JPH0530204B2 - - Google Patents

Info

Publication number
JPH0530204B2
JPH0530204B2 JP13770284A JP13770284A JPH0530204B2 JP H0530204 B2 JPH0530204 B2 JP H0530204B2 JP 13770284 A JP13770284 A JP 13770284A JP 13770284 A JP13770284 A JP 13770284A JP H0530204 B2 JPH0530204 B2 JP H0530204B2
Authority
JP
Japan
Prior art keywords
gas
ultrasonic
tube
determining
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13770284A
Other languages
Japanese (ja)
Other versions
JPS6117020A (en
Inventor
Kimishiro Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP13770284A priority Critical patent/JPS6117020A/en
Publication of JPS6117020A publication Critical patent/JPS6117020A/en
Publication of JPH0530204B2 publication Critical patent/JPH0530204B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 a 産業上の利用分野 本発明は気体の質量流量を超音波を用いて測定
する超音波気体質量流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION a. Field of Industrial Application The present invention relates to an ultrasonic gas mass flow meter that measures the mass flow rate of gas using ultrasonic waves.

b 従来技術 質量流量とは、単位時間当りに流路の断面を横
切つて流れる流体の質量を言う。すなわち流路が
管である場合、管の一断面における流速をv、密
度をρ、管内部断面積をAとするとき、質量流量
Gは(1)式で与えられる。
b. Prior Art Mass flow rate refers to the mass of fluid flowing across the cross section of a flow path per unit time. That is, when the flow path is a pipe, the mass flow rate G is given by equation (1), where v is the flow velocity in one cross section of the pipe, ρ is the density, and A is the internal cross-sectional area of the pipe.

G=ρAv ……(1) 測定されるべき流体が理想気体である場合、気
体の圧力をP、気体の体積をV、気体の平均分子
量をm、気体の質量をw、一般気体定数をR、絶
縁温度をTとするとき、次の状態方程式が成立す
る。
G=ρAv...(1) When the fluid to be measured is an ideal gas, the pressure of the gas is P, the volume of the gas is V, the average molecular weight of the gas is m, the mass of the gas is w, and the general gas constant is R. , the following equation of state holds true when the insulation temperature is T.

PV=w/mRT ……(2) 気体密度ρは(3)式で与えられるので、(2)式は(4)
式に変形される。
PV=w/mRT...(2) Since the gas density ρ is given by equation (3), equation (2) becomes (4)
It is transformed into Eq.

ρ=w/v ……(3) ρ=Pm/RT ……(4) (4)式を(1)式に代入することにより次式が得られ
る。
ρ=w/v...(3) ρ=Pm/RT...(4) By substituting equation (4) into equation (1), the following equation is obtained.

G=PmAv/RT ……(5) (5)式は、気体の種類が定つていて平均分子量
m、一般気体定数Rおよび管内部断面積が既知で
ある場合、流体の圧力P、流体の温度Tおよび流
速vを測定することにより、質量流量Gが求めら
れることを意味する。
G=PmAv/RT...(5) Equation (5) shows that when the type of gas is fixed and the average molecular weight m, general gas constant R, and tube internal cross-sectional area are known, the fluid pressure P, the fluid This means that the mass flow rate G is determined by measuring the temperature T and the flow rate v.

従来技術による超音波気体質量流量計において
は、流速vは2つの超音波トランスデユーサ間の
距離と、超音波の気体中伝播時間を測定すること
によつて求め、(5)式を用いて質量流量を測定す
る。
In the conventional ultrasonic gas mass flowmeter, the flow velocity v is determined by measuring the distance between two ultrasonic transducers and the propagation time of the ultrasonic wave in the gas, and is calculated using equation (5). Measure mass flow rate.

具体的には、例えば次のようにして測定され
る。
Specifically, for example, it is measured as follows.

