the output of the constant voltage control circuit 9 also becomes a large value and is normally held at the value of the upper limiter (not shown). When the β advance is released here, the output of the β advance control circuit 41 is promptly restored as shown in FIG. 6, whereas the output of the constant voltage control circuit 9 is delayed and returns to the original output. .. As a result, as shown in FIG. 6, the DC voltage temporarily becomes an overvoltage state. Such an overvoltage causes stress on the device on the DC side, which not only affects the service life, but also causes a problem that the overvoltage is amplified in a system having a long-distance cable system and causes an unexpected overvoltage. In FIG. 6, it is the output of the constant margin angle control circuit.
【0012】これらの場合に対処するためのものが図3
に示されており、前記実施例と同様に部分図のみを示
す。したがって定電圧制御回路9は上限リミッタを有
し、かつそのリミッタ値はβ進め制御回路41の出力値に
よって制御される構成となっている。なお、42はβ進め
指令回路である。この場合の作用は次のようになる。β
進め指令回路42の指令によりβ進め制御回路41が動作し
た場合には、前述したように直流出力電圧が低下し、そ
の結果、定電圧制御回路9の出力が大きくなる方向に加
算器19の出力信号が動作するものの、定電圧制御回路9
の出力リミッタが絞られているために、出力は大きな値
とならない。又、β進め解除時にも定電圧制御回路9の
出力は小さな値から戻るので、従来方式のような直流過
電圧の発生はない。本実施例によれば、β進め解除時の
過電圧が抑制され、結果的に直流側機器のストレス減
少,異常過電圧の原因の除去という効果を有する。FIG. 3 shows a method for coping with these cases.
In the same manner as the previous embodiment, only a partial view is shown. Therefore, the constant voltage control circuit 9 has an upper limiter, and the limiter value is controlled by the output value of the β advance control circuit 41. Reference numeral 42 is a β advance command circuit. The operation in this case is as follows. β
When the β advance control circuit 41 operates according to the instruction of the advance instruction circuit 42, the DC output voltage decreases as described above, and as a result, the output of the constant voltage control circuit 9 increases and the output of the adder 19 increases. The signal operates, but the constant voltage control circuit 9
Since the output limiter of is narrowed, the output does not become a large value. In addition, since the output of the constant voltage control circuit 9 returns from a small value even when the β advance is released, the DC overvoltage unlike the conventional method is not generated. According to this embodiment, the overvoltage at the time of releasing the β advance is suppressed, and as a result, the stress of the DC side device is reduced and the cause of the abnormal overvoltage is removed.
【0013】図4は更に他の実施例の構成図である。図
3の実施例では、定電圧制御回路9のリミッタ値とし
て、β進め制御回路41の出力値をそのまま用いたが、本
実施例では別途リミッタ制御回路43を設けて、これによ
りリミッタ値,解除タイミングを調整することにより、
図3の実施例以上に微調整ができ、より効果を大きくす
ることができる。FIG. 4 is a block diagram of still another embodiment. In the embodiment of FIG. 3, the output value of the β advance control circuit 41 is used as it is as the limiter value of the constant voltage control circuit 9. However, in the present embodiment, a limiter control circuit 43 is separately provided to release the limiter value. By adjusting the timing,
Fine adjustment can be performed more than the embodiment of FIG. 3, and the effect can be further enhanced.
【0014】図5は更に他の実施例の構成図である。図
5において、定電圧制御回路9は出力保持機能を有する
ものとし、遅延回路44と共に用いて、β進め処理中は定
電圧制御回路9の出力を事前値に保持するようにし、β
進め解除後一定の時間が経過してから出力保持を解除し
て、通常の定電圧制御を動作させることにより、従来方
式で発生していた過電圧を抑制することができる。FIG. 5 is a block diagram of still another embodiment. In FIG. 5, the constant voltage control circuit 9 has an output holding function, and is used together with the delay circuit 44 to hold the output of the constant voltage control circuit 9 at a pre-value during the β advance process.
By releasing the output holding and operating the normal constant voltage control after a certain time has elapsed after the advance cancellation, it is possible to suppress the overvoltage generated in the conventional method.
