JPH05302582A - Lubrication type screw compressor - Google Patents
Lubrication type screw compressorInfo
- Publication number
- JPH05302582A JPH05302582A JP10642192A JP10642192A JPH05302582A JP H05302582 A JPH05302582 A JP H05302582A JP 10642192 A JP10642192 A JP 10642192A JP 10642192 A JP10642192 A JP 10642192A JP H05302582 A JPH05302582 A JP H05302582A
- Authority
- JP
- Japan
- Prior art keywords
- air
- rotor
- pressure
- oil mist
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、給油式スクリュー圧縮
機とスクリュー式冷凍機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil supply type screw compressor and a screw type refrigerator.
【0002】[0002]
【従来の技術】従来技術を図4〜図6に従って説明す
る。2. Description of the Related Art A conventional technique will be described with reference to FIGS.
【0003】図4は、給油式スクリュー2段空気圧縮機
ユニットの系統図である。本図において、吸入絞り弁3
から吸われた空気は、1段側圧縮機1で約2kgf/cm2g
まで圧縮された後、2段側圧縮機2に吸われ、ここで7
kgf/cm2g に圧縮されて吐出され、オイルセパレータ4
で空気中の油を分離した後、調圧弁5,逆止弁6を通
り、アフタークーラ7で冷やされて吐出される。オイル
セパレータ4の下部に溜った油は、オイルセパレータ4
内の圧力と圧縮機の給油口の圧力との差圧により流れ、
オイルクーラ8で冷やされた後、フィルタ9を通って、
1段側圧縮機1と2段側圧縮機2に給油される。アフタ
ークーラ7の出口での空気消費量が減少すると圧縮機の
容量制御のためにアンロード運転を行なう。アンロード
運転方法は消費空気量の減少による吐出圧力の上昇によ
って圧力調整弁10が開き、オイルセパレータ4内の空
気を吸入絞り弁3へ送り、弁の開度を調整して吸入空気
量を制御するsアン運転と、消費空気量が非常に少なく
なった場合、アフタークーラ出口側の圧力上昇を圧力ス
イッチ13で検出し放気電磁弁11を開くことによりオ
イルセパレータ4内の空気を吸入絞り弁3へ送り弁を全
閉にし、オイルセパレータ4内の空気を放気サイレンサ
12から大気へ放気し吐出圧力を下げて負荷を軽減する
iアン運転がある。sアン運転時で吸入絞り弁3が全閉
の状態、及びiアン運転時には1段側圧縮機1の吸入,
吐出圧力は負圧となり、吸入圧力は約“−”720mmH
g,吐出圧力は約“−”640mmHgと、真空に近い圧
力である。2段側圧縮機2の吐出圧力は、sアン時で約
8kgf/cm2g ,iアン時で約2kgf/cm2g である。FIG. 4 is a system diagram of a refueling screw two-stage air compressor unit. In this figure, the suction throttle valve 3
The air sucked from the 1st stage compressor 1 is about 2 kgf / cm 2 g
After being compressed to 2, it is sucked by the second stage compressor 2 and
Compressed to kgf / cm 2 g and discharged, the oil separator 4
After the oil in the air is separated by, the oil passes through the pressure regulating valve 5 and the check valve 6, is cooled by the after cooler 7, and is discharged. The oil accumulated in the lower part of the oil separator 4 is
Flows due to the pressure difference between the internal pressure and the pressure at the oil filler port of the compressor,
After being cooled by the oil cooler 8, it passes through the filter 9,
Oil is supplied to the first-stage compressor 1 and the second-stage compressor 2. When the air consumption at the outlet of the aftercooler 7 decreases, unloading operation is performed to control the capacity of the compressor. In the unloading operation method, the pressure adjusting valve 10 is opened by the increase of the discharge pressure due to the decrease of the consumed air amount, the air in the oil separator 4 is sent to the intake throttle valve 3, and the opening degree of the valve is adjusted to control the intake air amount. When the air consumption is very low, the pressure increase on the outlet side of the aftercooler is detected by the pressure switch 13 and the air release solenoid valve 11 is opened to suck the air in the oil separator 4 into a throttle valve. 3, the feed valve is fully closed, the air in the oil separator 4 is discharged from the discharge silencer 12 to the atmosphere, and the discharge pressure is reduced to reduce the load. The intake throttle valve 3 is fully closed during s-an operation, and the intake of the first-stage compressor 1 during i-an operation,
The discharge pressure is negative and the suction pressure is about "-" 720 mmH.
