JPH053032A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JPH053032A
JPH053032A JP24853491A JP24853491A JPH053032A JP H053032 A JPH053032 A JP H053032A JP 24853491 A JP24853491 A JP 24853491A JP 24853491 A JP24853491 A JP 24853491A JP H053032 A JPH053032 A JP H053032A
Authority
JP
Japan
Prior art keywords
zinc alloy
negative electrode
alloy powder
alkaline
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24853491A
Other languages
Japanese (ja)
Inventor
Teiji Okayama
定司 岡山
Kiyoto Yoda
清人 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP24853491A priority Critical patent/JPH053032A/en
Publication of JPH053032A publication Critical patent/JPH053032A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress an internal pressure due to the generation of hydrogen gas during storage so as to enhance its discharge performance by providing a gelnegative electrode, in which the corrosion of non-amalgamated zinc alloy powders being prevented, in an alkaline battery. CONSTITUTION:An alkaline battery of this invention contains a gel negative electrode 4 comprising zinc allay powders and an alkaline electrolyte. The gel negative electrode 4 contains an anticorrosives for the zinc alloy powders. The anticorrosives contain indium compounds, for example an indium oxide being contained in an amount of 0.01 to 0.1wt.% in terms of only indium relative to the zinc alloy powders. Furthermore, as the anticorrosives, an alkyl benzene sulfate, in which the number-of-carbon of an alkyl group being equal to and less than thirty five, or its salt neutralized by an alkaline metal, for example alkyl benzene potassium sulfate, the number-of-carbon of which being nine, is contained ranging from 0.01 to 0.1wt% therein.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ電池の負極活物
質である亜鉛合金粉末の防食剤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anticorrosive agent for zinc alloy powder, which is a negative electrode active material for alkaline batteries.

【0002】[0002]

【従来の技術】従来、アルカリ電池では、活物質として
の亜鉛粉末と、アルカリ電解液とをゲル化したゲル状負
極が用いられている。かかるアルカリ電池では、ゲル状
負極中の亜鉛粉末がアルカリ電解液で腐食されると、水
素ガスを発生して内圧が上昇したり、電池容量が低下す
る。この亜鉛粉末の腐食は、主に亜鉛粉末の水素過電圧
が低いことが原因である。このため、前記亜鉛粉末の表
面を水銀でアマルガム化する汞化処理を施すことによっ
て、該亜鉛粉末の水素過電圧を高めている。
2. Description of the Related Art Conventionally, alkaline batteries have used a gelled negative electrode obtained by gelling zinc powder as an active material and an alkaline electrolyte. In such an alkaline battery, when the zinc powder in the gelled negative electrode is corroded by the alkaline electrolyte, hydrogen gas is generated to increase the internal pressure or decrease the battery capacity. The corrosion of the zinc powder is mainly due to the low hydrogen overvoltage of the zinc powder. Therefore, the hydrogen overvoltage of the zinc powder is increased by subjecting the surface of the zinc powder to an amalgamation treatment with mercury.

【0003】ところが、近年、環境公害問題上の見地か
ら電池内の水銀量の低減化が望まれている。このような
ことから、汞化処理に用いる水銀量が少なくなくても十
分な耐食性を有する負極活物質として、種々の金属元素
(例えば鉛、インジウム、アルミニウム、ガリウム等)
を亜鉛に添加した組成の亜鉛合金粉末が用いられるよう
になってきた。
However, in recent years, it has been desired to reduce the amount of mercury in the battery from the viewpoint of environmental pollution. Therefore, various metal elements (eg, lead, indium, aluminum, gallium, etc.) can be used as the negative electrode active material having sufficient corrosion resistance even if the amount of mercury used for the grading treatment is not small.
Zinc alloy powder having a composition in which is added to zinc has come to be used.