管内に距離Lだけ隔て管軸方向と角度θをなす
ように2個の超音波トランスデユーサを配設し、
その近傍に圧力センサと温度センサを設ける。
Two ultrasonic transducers are arranged in the pipe so as to be separated by a distance L and form an angle θ with the pipe axis direction,
A pressure sensor and a temperature sensor are provided near it.

管内流速が一様にvであるとし、気体中の音速
をcとするとき、気体流の上流側に配設された第
1の超音波トランスデユーサから下流側の第2の
超音波トランスデユーサに到るまでの超音波の伝
播時間t1と、上記第2の超音波トランスデユーサ
から上記第1の超音波トランスデユーサに到るま
での伝播時間t2は、それぞれ次のように与えられ
る。
Assuming that the flow velocity in the pipe is uniformly v and the sound velocity in the gas is c, the flow from the first ultrasonic transducer disposed on the upstream side of the gas flow to the second ultrasonic transducer disposed on the downstream side. The propagation time t1 of the ultrasonic wave until it reaches the user and the propagation time t2 from the second ultrasonic transducer to the first ultrasonic transducer are respectively as follows. Given.

t1=L/c+vcosθ ……(6) t2=L/c−vcosθ ……(7) ここでt+とt-を次のように定義する。 t 1 =L/c+vcosθ...(6) t2 =L/c-vcosθ...(7) Here, t + and t- are defined as follows.

t+=t2+t1 ……(8) t-=t2−t1 ……(9) (6),(7)式を代入することにより次のように変形
される。
t + =t 2 +t 1 ...(8) t - =t 2 −t 1 ...(9) By substituting equations (6) and (7), it is transformed as follows.

t-=2Lvcosθ/c2−v2cos2θ ……(10) t+=2Lc/c2−v2cos2θ ……(11) t-/t+=vcosθ/c ……(12) c=2L/1−(t-/t+2・1/t+……(13) v=2L/1−(t-/t+2・t-/(t+2cosθ……(14
) (13)式、(14)式はt-《t+のとき次のように変形さ
れる。
t - =2Lvcosθ/c 2 −v 2 cos 2 θ ……(10) t + =2Lc/c 2 −v 2 cos 2 θ ……(11) t /t + =vcosθ/c ……(12) c=2L/1-( t- /t + ) 2・1/t + ...(13) v=2L/1-(t- / t + ) 2・t - /(t + ) 2 cosθ... (14
) Equations (13) and (14) are transformed as follows when t - <<t + .

c=2L/t+ ……(15) v=2Lt-/(t+2cosθ ……(16) (16)式を(5)式に代入することにより、次の質量
流量計算式が得られる。
c=2L/t + ...(15) v=2Lt - /(t + ) 2 cosθ ...(16) By substituting equation (16) into equation (5), the following mass flow rate calculation formula is obtained. It will be done.

G=2PmALt-/RT(t+2cosθ ……(17) 質量流量Gは、既知量m,Rと、寸法値A,
L,θと、測定値P,t-,t+,Tから求められ
る。
G=2PmALt - /RT(t + ) 2 cosθ...(17) The mass flow rate G is the known quantities m and R, and the dimension value A,
It is determined from L, θ and the measured values P, t - , t + , T.

c 発明が解決しようとする問題点 (17)式の各因子はそれぞれ誤差の要因となる。気
体の質量流量を精密に測定するためには、上記各
因子の誤差を小さくしなければならない。しかし
(17)式に基づく限り誤差の逓減に限界がある。
c Problems to be solved by the invention Each factor in equation (17) becomes a cause of error. In order to accurately measure the mass flow rate of gas, the errors of each of the above factors must be reduced. However, as long as it is based on equation (17), there is a limit to the gradual reduction of the error.

本発明はマツハ数Mを用いて質量流量を測定す
ることにより誤差の小さい質量流量計を提供する
ことを目的とする。
An object of the present invention is to provide a mass flowmeter with small errors by measuring the mass flow rate using the Matsuha number M.

d 問題点を解決するための手段 上記問題点は、寸法数値であるLを用いる代り
に、特定温度、特定圧力における被測定気体の音
速cに対する流速vの比率であるマツハ数M
(v/c)を測定変数とすることにより解決する。
d Means to solve the problem The problem mentioned above is that instead of using L, which is a dimensional value, the Matsuhha number M, which is the ratio of the flow velocity v to the sound velocity c of the gas to be measured at a specific temperature and specific pressure, is used.
This is solved by using (v/c) as the measurement variable.

気体中の音速cは、気体の圧力Pと、定圧比熱
Cpの定積比熱Cvに対する比率γと、密度ρと、
絶対温度Tと、一般気体定数R、および平均分子
量mによつて次のように表わされる。
The speed of sound c in a gas is determined by the pressure P of the gas and the specific heat at constant pressure.
The ratio γ of Cp to the constant volume specific heat Cv, the density ρ,
It is expressed as follows using absolute temperature T, general gas constant R, and average molecular weight m.

c2=γP/ρ(γ=Cp/Cv) ……(18) =γRT/m ……(19) (18),(19)式を(1)式に代入することにより、次
式が得られる。
c 2 = γP/ρ (γ = Cp/Cv) ...(18) = γRT/m ...(19) By substituting equations (18) and (19) into equation (1), the following equation is obtained. It will be done.

上記マツハ数Mは、超音波トランスデユーサ間
の距離Lとは無関係に測定可能な量であり、(20)
式の各因子を測定することにより質量流量Gが求
められる。
The above Matsuha number M is a quantity that can be measured regardless of the distance L between the ultrasonic transducers, (20)
The mass flow rate G is determined by measuring each factor in the equation.

マツハ数は、従来技術におけるのと同じ配置の
2つの超音波トランスデユーサを用いて、流れの
上流側と下流側に配設した2つの超音波トランス
デユーサ間の、流れに対して順方向の場合と逆方
向の場合の伝播時間の差と和の比から求めること
ができる。すなわち(12)式から(v/c)を求め
ることができる。(12)式を(20)式に代入すること
によつて次式が得られる。
The Matsuha number is calculated in the forward direction of the flow between two ultrasonic transducers placed upstream and downstream of the flow using two ultrasonic transducers arranged in the same way as in the prior art. It can be determined from the ratio of the difference and sum of propagation times in the case of , and in the case of the opposite direction. That is, (v/c) can be obtained from equation (12). By substituting equation (12) into equation (20), the following equation is obtained.

またシングアラウンド法によつても上記マツハ
数Mを求めることができる。シングアラウンド法
の場合、超音波が流速に対して順方向、逆方向に
伝播するときのそれぞれの周波数12は次の式
で与えられることが知られている。
The Matsuhha number M can also be determined by the sing-around method. In the sing-around method, it is known that the frequencies 1 and 2 when ultrasound propagates in the forward and reverse directions relative to the flow velocity are given by the following equations.

1=c+vcosθ/L ……(22) 2=c−vcosθ/L ……(23) ここで+-を次のように定義する。 1 =c+vcosθ/L...(22) 2 =c-vcosθ/L...(23) Here, + and - are defined as follows.

+12 ……(24) -12 ……(25) (22),(23)式を(24),(25)式に代入することによ
り次のように変形される。
+ = 1 + 2 ...(24) - = 12 ...(25) By substituting equations (22) and (23) into equations (24) and (25), it is transformed as follows.

+=2c/L ……(26) -=2vcosθ/L ……(27) したがつてマツハ数M(v/c)は次の式で与
えられる。
+ =2c/L...(26) - =2vcosθ/L...(27) Therefore, the Matsuhha number M(v/c) is given by the following formula.

M=-+cosθ ……(28) このとき質量流量Gは(29)式で与えられる。 M= - / + cosθ...(28) At this time, the mass flow rate G is given by equation (29).

f 実施例 第1図は本発明の超音波気体質量流量計の実施
例の概念図である。
f Embodiment FIG. 1 is a conceptual diagram of an embodiment of the ultrasonic gas mass flowmeter of the present invention.

管壁1に2個の超音波トランスデユーサ2,3
が超音波伝播方向が管軸と角度θをなすように配
設され、該超音波トランスデユーサ2,3の近傍
に圧力センサ4と温度センサ5が取付けられてい
る。超音波トランスデユーサ間の超音波伝播時間
から(12)式または(28)式に基づいてマツハ数Mをマ
ツハ数計算回路6で求める。該マツハ数計算回路
6の出力と、該圧力センサ4の出力と、該温度セ
ンサ5の出力を入力とする他に、管内気体の平均
分子量m、一般気体定数R、管断面積Aなどを入
力回路7から入力された気体質量流量計算回路8
で、(20)式に基づいて気体質量流量が計算され、
表示回路9でそれで表示される。
Two ultrasonic transducers 2 and 3 on the tube wall 1
are arranged so that the ultrasonic propagation direction forms an angle θ with the tube axis, and a pressure sensor 4 and a temperature sensor 5 are installed near the ultrasonic transducers 2 and 3. Based on the ultrasonic propagation time between the ultrasonic transducers, the Matsuh number M is determined by the Matsuh number calculation circuit 6 based on equation (12) or equation (28). In addition to inputting the output of the Matsuha number calculation circuit 6, the output of the pressure sensor 4, and the output of the temperature sensor 5, the average molecular weight m of the gas in the tube, the general gas constant R, the tube cross-sectional area A, etc. are input. Gas mass flow rate calculation circuit 8 input from circuit 7
Then, the gas mass flow rate is calculated based on equation (20),
The display circuit 9 displays it accordingly.

なお超音波の送信・受信は通常の発振器、送信
器、増幅回路を用いて行うことができる。マツハ
数計算回路6の具体的回路は、超音波伝播時間検
出方式として時間差、位相差、シングアラウンド
方式等のどの方法を採用するかに従つて変るが、
マイクロプロセツサー等を用いて当業者であれば
実現できるので具体的回路図は省略する。
Note that ultrasonic waves can be transmitted and received using ordinary oscillators, transmitters, and amplifier circuits. The specific circuit of the Matsuha number calculation circuit 6 varies depending on which method, such as time difference, phase difference, or sing-around method, is adopted as the ultrasonic propagation time detection method.
A person skilled in the art can realize this using a microprocessor or the like, so a specific circuit diagram will be omitted.

g 効果 質量流量測定における誤差が小さくなる。慣例
に従つて任意の変数xに対する誤差をδxと表現
するとき、従来技術による場合と、本発明による
場合における質量流量の相対誤差はそれぞれ次の
ように与えられる。
g Effect Error in mass flow measurement becomes smaller. When the error for an arbitrary variable x is expressed as δx according to convention, the relative error in mass flow rate in the case of the prior art and in the case of the present invention is given as follows.

従来技術によるとき、質量流量計算式は(17)式
で与えられる。
According to the prior art, the mass flow rate calculation formula is given by equation (17).

G=2ALmt-P/RT(t+2cosθ ……(17) したがつて相対誤差は次式で与えられる。 G=2ALmt - P/RT(t + ) 2 cosθ...(17) Therefore, the relative error is given by the following equation.

|δG/G|=|δA/A|+|δL/L|+|δR/
R|+|δm/m| +|δT/T|+|δP/P|+|sinθ/cos
θδθ|+2|δt+/t+|+|δt-t-|……(30) 本発明によつて質量流量を求める計算式は、例
えば(21)式または(29)式である。誤差の計算式は
ほぼ等しいので、例として(21)について誤差の計
算をする。
|δG/G|=|δA/A|+|δL/L|+|δR/
R|+|δm/m| +|δT/T|+|δP/P|+|sinθ/cos
θδθ|+2|δt + /t + |+|δt - t - |...(30) The calculation formula for determining the mass flow rate according to the present invention is, for example, equation (21) or equation (29). Since the error calculation formulas are almost the same, we will calculate the error for (21) as an example.

G=mr/RT AP/cosθ -+ ……(29) したがつて相対誤差は次式で与えられる。 G=mr/RT AP/cosθ - / + (29) Therefore, the relative error is given by the following equation.

|δG/G|=1/2|δm/m|+1/2|δγ/
δ|+|δA/A|+|δP/P| +1/2|δR/R|+1/2|δT/T|+|si
nθ/cosθδθ|+|δt-/t-|+|δt+/t+|……(3
1) ここで|δγ/γ|≒|δR/R|とみなすと、(31)
式に よる相対誤差は(30)式による相対誤差に比較し
て、Δだけ少なくなる。
|δG/G|=1/2|δm/m|+1/2|δγ/
δ|+|δA/A|+|δP/P| +1/2|δR/R|+1/2|δT/T|+|si
nθ/cosθδθ|+|δt - /t - |+|δt + /t + |……(3
1) Here, if we consider |δγ/γ|≒|δR/R|, (31)
The relative error based on equation (30) is smaller by Δ compared to the relative error based on equation (30).

Δ=|δL/L|+|δt+/t+|+1/2|δT/T|
+1/2|δm/m|
Δ=|δL/L|+|δt + /t + |+1/2|δT/T|
+1/2 | δm/m |

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超音波質量流量計の実施例の
概念図である。 1……管壁、2,3……超音波トランスデユー
サ、4……圧力センサ、5……温度センサ、6…
…マツハ数計算回路、7……入力回路、8……気
体質量流量計算回路、9……表示回路。
FIG. 1 is a conceptual diagram of an embodiment of the ultrasonic mass flowmeter of the present invention. 1... Pipe wall, 2, 3... Ultrasonic transducer, 4... Pressure sensor, 5... Temperature sensor, 6...
... Matsuha number calculation circuit, 7 ... input circuit, 8 ... gas mass flow rate calculation circuit, 9 ... display circuit.

Claims (1)

【特許請求の範囲】 1 管内気体の流速の超音波音速に対する比率で
あるマツハ数を求めるマツハ数検出手段と、管内
気体の圧力Pを求める圧力検出手段と、管内気体
の絶対温度Tを求める温度検出手段と、上記マツ
ハ数検出手段によつて得られたマツハ数M、上記
圧力P、上記絶対温度Tと、管内気体平均分子量
m、管内気体の定圧比熱Cpの定積比熱Cvに対す
る比率γ、管断面積A、一般気体定数Rから次式
に従つて気体の質量流量Gを計算する質量流量計
算手段とを有することを特徴とする超音波気体質
量流量計。 2 上記マツハ数検出手段が、それぞれ流速に対
して順方向、逆方向に流体中を伝播した超音波の
伝播時間t1,t2と、超音波主軸が管軸となす角度
θとから、次式に従つてマツハ数を求める手段で
あることを特徴とする特許請求の範囲第1項記載
の超音波気体質量流量計。 M=t2−t1/(t2+t1)cosθ 3 上記マツハ数検出手段が、それぞれ流速に対
して順方向、逆方向に流体中に超音波が伝播する
ときのシングアラウンド周波数12と超音波主
軸が管軸をなす角度θとから次式に従つてマツハ
数を求める手段であることを特徴とする特許請求
の範囲第1項記載の超音波気体質量流量計。 M=(12)/(12)cosθ
[Scope of Claims] 1. Matsuhha number detection means for determining the Matsuhha number, which is the ratio of the flow velocity of the gas in the tube to the ultrasonic sound velocity, pressure detection means for determining the pressure P of the gas in the tube, and temperature determining means for determining the absolute temperature T of the gas in the tube. a detection means, the Matsuhha number M obtained by the Matsuhha number detection means, the pressure P, the absolute temperature T, the average molecular weight m of the gas in the tube, the ratio γ of the constant pressure specific heat Cp of the tube gas to the constant volume specific heat Cv, 1. An ultrasonic gas mass flowmeter comprising: a mass flow rate calculation means for calculating a gas mass flow rate G from a tube cross-sectional area A and a general gas constant R according to the following equation. 2 The Matsuha number detection means calculates the following from the propagation times t 1 and t 2 of the ultrasonic waves that propagated in the fluid in the forward and reverse directions with respect to the flow velocity, and the angle θ that the ultrasonic principal axis makes with the tube axis. The ultrasonic gas mass flow meter according to claim 1, characterized in that the ultrasonic gas mass flow meter is means for determining the Matsuhha number according to a formula. M=t 2 −t 1 /(t 2 +t 1 )cos θ 3 Sing-around frequencies 1 and 2 when the ultrasonic waves propagate in the fluid in the forward and reverse directions relative to the flow velocity, respectively, are determined by the Matsuha number detection means. 2. The ultrasonic gas mass flowmeter according to claim 1, wherein the ultrasonic gas mass flowmeter is means for determining the Matsuh number from the angle θ between the main axis of the ultrasonic wave and the axis of the tube according to the following equation. M=( 1-2 )/ ( 1 + 2 )cosθ
JP13770284A 1984-07-03 1984-07-03 Supersonic wave mass flowmeter for gas Granted JPS6117020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13770284A JPS6117020A (en) 1984-07-03 1984-07-03 Supersonic wave mass flowmeter for gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13770284A JPS6117020A (en) 1984-07-03 1984-07-03 Supersonic wave mass flowmeter for gas

Publications (2)

Publication Number Publication Date
JPS6117020A JPS6117020A (en) 1986-01-25
JPH0530204B2 true JPH0530204B2 (en) 1993-05-07

Family

ID=15204817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13770284A Granted JPS6117020A (en) 1984-07-03 1984-07-03 Supersonic wave mass flowmeter for gas

Country Status (1)

Country Link
JP (1) JPS6117020A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497228B1 (en) * 2004-11-30 2005-06-23 (주)오트로닉스 Automatic measurement system of river discharge using adcp

Also Published As

Publication number Publication date
JPS6117020A (en) 1986-01-25

Similar Documents

Publication Publication Date Title
JP3216769B2 (en) Temperature and pressure compensation method for clamp-on type ultrasonic flowmeter
JP3246851B2 (en) Ultrasonic flowmeter detector
JP4851936B2 (en) Ultrasonic flow meter
US4331025A (en) Methods of measuring fluid viscosity and flow rate
US7124621B2 (en) Acoustic flowmeter calibration method
US6553844B2 (en) Property-independent volumetric flowmeter and sonic velocimeter
JP2895704B2 (en) Ultrasonic flow meter
JP6375519B2 (en) Gas meter
JP4535065B2 (en) Doppler ultrasonic flow meter
JP2002520583A (en) Multi-code flow meter
JP2006078362A (en) Coaxial-type doppler ultrasonic current meter
JPH0447770B2 (en)
US4409847A (en) Ultrasonic measuring arrangement for differential flow measurement, particularly for measurement of fuel consumption in motor vehicles with a fuel return line
RU2396518C2 (en) Method and device for acoustic measurement of gas flow rate
JP3103264B2 (en) Ultrasonic flow meter
JPH0530204B2 (en)
JPH1090028A (en) Ultrasonic wave mass flowmeter
JPH11351929A (en) Flowmeter and flow rate measuring method
JPH11351928A (en) Flowmetr and flow rate measuring method
JPH0791996A (en) Ultrasonic flowmeter
JP4561071B2 (en) Flow measuring device
KR100321074B1 (en) Measuring method of distance between sensors of ultrasonic flowmeter
JP2000337938A (en) Gas meter
JP3503578B2 (en) Flow measurement device
CN111473828B (en) Zero drift elimination method for commercial meter