The discharge pressure is about "-" 640 mmHg, which is close to a vacuum. The discharge pressure of the two-stage compressor 2 is about 8 kgf / cm 2 g, about at the time i en 2 kgf / cm 2 g in a time s Ann.
【0004】図5は1段側圧縮機1のスクリューロータ
の吐出側端面で、吸入側から見たロータの噛合状況を示
すロータの軸の断面図である。本図において、雄ロータ
14と雌ロータ15の歯溝間の空気と油が吐出ポートか
ら吐出された後には、雄ロータ14と雌ロータ15の歯
溝間には図中に示す僅かな閉込空間が残る。この閉込空
間は、雄ロータ14と雌ロータ15の噛合いによって形
成されるシールライン17(ロータの軸直角断面に投影
した線)と、Dケーシング16の吐出端面の間で囲まれ
た空間で図5のA−A断面(雄ロータ14と雌ロータ1
5のそれぞれの軸心を結ぶ線上の断面)を図6に示す。
この閉込空間はロータの回転に伴って縮小し、雄ロータ
の回転角が0°の時に空間はなくなる。この閉込空間内
には、吐出空気と1段側圧縮機に給油された油ミストが
含まれ、空間の縮小に伴って、空気と油ミストは、シー
ルライン17を通って図中の矢印の方向で吸入側へ噴出
する(ロータ端面とDケーシング16との間のDギャッ
プから吸入側へも噴出するが、Dギャップでの抵抗はシ
ールライン17と比べて大きいため、シールライン17
からの噴出量が圧倒的に多い)。図6で、ロータの回転
に伴って、雄ロータ14の歯面と雌ロータ16の歯面は
それぞれ矢印の方向へ進み、それぞれの歯面の進み速度
をvM,vFとする。又、閉込空間内の油ミストが、閉込
空間から吸入側へ噴出する速度をVとするとVは閉込空
間内の圧力と吸入圧力との差圧により決まり、差圧が大
きければVは大きくなる。FIG. 5 is a cross-sectional view of the rotor shaft showing the meshing condition of the rotor as seen from the suction side at the discharge side end surface of the screw rotor of the first-stage compressor 1. In this figure, after the air and oil between the tooth grooves of the male rotor 14 and the female rotor 15 are discharged from the discharge port, the slight gap shown in the figure is inserted between the tooth grooves of the male rotor 14 and the female rotor 15. The space remains. The enclosed space is a space surrounded by a seal line 17 (a line projected on a cross section perpendicular to the axis of the rotor) formed by the engagement of the male rotor 14 and the female rotor 15 and a discharge end surface of the D casing 16. AA cross section of FIG. 5 (the male rotor 14 and the female rotor 1
FIG. 6 shows a cross section on a line connecting the respective axis centers of No. 5).
This confined space shrinks as the rotor rotates, and disappears when the rotation angle of the male rotor is 0 °. The enclosed space contains the discharge air and the oil mist supplied to the first-stage compressor. As the space is reduced, the air and the oil mist pass through the seal line 17 and are indicated by arrows in the figure. Is ejected toward the intake side in the direction (ejects from the D gap between the rotor end surface and the D casing 16 to the intake side as well, but the resistance in the D gap is larger than that of the seal line 17, so the seal line 17
The overwhelming amount of squirt from). In FIG. 6, the tooth surface of the male rotor 14 and the tooth surface of the female rotor 16 advance in the directions of the arrows as the rotor rotates, and the advancing speeds of the respective tooth surfaces are v M and v F. Further, when the speed at which the oil mist in the confined space is ejected from the confined space to the suction side is V, V is determined by the pressure difference between the pressure in the confined space and the suction pressure, and if the pressure difference is large, then V is growing.
【0005】閉込空間内の油ミストがロータ間のシール
ライン17から噴出する時に、油ミストがロータ歯面に
衝突する速度は、相対速度差として、雄ロータ側は、v
M −V、雌ロータ側はvF −Vで表わされる。この衝突
速度が大きいと、時間の経過とともに次第に、ロータ歯
面が油ミストの衝突エネルギにより侵食される要因にな
る(特願平1−260746 号明細書)。When the oil mist in the enclosed space is jetted from the seal line 17 between the rotors, the speed at which the oil mist collides with the tooth flanks of the rotor is the relative speed difference.