【0004】しかしながら、前記組成の亜鉛合金粉末が
汞化処理されていない場合には、電解液に対する十分な
耐食性を得ることができないため、かかる亜鉛合金粉末
を負極活物質として用いたアルカリ電池では、貯蔵中に
水素ガス発生による内圧上昇を抑制することができない
という問題点があった。
However, when the zinc alloy powder having the above composition is not subjected to the selective treatment, sufficient corrosion resistance to the electrolytic solution cannot be obtained. Therefore, in an alkaline battery using the zinc alloy powder as a negative electrode active material, There is a problem that it is not possible to suppress an increase in internal pressure due to generation of hydrogen gas during storage.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来の問題
点を解決するためになされたもので、汞化処理されてい
ない亜鉛合金粉末の腐食を十分に防止したゲル状負極を
備え、貯蔵中の水素ガス発生による内圧上昇を抑制した
アルカリ電池を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention has been made in order to solve the conventional problems, and is provided with a gelled negative electrode that sufficiently prevents corrosion of zinc alloy powder that has not been subjected to grading treatment, and is stored. It is intended to provide an alkaline battery in which an increase in internal pressure due to generation of hydrogen gas in the inside is suppressed.

【0006】[0006]

【課題を解決するための手段】本発明は活物質としての
亜鉛合金粉末とアルカリ電解液とを含有するゲル状負極
を具備するアルカリ電池において、該ゲル状負極が、該
亜鉛合金粉末の防食剤として、(a)インジウム化合物
を、亜鉛合金粉末に対してインジウムのみの換算で0.
01〜1.0重量%と、(b)アルキル基の炭素数が3
5以下であるアルキルベンゼンスルホン酸
The present invention provides an alkaline battery having a gelled negative electrode containing zinc alloy powder as an active material and an alkaline electrolyte, wherein the gelled negative electrode is an anticorrosive agent for the zinc alloy powder. As the (a) indium compound, the indium compound is converted to zinc alloy powder in an amount of 0.
01 to 1.0% by weight, and (b) the alkyl group has 3 carbon atoms
Alkyl benzene sulfonic acid with 5 or less

【0007】[0007]

【化1】 [Chemical 1]

【0008】または、これをアルカリ金属で中和した塩
類からなる群より選ばれた少くとも1種を、該亜鉛合金
粉末に対して0.01〜1.0重量%含有することを特
徴とするアルカリ電池である。
Alternatively, at least one selected from the group consisting of salts obtained by neutralizing this with an alkali metal is contained in an amount of 0.01 to 1.0% by weight based on the zinc alloy powder. It is an alkaline battery.

【0009】前記亜鉛合金粉末は、汞化処理が施されて
いないもので、その組成としては、鉛、インジウム、ア
ルミニウム、ガリウム、カドミウム、タリウム、ニッケ
ル、コバルト、ビスマス、及びスズのうちの少なくとも
1種を亜鉛に添加した組成を挙げることができる。かか
る亜鉛合金粉末の粒径は75〜300μmの範囲内であ
ることが望ましい。この理由は、その粒径を75μm未
満にすると比表面積が大きくなって電解液との接触面積
が増加するため貯蔵中に発生する水素ガス量が多くなる
恐れがある。一方、その粒径が300μmを越えるとゲ
ル状負極に占める亜鉛合金粉末の密度が低下して電池容
量の減少を招く恐れがある。
The zinc alloy powder is not subjected to a grading treatment, and its composition is at least one of lead, indium, aluminum, gallium, cadmium, thallium, nickel, cobalt, bismuth, and tin. Mention may be made of a composition in which the seed is added to zinc. The particle size of the zinc alloy powder is preferably in the range of 75 to 300 μm. The reason for this is that if the particle size is less than 75 μm, the specific surface area increases and the contact area with the electrolytic solution increases, so the amount of hydrogen gas generated during storage may increase. On the other hand, if the particle size exceeds 300 μm, the density of the zinc alloy powder occupying the gelled negative electrode may decrease, which may lead to a decrease in battery capacity.

【0010】前記アルカリ電解液としては、例えば水酸
化カリウム水溶液、水酸化ナトリウム水溶液などが挙げ
られる。かかるアルカリ電解液には、必要に応じて酸化
亜鉛を8重量%以下溶解させてもよい。
Examples of the alkaline electrolyte include potassium hydroxide aqueous solution and sodium hydroxide aqueous solution. If necessary, zinc oxide may be dissolved in the alkaline electrolyte at 8% by weight or less.