【0015】図7は更に他の実施例の構成図である。本
実施例は変換器が交流2回線の送電線に接続されている
状態にて、交流系統事故時に対処するためのものであ
る。即ち、例えば1回線送電線での3線地絡故障が発生
すると、当該送電線両端のしゃ断器が開放され、故障除
去後、一定の時間(通常数100 ms)を経てから再閉路、
即ち、両しゃ断器を元の閉じた状態に戻す操作が行なわ
れる。このとき、交流系統に接続された変換器1も停止
・再起動の動作を行なうが、再起動を短時間で行なおう
とする場合、不都合が起こる。即ち、地絡故障によって
一旦電圧が低下ししゃ断器の開放により故障除去された
ときには、変換器1が停止しているのでフィルタ及び調
相用コンデンサの進相容量が余るため一度過電圧とな
り、変換器1が再起動すると今度は送電線が開放された
ままで元の状態に比較して短絡容量が小さくなっている
ので、電圧が低下する。ここで両しゃ断器の再閉路によ
り送電線が運用されてやっと元の電圧に戻る。いずれに
しても送電線が2回線運用されている場合に比べ、短絡
容量が小さくなるので、変換器1の定格電力で安定に送
電できなくなる場合がある。又、送電線2回線にわたる
故障、例えば同相1線地絡故障では、故障除去時の短絡
容量が著しく低下し、前述と同様、定格電力で安定に送
電できなくなる。FIG. 7 is a block diagram of another embodiment. The present embodiment is for coping with an AC system fault in a state where the converter is connected to a transmission line having two AC lines. That is, for example, when a three-wire ground fault occurs in a single-line power transmission line, the circuit breakers at both ends of the power transmission line are opened, and after the fault is removed, a fixed time (usually several hundred ms) is passed before reclosing the circuit.
That is, an operation of returning both breakers to the original closed state is performed. At this time, the converter 1 connected to the AC system also performs the operation of stopping / restarting, but if restarting is to be performed in a short time, inconvenience occurs. That is, when the voltage is once reduced due to a ground fault and is removed by opening the breaker, the converter 1 is stopped and the phase advancing capacity of the filter and the phase-adjusting capacitor is left over, so that the voltage once becomes an overvoltage. When 1 is restarted, the transmission line is left open this time, and the short-circuit capacity is smaller than in the original state, so the voltage drops. Here, the transmission line is operated by the reclosing of both circuit breakers, and finally the original voltage is restored. In any case, since the short-circuit capacity is smaller than that in the case where two power transmission lines are operated, stable power transmission may not be possible at the rated power of the converter 1. Further, in the case of a failure across two lines of the transmission line, for example, an in-phase one-line ground fault, the short-circuit capacity at the time of removing the failure is remarkably reduced, and stable power transmission at the rated power cannot be performed, as described above.
【0016】このような場合に適用されるのが図7に示
されるものであり、交流送電線の一部が開放中であって
も、交直変換器を停止することなく安定に運転を継続さ
せるものである。図7において、70は電力検出器で直流
変換後の電圧,電流を入力する。71は加算器で電力指令
回路72からの指令値を入力し、加算結果は電力制御器73
へ入力する。74,75は極制御装置で図示されない変換器
の制御極へ接続される。76は電圧検出器で交流系統へ接
続される。77は事故検出器、78はシーケンス制御回路、
79はタイマーである。721 ,722 はスイッチ、723 ,72
4 は電力設定器である。FIG. 7 is applied to such a case, and the operation is stably continued without stopping the AC / DC converter even when a part of the AC power transmission line is open. It is a thing. In FIG. 7, a power detector 70 inputs the voltage and current after DC conversion. 71 is an adder which inputs the command value from the power command circuit 72, and the addition result is the power controller 73
To enter. 74 and 75 are pole control devices connected to the control poles of the converter (not shown). A voltage detector 76 is connected to the AC system. 77 is an accident detector, 78 is a sequence control circuit,
79 is a timer. 721 and 722 are switches, 723 and 72
4 is a power setting device.