M -V, female rotor side is expressed by v F -V. If the collision speed is high, the rotor tooth surface gradually becomes eroded by the collision energy of the oil mist with the passage of time (Japanese Patent Application No. 1-260746).
【0006】[0006]
【発明が解決しようとする課題】従来技術の問題点とし
て次のことがあげられる。The problems of the prior art are as follows.
【0007】1段側圧縮機において、sアン及びiアン
運転時には吐出圧力は“−”640mmHg、吸入圧力は
“−”720mmHg程度の負圧であり、この差圧が80
mmHgと小さい(全負荷時は約2kgf/cm2g )ため、閉
込空間内の圧力(閉込開始時は吐出圧力と同値であり、
縮小に伴って吸入圧力まで減圧する)と吸入圧力との差
圧が小さい。このために、前述の噴出速度Vが小さくな
り、油ミストがロータ歯面に衝突する速度vM−Vある
いはvF−Vが大きくなるため、ロータ歯面が油ミスト
の衝突エネルギによって経時的に侵食され易くなる。In the first-stage compressor, the discharge pressure is "-" 640 mmHg and the suction pressure is "-" 720 mmHg at the time of s Anne and i Anne operation, and the differential pressure is 80
Since it is as small as mmHg (approx. 2 kgf / cm 2 g at full load), the pressure in the confined space (same as the discharge pressure at the start of confinement
The pressure difference between the suction pressure and the suction pressure is small as the pressure decreases. For this reason, the jet velocity V described above decreases, and the velocity v M −V or v F −V at which the oil mist collides with the rotor tooth surface increases, so that the rotor tooth surface changes with time due to the collision energy of the oil mist. Easily eroded.
【0008】又、別の要因として、sアン及びiアン運
転時には、吐出圧力が、“−”640mmHgと真空に近い
状態であるため、油ミストがロータ歯面に衝突する際
に、エアクッション効果が薄れて、衝撃が増すことによ
り歯面が侵食され易くなる。Further, as another factor, the discharge pressure is "-" 640 mmHg, which is close to a vacuum during s- and i-ann operation, so that when the oil mist collides with the rotor tooth surface, the air cushion effect is produced. The tooth surface is apt to be eroded due to the increase in the impact due to the thinning.
【0009】本発明の目的は、ロータ歯面の油ミストに
よる侵食を防止することにある。An object of the present invention is to prevent the erosion of the rotor tooth surface by oil mist.
【0010】[0010]
【課題を解決するための手段】閉込空間に通じる導入穴
を吐出側ケーシングに設け、この導入穴を通して、アン
ロード運転時に圧縮空気を供給できる構造とする。A discharge side casing is provided with an introduction hole communicating with a confined space, and compressed air can be supplied through the introduction hole during unloading operation.
【0011】[0011]
【作用】アンロード運転時にオイルセパレータ内の圧縮
空気を、導入穴を通して閉込空間内に送り込む。これに
より、閉込空間内の負圧を緩和し圧力を高めて、油ミス
トがロータ歯面に衝突する速度を小さくするとともに、
エアクッション効果によって、衝突エネルギを緩和させ
る。[Operation] During the unloading operation, the compressed air in the oil separator is sent into the enclosed space through the introduction hole. This reduces the negative pressure in the confined space and increases the pressure to reduce the speed at which the oil mist collides with the rotor tooth surface, and
The air cushion effect reduces the collision energy.
【0012】[0012]
【実施例】本発明の実施例を図1〜図3に従って説明す
る。Embodiments of the present invention will be described with reference to FIGS.