【0011】本発明のインジウム化合物(以下、防食剤
aと称す)としては、例えば酸化インジウム(In
)、水酸化インジウム(In(OH))などが挙げ
られ、これらは1種又は2種以上の混合物として用いて
もよい。前記防食剤aの含有量を限定した理由は、その
含有量を0.01重量%未満にすると防食剤aによる亜
鉛合金粉末に対する防食効果が十分に発揮されない。一
方、その含有量が1.0重量%を越えると貯蔵中に水素
ガスが発生する。これは、アルカリ電解液中のインジウ
ムイオン濃度が高くなってゲル状負極中に金属インジウ
ムが浮遊状態で析出し、この金属インジウムが貯蔵中に
酸化されることによるものと考えられる。
Examples of the indium compound of the present invention (hereinafter referred to as anticorrosion agent a) include, for example, indium oxide (In 2 O).
3 ), indium hydroxide (In (OH) 3 ), and the like. These may be used alone or as a mixture of two or more. The reason why the content of the anticorrosive agent a is limited is that if the content is less than 0.01% by weight, the anticorrosive effect of the anticorrosive agent a on the zinc alloy powder is not sufficiently exhibited. On the other hand, if the content exceeds 1.0% by weight, hydrogen gas is generated during storage. It is considered that this is because the concentration of indium ions in the alkaline electrolyte was increased and metallic indium was precipitated in the gelled negative electrode in a floating state, and the metallic indium was oxidized during storage.

【0012】本発明のアルキル基の炭素数が35以下で
あるアルキルベンゼンスルホン酸、またはこれをアルカ
リ金属で中和した塩類からなる群より選ばれた少なくと
も1種の化合物(以下、防食剤bと称す)における未端
官能基のアルカリ金属塩を構成するアルカリ金属として
は、カリウム、ナトリウムなどが挙げられる。前記防食
剤bは1種又は2種以上の混合物として用いてもよい。
前記防食剤bの含有量を限定した理由は、その含有量を
0.01重量%未満にすると前記防食剤bによる亜鉛合
金粉末に対する防食効果が十分に発揮されない。一方、
その含有量が1.0重量%を越えると亜鉛合金粉末表面
に形成される防食剤bの被膜が厚くなり過ぎたり、過剰
な防食剤bが放電反応を妨害するため、放電性能が低下
して放電持続時間が短くなる。
At least one compound selected from the group consisting of an alkylbenzenesulfonic acid having an alkyl group of 35 or less carbon atoms of the present invention, or a salt obtained by neutralizing the alkylbenzenesulfonic acid with an alkali metal (hereinafter referred to as an anticorrosive agent b). Examples of the alkali metal constituting the alkali metal salt of the unfunctionalized functional group in () include potassium and sodium. The anticorrosive b may be used alone or as a mixture of two or more.
The reason for limiting the content of the anticorrosion agent b is that if the content is less than 0.01% by weight, the anticorrosion effect of the anticorrosion agent b on the zinc alloy powder is not sufficiently exhibited. on the other hand,
If the content exceeds 1.0% by weight, the coating film of the anticorrosive agent b formed on the surface of the zinc alloy powder becomes too thick, or the excessive anticorrosive agent b interferes with the discharge reaction, so that the discharge performance is deteriorated. Discharge duration becomes shorter.

【0013】本発明のゲル状負極は、例えば以下のよう
な方法により調整することができる。まず、防食剤aを
カルボキシメチルセルロース、ポリアクリル酸、又はポ
リアクリル酸ソーダ等のゲル化剤と均一に混合し、この
混合物を亜鉛合金粉末と更に均一に混合する。
The gelled negative electrode of the present invention can be prepared, for example, by the following method. First, the anticorrosive agent a is uniformly mixed with a gelling agent such as carboxymethyl cellulose, polyacrylic acid, or sodium polyacrylate, and this mixture is further uniformly mixed with the zinc alloy powder.