【0017】次に図7の作用について説明する。先ず、
事故検出器77で交流系統の事故を検出し、シーケンス制
御回路78に停止・再起動の動作を行なわせる一方、タイ
マー79にも事故(あるいは事故除去)の信号を送り、タ
イマー79では予め設定されている送電線の再閉路に要す
る期間だけ出力が1の状態となり、その後0の状態に戻
る。電力指令回路72においては、タイマー79の出力が0
の場合は、電力設定器723 で設定された通常時の電力指
令値がスイッチ721 で選択される。一方、タイマー79の
出力が1の場合は、電力設定器724 で設定された小電力
指令値がスイッチ722 で選択されるようになっている。
従って、前述の送電線の再閉路に要する期間内は、電力
指令値は絞られた状態となり、交流系統の短絡容量が小
さい時でも変換器1は安定運転を継続できる。本実施例
によれば、2回線送電線一部が開放されて短絡容量が小
さくなっても、交直変換器を停止することなく、安定に
運転継続させる効果を得ることができる。Next, the operation of FIG. 7 will be described. First,
The accident detector 77 detects an AC system accident and causes the sequence control circuit 78 to perform stop / restart operations, while also sending an accident (or accident elimination) signal to the timer 79, which is preset by the timer 79. The output is in the state of 1 only during the period required for reclosing the existing transmission line, and then returns to the state of 0. In the power command circuit 72, the output of the timer 79 is 0.
In the case of, the switch 721 selects the normal power command value set by the power setter 723. On the other hand, when the output of the timer 79 is 1, the small power command value set by the power setter 724 is selected by the switch 722.
Therefore, during the period required for the reclosing of the transmission line, the power command value is narrowed down, and the converter 1 can continue stable operation even when the short-circuit capacity of the AC system is small. According to the present embodiment, even if a part of the two-line power transmission line is opened and the short-circuit capacity becomes small, it is possible to obtain the effect of stably continuing the operation without stopping the AC / DC converter.
【0018】図8は更に他の実施例の構成図であり、図
7と同一部分については同一符号を付して説明を省略す
る。図7の実施例では、電力指令回路72により電力設定
値そのものを絞り込む操作を行なったが、本実施例では
電力制御器の出力段にリミッタ80を設け、更に、設定器
813 ,814 、スイッチ811 ,812 から構成されるリミッ
タ制御回路81で電力指令値を絞り込む手段を構成した。
従って、平常時は定格容量相当のリミッタ値が設定器81
3 ,スイッチ811 で選択されており、事故検出によりタ
イマー79の指令で小電力相当のリミッタ値が設定器814
,スイッチ812 で選択されることにより図7と同様な
効果が得られる。FIG. 8 is a block diagram of still another embodiment, in which the same parts as those in FIG. In the embodiment of FIG. 7, the operation of narrowing the power set value itself is performed by the power command circuit 72, but in the present embodiment, the limiter 80 is provided at the output stage of the power controller, and further, the setting device is set.
A limiter control circuit 81 composed of 813 and 814 and switches 811 and 812 constitutes means for narrowing down the power command value.
Therefore, in normal times, the limiter value equivalent to the rated capacity is set by the setter 81.
3 is selected by switch 811 and the limiter value corresponding to the small power is set by the command of timer 79 when the accident is detected.
, And by the switch 812, the same effect as in FIG. 7 is obtained.