【0013】図1は給油式スクリュー2段空気圧縮機ユ
ニットの系統図である。吸入絞り弁3から吸われた空気
は、1段側圧縮機1で約2kgf/cm2g まで圧縮された
後、2段側圧縮機2に吸われ、ここで7kgf/cm2g に圧
縮されて吐出され、オイルセパレータ4で空気中の油を
分離した後調圧弁5,逆止弁6を通り、アフタークーラ
7で冷やされて吐出される。オイルセパレータ4の下部
に溜った油は、オイルセパレータ4内の圧力と圧縮機の
給油口との圧力差で流れ、オイルクーラ8で冷やされた
後、フィルタ9を通って、1段側圧縮機1と2段側圧縮
機2へ給油される。アフタークーラ7の出口での空気消
費量が減少すると圧縮機の容量制御のためにアンロード
運転を行なう。FIG. 1 is a system diagram of a refueling screw two-stage air compressor unit. The air sucked from the suction throttle valve 3 is compressed by the first-stage compressor 1 to about 2 kgf / cm 2 g, and then sucked by the second-stage compressor 2, where it is compressed to 7 kgf / cm 2 g. The oil in the air is separated by the oil separator 4, and after passing through the pressure regulating valve 5 and the check valve 6, the oil is cooled by the after cooler 7 and discharged. The oil accumulated in the lower portion of the oil separator 4 flows due to the pressure difference between the pressure inside the oil separator 4 and the oil supply port of the compressor, and after being cooled by the oil cooler 8, it passes through the filter 9 and the first stage compressor. Oil is supplied to the first and second stage compressors 2. When the air consumption at the outlet of the aftercooler 7 decreases, unloading operation is performed to control the capacity of the compressor.
【0014】アンロード運転方法は、消費空気量の減少
による吐出圧力の上昇により圧力調整弁10が開きオイ
ルセパレータ4内の空気を吸入絞り弁3へ送り、弁の開
度を調整して吸入空気量を制御するサクションアンロー
ド運転(以下sアン運転と称する)と消費空気量が非常
に少なくなった場合、アフタークーラ出口側の圧力上昇
を圧力スイッチ13で検出し放気電磁弁11を開くこと
により、オイルセパレータ4内の空気を吸入絞り弁3へ
送り弁を全閉にするとともに、オイルセパレータ4内の
空気を放気サイレンサ12から放気し吐出圧力を下げて
負荷を軽減するインテグラルアンロード運転(以下iア
ン運転と称する)の2通りの方法がある。In the unloading operation method, the pressure adjusting valve 10 is opened by the increase of the discharge pressure due to the decrease of the consumed air amount, the air in the oil separator 4 is sent to the intake throttle valve 3, and the opening degree of the valve is adjusted to adjust the intake air. When the suction unload operation (hereinafter referred to as s unload operation) that controls the amount and the consumed air amount become very small, the pressure switch 13 detects the pressure increase at the outlet side of the aftercooler and the air release solenoid valve 11 is opened. In this way, the air in the oil separator 4 is sent to the suction throttle valve 3 to fully close the valve, and the air in the oil separator 4 is discharged from the discharge silencer 12 to reduce the discharge pressure and reduce the load. There are two methods of operation (hereinafter referred to as i-an operation).
【0015】本発明では、圧力調整弁10の出口側と放
気電磁弁11の出口側は後述する1段側圧縮機1の吐出
側の閉込空間に通じる導入穴に配管14で結ばれてい
る。このため、アンロード時に、オイルセパレータ4内
の圧縮空気を閉込空間へ供給できる系統になっている。In the present invention, the outlet side of the pressure control valve 10 and the outlet side of the discharge solenoid valve 11 are connected by piping 14 to an introduction hole leading to a closed space on the discharge side of the first-stage compressor 1 described later. There is. For this reason, the system is such that compressed air in the oil separator 4 can be supplied to the confined space during unloading.
【0016】図2は1段側圧縮機のスクリューロータの
吐出側端面において吸入側から見たロータの噛合状況を
示すロータの軸の断面図である。雄ロータ15と雌ロー
タ16の歯溝間の空気と油が吐出ポートから吐出された
後には雄ロータ15と雌ロータ16の歯溝間には図中に
示す僅かな閉込空間が残る。この閉込空間は雄ロータ1
5と雌ロータ16の噛合いによって形成されるシールラ
イン19(ロータの軸直角断面に投影した線)と、Dケ
ーシング17の吐出端面の間で囲まれた空間である。FIG. 2 is a sectional view of the rotor shaft showing a meshing state of the rotor seen from the suction side at the discharge side end surface of the screw rotor of the first-stage compressor. After the air and oil between the tooth grooves of the male rotor 15 and the female rotor 16 are discharged from the discharge port, a small confined space shown in the figure remains between the tooth grooves of the male rotor 15 and the female rotor 16. This enclosed space is the male rotor 1
5 is a space surrounded by a seal line 19 (a line projected on a cross section perpendicular to the axis of the rotor) formed by the meshing of 5 and the female rotor 16 and the discharge end surface of the D casing 17.