【0014】次いで、防食剤a、ゲル化剤、及び亜鉛合
金粉末の混合物を、予め防食剤bを溶解或いは分散させ
たアルカリ電解液に加えて減圧下で撹拌して混合するこ
とにより、ゲル化負極を調整する。なお、この混合時の
減圧条件は、混合物中の空気等を十分に脱気する観点か
ら混合初期では絶対圧力を500mmHg以下とし、混
合後期では同圧力を300mmHgとすることが望まし
い。前記ゲル状負極の調整工程では、前記亜鉛合金粉末
50〜80重量部、前記アルカリ電解液20〜50重量
部、前記ゲル化剤0.3〜1.5重量部の割合で配合す
ることが望ましい。
Then, the mixture of the anticorrosive agent a, the gelling agent, and the zinc alloy powder is added to an alkaline electrolyte solution in which the anticorrosive agent b is dissolved or dispersed in advance, and the mixture is stirred and mixed under reduced pressure to form a gel. Adjust the negative electrode. In addition, it is desirable that the depressurizing condition at the time of mixing should be an absolute pressure of 500 mmHg or less at the initial stage of mixing and a pressure of 300 mmHg at the latter stage of mixing from the viewpoint of sufficiently degassing air and the like in the mixture. In the step of adjusting the gelled negative electrode, it is desirable to add 50 to 80 parts by weight of the zinc alloy powder, 20 to 50 parts by weight of the alkaline electrolyte, and 0.3 to 1.5 parts by weight of the gelling agent. ..

【0015】また、前述したゲル状負極の調整工程で
は、前記防食剤bを含有させるために、防食剤bをアル
カリ電解液に溶解或いは分散する操作を行なったが、こ
のような操作に代えて以下の1〜3のいずれかの操作を
行なってもよい。1防食剤bを予め亜鉛粉末合金に付着
させておく。2前記防食剤a、ゲル化剤及び亜鉛合金粉
末の混合物をアルカリ電解液に混合する際に、防食剤b
を添加する。3電池に組込まれるセパレータに防食剤b
を含浸させておくか、又は必要に応じて組込まれるセル
ロース、ポリビニル化合物等の不織布などからなる電解
液保持材に防食剤bを含浸させれおく。
Further, in the step of preparing the gelled negative electrode described above, an operation of dissolving or dispersing the anticorrosive agent b in the alkaline electrolytic solution was carried out in order to contain the anticorrosive agent b. Any one of the following operations 1 to 3 may be performed. 1 The anticorrosive agent b is attached to the zinc powder alloy in advance. 2 When the mixture of the anticorrosive agent a, the gelling agent and the zinc alloy powder is mixed with the alkaline electrolyte, the anticorrosive agent b
Is added. Anticorrosive b in the separator incorporated in the battery
Or the electrolytic solution holding material made of a nonwoven fabric such as cellulose or polyvinyl compound, which is incorporated as necessary, is impregnated with the anticorrosive agent b.

【0016】本発明に係るアルカリ電池は、前記ゲル状
負極と共に正極合剤、セパレータ等が組込まれる。正極
合剤の活物質としては、例えば二酸化マンガン、酸化
銀、酸素、オキシ水酸化ニッケルなどが用いられる。セ
パレータは不織布などからなる。また、ボタン形等のア
ルカリ電池では、通常、電解液保持材なども組込まれ
る。
In the alkaline battery according to the present invention, a positive electrode mixture, a separator and the like are incorporated together with the gelled negative electrode. As the active material of the positive electrode mixture, for example, manganese dioxide, silver oxide, oxygen, nickel oxyhydroxide or the like is used. The separator is made of non-woven fabric or the like. Further, in a button type alkaline battery or the like, an electrolyte holding material or the like is usually incorporated.

【0017】[0017]

【作用】本発明によれば、活物質としての汞化処理を施
さない亜鉛合金粉末と共にアルカリ電解液を含有するゲ
ル状負極を具備するアルカリ電池において、前記ゲル状
負極は、インジウム化合物である防食剤aを、亜鉛合金
粉末に対してインジウム換算で0.01〜1.0重量
%、及び前記一般式(I)で表わされる防食剤bを、同
亜鉛合金粉末に対して0.01〜1.0重量%含有する
ことによって、前記亜鉛合金粉末の腐食を十分に防止し
たゲル状負極を得ることができる。
According to the present invention, in an alkaline battery comprising a gelled negative electrode containing an alkaline electrolyte together with a zinc alloy powder which is not subjected to a denaturation treatment as an active material, the gelled negative electrode is an indium compound. The agent a is 0.01 to 1.0 wt% in terms of indium with respect to the zinc alloy powder, and the anticorrosive agent b represented by the general formula (I) is 0.01 to 1 with respect to the zinc alloy powder. By containing 0.0% by weight, a gelled negative electrode in which the corrosion of the zinc alloy powder is sufficiently prevented can be obtained.