【0019】図9は更に他の実施例であり、図8と同一
部分については同一符号を付して説明を省略する。本実
施例では受信回路82でしゃ断器84A ,84B の開閉状態を
受信する構成としたものである。本実施例ではしゃ断器
84A ,84B が閉じられている通常の運用時には、受信回
路82の出力は0となっており、電力設定器723 の出力が
スイッチ721 で選択される。一方、しゃ断器84A ,84B
の一部が開放されると、受信回路82の出力は1となり、
電力設定器724 の出力をスイッチ722 で選択することに
より、送電線85A ,85B が再閉路されるまで、即ち、し
ゃ断器84A ,84B が閉じられるまで電力を絞ることがで
き、前記実施例と同様な効果が得られる。又、本実施例
では送電線の数が更に増えたりした場合や、送電線85A
,85B の事故様相(1回線3線地絡,2回線同相1線
地絡など)に応じて、受信回路82を多入力,多出力構成
とし、又、受信回路82の出力数に応じて電力指令回路と
スイッチも複数設けてもよい。この場合、送電線の事故
様相により、短絡容量の低下の度合は予め推定できるた
め、その度合に応じて絞り込む電力量を細かく設定すれ
ば、よりきめ細かな制御を行なうことができる。FIG. 9 shows still another embodiment. The same parts as those in FIG. 8 are designated by the same reference numerals and the description thereof will be omitted. In this embodiment, the receiving circuit 82 receives the open / closed states of the circuit breakers 84A and 84B. Breaker in this example
In a normal operation in which 84A and 84B are closed, the output of the receiving circuit 82 is 0, and the output of the power setting device 723 is selected by the switch 721. On the other hand, breakers 84A and 84B
When a part of is released, the output of the receiving circuit 82 becomes 1,
By selecting the output of the power setting device 724 with the switch 722, the power can be reduced until the transmission lines 85A and 85B are closed again, that is, the circuit breakers 84A and 84B are closed. Can be obtained. Further, in the present embodiment, when the number of power transmission lines is further increased,
, 85B accident situation (1-line 3-wire ground fault, 2-line in-phase 1-wire ground fault, etc.), the receiver circuit 82 has a multi-input, multi-output configuration, and the power consumption depends on the number of outputs of the receiver circuit 82. A plurality of command circuits and switches may be provided. In this case, the degree of reduction in short-circuit capacity can be estimated in advance due to the appearance of an accident in the transmission line. Therefore, finer control can be performed by setting the amount of power to be narrowed down according to the degree.
【0020】[0020]
【発明の効果】以上説明したように、本発明によれば潮
流反転時又はβ進め処理中、定電圧制御回路の出力リミ
ッタを調整すると共に、変換器の近辺にある交流送電線
の一部が故障中であっても電力指令値を絞り込むように
したので、直流過電圧を防止でき、かつ交直変換器を停
止させることなく、安定に運転できる。As described above, according to the present invention, the output limiter of the constant voltage control circuit is adjusted during power flow reversal or during β advance processing, and at the same time, a part of the AC transmission line near the converter is removed. Since the power command value is narrowed down even during a failure, DC overvoltage can be prevented, and stable operation can be performed without stopping the AC / DC converter.
【図1】本発明による交直変換器の制御装置の一実施例
のブロック図。FIG. 1 is a block diagram of an embodiment of a control device for an AC / DC converter according to the present invention.
【図2】他の実施例の部分構成図。FIG. 2 is a partial configuration diagram of another embodiment.
【図3】更に他の実施例の部分構成図。FIG. 3 is a partial configuration diagram of still another embodiment.
【図4】更に他の実施例の部分構成図。FIG. 4 is a partial configuration diagram of still another embodiment.
【図5】更に他の実施例の部分構成図。FIG. 5 is a partial configuration diagram of still another embodiment.
【図6】図3,図4,図5の効果を説明する図。FIG. 6 is a diagram for explaining the effect of FIGS. 3, 4, and 5;
【図7】本発明の更に他の実施例の構成図。FIG. 7 is a configuration diagram of still another embodiment of the present invention.
【図8】本発明の更に他の実施例の構成図。FIG. 8 is a configuration diagram of still another embodiment of the present invention.
【図9】本発明の更に他の実施例の構成図。FIG. 9 is a configuration diagram of still another embodiment of the present invention.
【図10】従来の変換装置の制御装置のブロック図。FIG. 10 is a block diagram of a control device of a conventional conversion device.
【図11】従来の変換装置の動作を説明する図。FIG. 11 is a diagram illustrating an operation of a conventional conversion device.
【図12】従来の変換装置の過渡状態を説明する図。FIG. 12 is a diagram illustrating a transient state of a conventional conversion device.