【0017】図2のA−A断面(雄ロータ15と雌ロー
タ16のそれぞれの軸心を結ぶ線上の断面)を図3に示
す。ロータの吐出側端面を形成するDケーシング17に
は、閉込空間につながる位置に、圧縮空気導入穴18が
設けてある。この穴を、上述の図1における圧力調整弁
10と放気電磁弁11の出口側の配管14と連通するこ
とによって、アンロード時に圧縮空気を導入穴18を通
して閉込空間へ供給することができる。FIG. 3 shows an AA cross section of FIG. 2 (a cross section on a line connecting the respective axial centers of the male rotor 15 and the female rotor 16). The D casing 17 forming the discharge side end surface of the rotor is provided with a compressed air introduction hole 18 at a position connected to the closed space. By communicating this hole with the pressure adjusting valve 10 and the pipe 14 on the outlet side of the discharge solenoid valve 11 in FIG. 1 described above, compressed air can be supplied to the confined space through the introduction hole 18 during unloading. ..
【0018】これによって、アンロード運転時の閉込空
間内の圧力を、従来技術の場合の負圧“−”640mmH
gに対して、sアン時で約8kgf/cm2g に又、iアン時
で約2kgf/cm2g に高めることができる。As a result, the pressure in the confined space during the unloading operation is reduced to the negative pressure "-" 640 mmH in the case of the prior art.
With respect to g, it can be increased to about 8 kgf / cm 2 g at s-an and about 2 kgf / cm 2 g at i-an.
【0019】この圧力は圧縮空気の供給量をオリフィス
等で調整することにより変えることは可能である。This pressure can be changed by adjusting the supply amount of compressed air with an orifice or the like.
【0020】[0020]
【発明の効果】閉込空間内の油ミストがロータの回転に
伴ってシールラインから噴出する時に油ミストがロータ
歯面に衝突する速度は相対速度差として雄ロータ側はv
M −V,雌ロータ側はvF −Vとなる(ここで、Vは閉
込空間内の圧力と吸入側の圧力との差圧により決まる油
ミストの噴出速度、vM,vFはそれぞれ雄ロータと雌ロ
ータの歯面の進み速度である)。油ミストがロータ歯面
に衝突することによって生じる侵食を防止するために
は、vM,vFが一定で小さくできない条件下では上述の
Vを大きくして衝突速度を小さくすることが得策であ
る。The speed at which the oil mist collides with the tooth flank of the rotor when the oil mist in the confined space is ejected from the seal line as the rotor rotates is expressed as a relative speed difference by v on the male rotor side.
M −V, v F −V on the female rotor side (here, V is the jet speed of the oil mist determined by the pressure difference between the pressure in the confined space and the suction side, and v M and v F are respectively The speed of advance of the tooth surface of the male and female rotors). In order to prevent the erosion caused by the collision of the oil mist with the tooth surface of the rotor, it is a good idea to increase the above-mentioned V to reduce the collision speed under the condition that v M and v F are constant and cannot be reduced. ..
【0021】本発明の実施によって、アンロード運転時
に閉込空間内の圧力を高めることによって吸入側圧力と
の差圧が大となりVを大きくすることができる。このた
め油ミストがロータ歯面に衝突する速度を小さくするこ
とができる。又、閉込空間内に供給する圧縮空気による
エアークッション効果によって、油ミストがロータ歯面
に衝突する衝撃を緩和することができる。By implementing the present invention, by increasing the pressure in the enclosed space during unloading operation, the differential pressure from the suction side pressure becomes large and V can be increased. Therefore, the speed at which the oil mist collides with the tooth surface of the rotor can be reduced. Further, the impact of the oil mist colliding with the tooth surface of the rotor can be alleviated by the air cushion effect of the compressed air supplied into the enclosed space.
【0022】以上のことから、油ミストがロータ歯面に
衝突することにより生じる侵食を防止することが可能で
ある。From the above, it is possible to prevent the erosion caused by the oil mist colliding with the rotor tooth surface.
【図1】本発明の実施例における給油式スクリュー2段
空気圧縮機の系統図。FIG. 1 is a system diagram of a refueling screw two-stage air compressor according to an embodiment of the present invention.
【図2】本発明の実施例における1段側圧縮機のスクリ
ューロータの吐出側端面において吸入側から見たロータ
の軸の断面。FIG. 2 is a cross-sectional view of the rotor shaft as seen from the suction side at the discharge-side end surface of the screw rotor of the first-stage compressor in the embodiment of the present invention.
【図3】図2のA−A断面図。3 is a sectional view taken along line AA of FIG.
【図4】従来技術における給油式スクリュー2段空気圧
縮機の系統図。FIG. 4 is a system diagram of a refueling screw two-stage air compressor according to a conventional technique.
【図5】従来技術における1段側圧縮機のスクリューロ
ータの吐出側端面において吸入側から見たロータの軸の
断面図。FIG. 5 is a cross-sectional view of the rotor shaft as seen from the suction side at the discharge-side end surface of the screw rotor of the conventional one-stage compressor.
【図6】図5のA−A断面図。6 is a cross-sectional view taken along the line AA of FIG.
15…雄ロータ、16…雌ロータ、17…Dケーシン
グ、18…圧縮空気導入穴、19…シールライン。15 ... Male rotor, 16 ... Female rotor, 17 ... D casing, 18 ... Compressed air introduction hole, 19 ... Seal line.
Claims (1)
機の吐出側端面で、前記雄雌ロータ間と吐出端面との間
に構成される閉込空間内に通じる導入穴を設け、前記閉
込空間内の負圧を緩和させるため前記導入穴を通して、
アンロード運転中に、空間内に圧縮空気を供給したこと
を特徴とする給油式スクリュー圧縮機。1. A screw compressor comprising a pair of male and female rotors, wherein a discharge side end face is provided with an introduction hole communicating with a closed space formed between the male and female rotors and the discharge end face, Through the introduction hole to relieve the negative pressure in the space,
A refueling screw compressor characterized in that compressed air is supplied into the space during unloading operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10642192A JPH05302582A (en) | 1992-04-24 | 1992-04-24 | Lubrication type screw compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10642192A JPH05302582A (en) | 1992-04-24 | 1992-04-24 | Lubrication type screw compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05302582A true JPH05302582A (en) | 1993-11-16 |
Family
ID=14433204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10642192A Pending JPH05302582A (en) | 1992-04-24 | 1992-04-24 | Lubrication type screw compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05302582A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100704700B1 (en) * | 2005-06-01 | 2007-04-09 | (주) 정수엔지니어링 | Corrosion Prevention Device and Method Thereof |
CN101900119A (en) * | 2009-05-28 | 2010-12-01 | 株式会社日立工业设备技术 | Oil free screw compressor |
-
1992
- 1992-04-24 JP JP10642192A patent/JPH05302582A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100704700B1 (en) * | 2005-06-01 | 2007-04-09 | (주) 정수엔지니어링 | Corrosion Prevention Device and Method Thereof |
CN101900119A (en) * | 2009-05-28 | 2010-12-01 | 株式会社日立工业设备技术 | Oil free screw compressor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8021104B2 (en) | Compressor apparatus with recirculation and method therefore | |
EP3315779B1 (en) | Two-stage oil-injected screw air compressor | |
CN1327126A (en) | Rotary compressor and its operation control method | |
EP0142926B1 (en) | Positive displacement rotary compressors | |
JPH08312582A (en) | Reversal preventing device for compressor | |
CN100400871C (en) | Compressor | |
JPH10122168A (en) | Oil-cooled screw compressor | |
CN217055588U (en) | Compressor and additional oil injection system with same | |
JPH05302582A (en) | Lubrication type screw compressor | |
CN111406153B (en) | Liquid-cooled compressor | |
US5201648A (en) | Screw compressor mechanical oil shutoff arrangement | |
JP2008240579A (en) | Double-screw type air compressor | |
WO2020213353A1 (en) | Gas compressor | |
KR100213983B1 (en) | Screw vacuum pump | |
JPH08338386A (en) | Screw compressor | |
JPH0942169A (en) | Pump device | |
JP2000110766A (en) | Oil cooled screw compressor | |
US4388901A (en) | Lubricating oil supply system for a supercharged rotary piston engine | |
CN220581264U (en) | Rotor seat structure of air compressor | |
KR102288891B1 (en) | Apparatus and method of supplying air for commercial vehicle | |
JP2007263122A (en) | Evacuating apparatus | |
JP4608289B2 (en) | Operation control method of screw compressor | |
JP2001098949A (en) | Nitrogen oxide reduction system of diesel engine and nitrogen gas generation system | |
JP2584173B2 (en) | Operating method of oil-cooled compressor | |
JPS5944516B2 (en) | rotary compressor |