【0018】即ち、インジウム化合物である防食剤aの
一部はアルカリ電解液に溶解してインジウムイオンとな
る。このインジウムイオンは、酸化還元反応により亜鉛
合金粉末の表面に金属インジウムあるいはインジウム化
合物となって析出するため、該亜鉛合金粉末の水素過電
圧を高めて防食効果を発揮できると考えられる。
That is, a part of the anticorrosive agent a which is an indium compound is dissolved in the alkaline electrolyte to become indium ions. It is considered that this indium ion is deposited as metal indium or an indium compound on the surface of the zinc alloy powder by the redox reaction, so that the hydrogen overvoltage of the zinc alloy powder can be increased and the anticorrosion effect can be exhibited.

【0019】また、防食剤bは、その親水性基により前
記亜鉛合金粉末の表面に良好に吸着するため、該亜鉛合
金粉末にその腐食を防止する被膜を形成できる。このよ
うな防食剤a、防食剤bによる相互作用により、汞化処
理を施さない亜鉛合金粉末の腐食を十分に防止したゲル
状負極を得ることができる。その結果、かかるゲル状負
極を用いることにより貯蔵中の水素ガス発生に伴う内圧
上昇を抑制でき、電解液の漏れや電池破裂を防止した高
性能のアルカリ電池を得ることができる。
Further, since the anticorrosive agent b is favorably adsorbed on the surface of the zinc alloy powder due to its hydrophilic group, it is possible to form a coating film on the zinc alloy powder to prevent its corrosion. Due to the interaction between the anticorrosion agent a and the anticorrosion agent b, it is possible to obtain the gelled negative electrode in which the corrosion of the zinc alloy powder not subjected to the denaturing treatment is sufficiently prevented. As a result, by using such a gelled negative electrode, it is possible to suppress an increase in internal pressure that accompanies the generation of hydrogen gas during storage, and it is possible to obtain a high-performance alkaline battery that prevents leakage of the electrolytic solution and battery rupture.

【0020】[0020]

【実施例】以下、本発明の実施例を詳細に説明する。 実施例1 まず、ゲル化剤としてのポリアクリル酸0.6重量部
に、後記表1に示す量の酸化インジウムを防食剤aとし
て加えて、ポットミルで10分間均一に混合する。この
混合物を汞化処理されていない粒子100〜300μm
の亜鉛合金粉末(Pb0.05重量%、A10.05重
量%、In0.02重量%、及びGa0.01重量%を
亜鉛に添加した合金組成)65重量部に加えて、汎用混
合機で5分間均一に混合した。
EXAMPLES Examples of the present invention will be described in detail below. Example 1 First, to 0.6 part by weight of polyacrylic acid as a gelling agent, the amount of indium oxide shown in Table 1 below was added as an anticorrosion agent a, and mixed uniformly in a pot mill for 10 minutes. This mixture is not grained 100-300 μm
65 parts by weight of zinc alloy powder (0.05% by weight of Pb, 0.05% by weight of A, 0.02% by weight of In, and 0.01% by weight of Ga in zinc) in a general-purpose mixer for 5 minutes. Mix evenly.

【0021】次いで、同表1に示す量のアルキルベンゼ
ンスルホン酸カリウムを、防食剤bとして溶解・分散さ
せ、かつ酸化亜鉛が3.5重量%溶解された35重量%
濃度の水酸化カリウム水溶液35重量部を混合器に収容
する。この混合器に前記ポリアクリル酸、酸化インジウ
ム、及び亜鉛合金粉末の混合物を4分間かけて除々に添
加しながら、絶対圧力150mmHg以下の減圧下で撹
拌して混合した後、更に絶対圧力10mmHg以下の減
圧下で5分間撹拌して混合することによって均一なゲル
状負極を得る。
Next, the amount of potassium alkylbenzene sulfonate shown in Table 1 was dissolved / dispersed as an anticorrosive agent b, and 3.5% by weight of zinc oxide was dissolved in 35% by weight.
35 parts by weight of a concentrated potassium hydroxide aqueous solution is placed in the mixer. While gradually adding the mixture of the polyacrylic acid, indium oxide, and zinc alloy powder to this mixer over 4 minutes, stirring and mixing under a reduced pressure of absolute pressure of 150 mmHg or less, and further mixing at an absolute pressure of 10 mmHg or less. A uniform gelled negative electrode is obtained by stirring and mixing under reduced pressure for 5 minutes.

【0022】得られたゲル状負極を用いて図1に示すJ
IS規格LR6形(単6形)のアルカリ電池を組立て
た。即ち、図中、1は正極端子を兼ねる有底円筒形の金
属缶である。この金属缶1内には、円筒状に加圧成形し
た正極合剤2が充填されている。前記正極合剤2は、二
酸化マンガン粉末とカーボン粉末とを混合し、これを前
記金属缶1内に収納し所定の圧力で中空筒状に加圧成形
したものである。
Using the gelled negative electrode thus obtained, J shown in FIG.
An IS standard LR6 type (size 6) alkaline battery was assembled. That is, in the figure, 1 is a bottomed cylindrical metal can that also serves as a positive electrode terminal. The metal can 1 is filled with a positive electrode mixture 2 which is pressure-molded into a cylindrical shape. The positive electrode mixture 2 is a mixture of manganese dioxide powder and carbon powder, which is housed in the metal can 1 and pressed into a hollow cylinder at a predetermined pressure.

【0023】前記正極合剤2の中空部には、アセタール
化ポリビニルアルコール繊維の不織布からなる有底円筒
状のセパレータ3を介して前記方法で得られたゲル状負
極4が充填されている。このゲル状負極4内には、真鍮
製の負極集電体5がその上端部を該負極4より突出する
ように挿着されている。前記負極集電棒5の突出部外周
面及び前記金属缶1の上部内周面には、二重環状部のポ
リアミド樹脂からなる絶縁ガスケット6が配設されてい
る。このガスケット6の二重環状部の間には、リング状
の金属板17が配設され、かつ該金属板7には負極端子
を兼ねる帽子形の金属封口板8が前記集電棒5の頭部に
当接するように配設されている。そして、前記金属缶1
の開口縁を内方に屈曲させることにより前記ガスケット
6及び前記金属封口板8で該金属缶1内を密封口してい
る。
The hollow portion of the positive electrode mixture 2 is filled with the gelled negative electrode 4 obtained by the above method via a bottomed cylindrical separator 3 made of a nonwoven fabric of acetalized polyvinyl alcohol fiber. A negative electrode current collector 5 made of brass is inserted into the gelled negative electrode 4 such that the upper end of the negative electrode current collector 5 projects from the negative electrode 4. On the outer peripheral surface of the protruding portion of the negative electrode collector rod 5 and the inner peripheral surface of the upper portion of the metal can 1, an insulating gasket 6 made of a polyamide resin having a double annular portion is provided. A ring-shaped metal plate 17 is arranged between the double annular portions of the gasket 6, and a cap-shaped metal sealing plate 8 also serving as a negative electrode terminal is provided on the metal plate 7 at the head of the collector rod 5. Is arranged so as to abut. And the metal can 1
The inside of the metal can 1 is sealed by the gasket 6 and the metal sealing plate 8 by bending the opening edge of the inside.

【0024】実施例2,3及び比較例1,2 後記表1に示す量のアルキルベンゼンスルホン酸カリウ
ムを各量配合した以外、実施例1と同様にしてアルカリ
電池を作製した。 比較例3 アルキルベンゼンスルホン酸カリウムを配合しなかった
以外、実施例1と同様にしてアルカリ電池を作製した。
Examples 2 and 3 and Comparative Examples 1 and 2 Alkaline batteries were produced in the same manner as in Example 1 except that the respective amounts of potassium alkylbenzenesulfonate shown in Table 1 below were added. Comparative Example 3 An alkaline battery was produced in the same manner as in Example 1 except that potassium alkylbenzene sulfonate was not added.

【0025】実施例4,5及び比較例4,5 表1に示す量の酸化インジウムを配合した以外、実施例
1と同様にしてアルカリ電池を作製した。 比較例6 酸化インジウムを配合しなかった以外、実施例1と同様
にしてアルカリ電池を作製した。 実施例6〜9及び比較例7 アルキル基の炭素数が表1のようなアルキルベンゼンス
ルホン酸カリウムを配合した以外、実施例1と同様にし
てアルカリ電池を作製した。
Examples 4 and 5 and Comparative Examples 4 and 5 Alkaline batteries were prepared in the same manner as in Example 1 except that the amounts of indium oxide shown in Table 1 were blended. Comparative Example 6 An alkaline battery was produced in the same manner as in Example 1 except that indium oxide was not added. Examples 6 to 9 and Comparative Example 7 An alkaline battery was produced in the same manner as in Example 1 except that potassium alkylbenzenesulfonate having the carbon number of the alkyl group as shown in Table 1 was blended.

【0026】実施例1〜9及び比較例1〜7のアルカリ
電池について、それぞれ10個のサンプルを用いて、負
荷抵抗10Ωを接続して20℃で連続放電を行ない、終
止電圧0.9Vまでの放電接続時間を測定してその平均
値を求めた。また、それぞれ20個のサンプルを用い
て、60℃の恒温槽中に貯蔵して1ヶ月後及び3ヶ月後
に10個ずつ取出し、これらを水中で分解して電池内の
水素ガスを捕集し、貯蔵中に発生した水素ガス量を測定
してその平均値を求めた。これらの結果を後記表1に併
記する。
For each of the alkaline batteries of Examples 1 to 9 and Comparative Examples 1 to 7, 10 samples were used, a load resistance of 10Ω was connected, and continuous discharge was performed at 20 ° C. until a final voltage of 0.9 V. The discharge connection time was measured and the average value was calculated. In addition, 20 samples each were stored in a constant temperature bath at 60 ° C., and 10 samples were taken out after 1 month and 3 months, and these were decomposed in water to collect hydrogen gas in the battery, The amount of hydrogen gas generated during storage was measured and the average value was calculated. The results are also shown in Table 1 below.

【0027】[0027]

【表1】 [Table 1]

【0028】表1中*1は亜鉛合金粉末に対してのイン
ジウム換算での重量%であり、*2は亜鉛合金粉末に対
しての重量%である。
In Table 1, * 1 is the weight% of zinc alloy powder in terms of indium, and * 2 is the weight% of zinc alloy powder.

【0029】表1から明らかなように、実施例1〜9の
アルカリ電池は、比較例1〜7のアルカリ電池と比べて
貯蔵中の水素ガス発生量が少なく、ゲル状負極の亜鉛合
金粉末の腐食が十分に防止されていることがわかる。し
かも、放電持続時間が長く、放電性能が良好であること
もわかる。これは、ゲル状負極の亜鉛合金粉末の防食剤
として防食剤a及び防食剤bを適量で併用していること
による。
As is clear from Table 1, the alkaline batteries of Examples 1 to 9 produced less hydrogen gas during storage than the alkaline batteries of Comparative Examples 1 to 7, and contained the zinc alloy powder of the gelled negative electrode. It can be seen that corrosion is sufficiently prevented. Moreover, it can be seen that the discharge duration is long and the discharge performance is good. This is because the anticorrosive agent a and the anticorrosive agent b are used together in an appropriate amount as the anticorrosive agent for the zinc alloy powder of the gelled negative electrode.

【0030】なお、比較例7のアルカリ電池では、アル
キルベンゼンスルホン酸カリウムのアルキル基の炭素数
が40であり大きいため、親水性基と疏水性基とのバラ
ンスが崩れて、前記亜鉛合金粉末の表面に吸着し難くな
る。その結果、電解液中のアルキルベンゼンスルホン酸
カリウムが放電反応を妨害して放電持続時間が短くなる
と共に、ゲル状負極の亜鉛合金粉末の腐食を十分に防止
できず、貯蔵中の水素ガス発生量が多くなる傾向があ
る。
In the alkaline battery of Comparative Example 7, since the alkyl group of potassium alkylbenzene sulfonate has a large carbon number of 40, the balance between the hydrophilic group and the hydrophobic group is lost and the surface of the zinc alloy powder is It becomes difficult to adsorb to. As a result, potassium alkylbenzene sulfonate in the electrolytic solution interferes with the discharge reaction and shortens the discharge duration, and it is not possible to sufficiently prevent the corrosion of the zinc alloy powder in the gelled negative electrode, resulting in an amount of hydrogen gas generated during storage. Tends to increase.

【0031】[0031]

【発明の効果】以上詳述したように、本発明によれば汞
化処理されていない亜鉛合金粉末の腐食を十分に防止し
たゲル状負極を備え、貯蔵中の水素ガス発生による内圧
上昇を抑制したアルカリ電池を提供することができる。
As described above in detail, according to the present invention, the gelled negative electrode is provided which is capable of sufficiently preventing the corrosion of the zinc alloy powder which has not been subjected to the denaturation treatment, and suppresses the internal pressure increase due to the generation of hydrogen gas during storage. The alkaline battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のアルカリ電池断面図である。FIG. 1 is a cross-sectional view of an alkaline battery of the present invention.

【符号の説明】 1 金属缶 2 セパレータ 4 ゲル状負極 5 負極集電体 6 絶縁ガスケット[Explanation of reference numerals] 1 metal can 2 separator 4 gelled negative electrode 5 negative electrode current collector 6 insulating gasket

Claims (1)

【特許請求の範囲】 【請求項1】 亜鉛合金粉末とアルカリ電解液とからな
るゲル状負極を具備するアルカリ電池において、該ゲル
状負極が亜鉛合金粉末の防食剤として、(a)インジウ
ム化合物を、該亜鉛合金粉末に対してインジウム換算で
0.01〜1.0重量%と、(b)アルキル基の炭素数
が35以下であるアルキルベンゼンスルホン酸、または
これをアルカリ金属で中和した塩類からなる群より選ら
ばれた少くとも1種を、該亜鉛合金粉末に対して0.0
1〜1.0重量%含有することを特徴とするアルカリ電
池。
Claim: What is claimed is: 1. An alkaline battery comprising a gelled negative electrode composed of a zinc alloy powder and an alkaline electrolyte, wherein the gelled negative electrode contains (a) an indium compound as an anticorrosive agent for the zinc alloy powder. From 0.01 to 1.0% by weight in terms of indium with respect to the zinc alloy powder, (b) an alkylbenzenesulfonic acid having an alkyl group having 35 or less carbon atoms, or a salt obtained by neutralizing the alkylbenzenesulfonic acid with an alkali metal. At least one selected from the group consisting of
An alkaline battery containing 1 to 1.0% by weight.
JP24853491A 1991-06-25 1991-06-25 Alkaline storage battery Pending JPH053032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24853491A JPH053032A (en) 1991-06-25 1991-06-25 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24853491A JPH053032A (en) 1991-06-25 1991-06-25 Alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH053032A true JPH053032A (en) 1993-01-08

Family

ID=17179617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24853491A Pending JPH053032A (en) 1991-06-25 1991-06-25 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH053032A (en)

Similar Documents

Publication Publication Date Title
US5626988A (en) Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
US7169508B2 (en) Method of manufacturing anode compositions for use in rechargeable electrochemical cells
DE60007138T2 (en) ALKALINE CELL WITH IMPROVED ANODE
WO1997017737A1 (en) Rechargeable alkaline cells containing zinc anodes without added mercury
JP3215446B2 (en) Zinc alkaline battery
JP3215448B2 (en) Zinc alkaline battery
JP3215447B2 (en) Zinc alkaline battery
JP2003017077A (en) Sealed alkaline zinc primary battery
JP4253172B2 (en) Sealed nickel zinc primary battery
JPH0955207A (en) Zinc-alkali battery
JPH053032A (en) Alkaline storage battery
JPH0620687A (en) Alkaline battery
JPH05151957A (en) Alkaline battery
JP2788530B2 (en) Method for producing gelled negative electrode for alkaline dry battery and gelled negative electrode produced by the method
JPH0562683A (en) Alkaline battery
JP4309311B2 (en) Aluminum battery
JPH09270254A (en) Zinc alkaline battery
JPH06223829A (en) Zinc alkaline battery
JPH05151958A (en) Manufacture of gel-form negative electrode for alkaline dry cell
JP3219418B2 (en) Zinc alkaline battery
JPH07105941A (en) Zinc alkaline battery
JPH0311555A (en) Alkaline dry battery
JPH04366549A (en) Zinc alkaline battery
JPH06338314A (en) Zinc-alkaline battery
JPH06338319A (en) Zinc-alkaline battery