7 余裕角制御回路 8 定電流制御回路 9 定電圧制御回路 31,32 下限リミッタ設定器 33,34 上限リミッタ設定器 35,36 スイッチ 37,44 遅延回路 38 リミッタ制御回路 39 最小値選択回路 40 1次遅れ回路 41 β進め制御回路 42 β進め指令回路 43,81 リミッタ制御回路 70 電力検出器 72 電力指令回路 74,75 極制御装置 76 電圧検出器 77 事故検出器 78 シーケンス制御回路 79 タイマー 80 リミッタ 7 Margin angle control circuit 8 Constant current control circuit 9 Constant voltage control circuit 31, 32 Lower limit limiter setting device 33, 34 Upper limit limiter setting device 35, 36 Switch 37, 44 Delay circuit 38 Limiter control circuit 39 Minimum value selection circuit 40 Primary Delay circuit 41 β advance control circuit 42 β advance command circuit 43, 81 Limiter control circuit 70 Power detector 72 Power command circuit 74, 75 Pole controller 76 Voltage detector 77 Accident detector 78 Sequence control circuit 79 Timer 80 Limiter
Claims (3)
交直変換器において、上記定電圧制御系は出力リミッタ
及び出力リミッタの値を適当に調整し得る回路を備え、
潮流反転時定電圧制御系の出力リミッタを絞ることを特
徴とする交直変換器の制御装置。1. In an AC / DC converter having at least a constant current system and a constant voltage system, the constant voltage control system includes an output limiter and a circuit capable of appropriately adjusting the values of the output limiter,
A control device for an AC / DC converter, wherein an output limiter of a constant voltage control system at the time of power flow reversal is narrowed.
直変換器の制御装置において、β進め処理中は上記定電
圧制御回路の出力リミッタを絞ることを特徴とする交直
変換器の制御装置。2. A controller for an AC / DC converter having a constant voltage control circuit and a β advance circuit, wherein the output limiter of the constant voltage control circuit is narrowed down during the β advance process.
手段と、前記出力により停止・再起動のシーケンスを実
施する手段を有する交直変換器の制御装置において、タ
イマー及び前記タイマーの指令により直流電力指令値を
一定期間絞り込む手段を備えたことを特徴とする交直変
換器の制御装置。3. A controller of an AC / DC converter having means for detecting an AC system accident and accident elimination, and means for executing a sequence of stop / restart by the output, a DC power is supplied by a timer and a command from the timer. A control device for an AC / DC converter, which is provided with means for narrowing a command value for a certain period.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13154492A JP3276980B2 (en) | 1992-04-24 | 1992-04-24 | Control device for AC / DC converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13154492A JP3276980B2 (en) | 1992-04-24 | 1992-04-24 | Control device for AC / DC converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05304723A true JPH05304723A (en) | 1993-11-16 |
JP3276980B2 JP3276980B2 (en) | 2002-04-22 |
Family
ID=15060564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13154492A Expired - Fee Related JP3276980B2 (en) | 1992-04-24 | 1992-04-24 | Control device for AC / DC converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3276980B2 (en) |
-
1992
- 1992-04-24 JP JP13154492A patent/JP3276980B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3276980B2 (en) | 2002-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090219737A1 (en) | Transmission system and a method for control thereof | |
US6137277A (en) | Static voltage regulator | |
JPH0919052A (en) | Protective device of converter | |
JPH0145297B2 (en) | ||
EP0129250B2 (en) | Converter control system | |
JPH05304723A (en) | Device for controlling ac-to-dc converter | |
US4680691A (en) | Method and system for preventing an excessive voltage build-up in a power converter system | |
JPS5915257B2 (en) | High voltage DC power transmission equipment | |
JPH07193982A (en) | Variable speed power generation system | |
JPS6087695A (en) | Excitation controller | |
JP2791006B2 (en) | Control method of AC / DC converter | |
JPS58218900A (en) | Under-excitation limiter | |
JP2994022B2 (en) | Control device for AC / DC converter | |
JPH08265975A (en) | Static reactive power compensator | |
JPH0974668A (en) | Method and device for controlling dc power transmission | |
JPH10293614A (en) | Ltc controller for transformer of power plant | |
JPH08237952A (en) | Controller for ac/dc converter | |
JPH08223921A (en) | Control device of ac-dc conversion apparatus | |
JPH05207650A (en) | Controller for dc transmission system | |
JPH06276745A (en) | Controller for ac-dc converter | |
JP2000092897A (en) | Control method for controlling negative phase current of a power generator | |
JP2925292B2 (en) | Control device for AC / DC converter | |
JP2002291157A (en) | Power supply system | |
JPH05344743A (en) | Controller for ac-dc converter | |
JPS6332033B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080208 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090208 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100208 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100208 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110208 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |