JPH05301834A - Production of alpha,beta-unsaturated alcohol - Google Patents

Production of alpha,beta-unsaturated alcohol

Info

Publication number
JPH05301834A
JPH05301834A JP4104564A JP10456492A JPH05301834A JP H05301834 A JPH05301834 A JP H05301834A JP 4104564 A JP4104564 A JP 4104564A JP 10456492 A JP10456492 A JP 10456492A JP H05301834 A JPH05301834 A JP H05301834A
Authority
JP
Japan
Prior art keywords
catalyst
silver
reaction
beta
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4104564A
Other languages
Japanese (ja)
Inventor
Yoshihisa Watanabe
芳久 渡辺
Pantauon Chiyasuda
パンタウオン チャスダ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP4104564A priority Critical patent/JPH05301834A/en
Publication of JPH05301834A publication Critical patent/JPH05301834A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To industrially produce an alpha,beta-unsaturated alcohol in high activity and in high selectivity by using an inexpensive metal having low toxicity. CONSTITUTION:In producing an alpha,beta-unsaturated alcohol by reacting an alpha,beta-unsaturated aldehyde with hydrogen in the presence of a catalyst, a catalyst which comprises one or more metals selected from indium, neodymium, magnesium, barium and lanthanum and silver and has the atomic ratio of the metal except silver and silver of 1:1-1:20 is used as the catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、α,β−不飽和アルコ
ールの製造方法に関する。α,β−不飽和アルコール
は、合成樹脂、医薬、農薬、香料、ゴム薬等の中間体と
して有用である。
FIELD OF THE INVENTION The present invention relates to a method for producing an α, β-unsaturated alcohol. The α, β-unsaturated alcohol is useful as an intermediate for synthetic resins, medicines, agricultural chemicals, perfumes, rubber drugs and the like.

【0002】[0002]

【従来の技術】α,β−不飽和アルコールは、α,β−
不飽和アルデヒドを還元することにより製造方法するの
が一般的であるが、炭素−炭素二重結合を残したまま、
ホルミル基のみを選択的に還元することは極めて困難で
あり、従来から多くの試みがなされている。
2. Description of the Related Art α, β-unsaturated alcohol is α, β-
The production method is generally carried out by reducing the unsaturated aldehyde, but while leaving the carbon-carbon double bond,
It is extremely difficult to selectively reduce only the formyl group, and many attempts have been made in the past.

【0003】例えば、水素還元触媒として、白金族の貴
金属触媒(W.F.Tuley, R.Adams, J.Am.Chem. Soc. 47 3
061(1925) )、銅−カドミウム触媒(米国特許第276
3696号明細書)、カドミウムで修飾したラネー銅触
媒(特公昭39−610号公報)、オスミウム触媒(米
国特許第3655777号明細書)、銀−亜鉛触媒(特
公昭47−13010号公報)、銀−カドミウム触媒
(特開昭53−18506号、特開平1−127041
号公報)、鉄および銀で修飾された白金触媒(米国特許
第3284617号明細書)、アンバーリストにロジウ
ムを担持した触媒(米国特許第4292452号明細
書)等が提案されている。
For example, as a hydrogen reduction catalyst, a platinum group precious metal catalyst (WFTuley, R. Adams, J. Am. Chem. Soc. 47 3
061 (1925)), a copper-cadmium catalyst (US Pat. No. 276).
3696), Raney copper catalyst modified with cadmium (Japanese Patent Publication No. 39-610), osmium catalyst (US Pat. No. 3,655,777), silver-zinc catalyst (Japanese Patent Publication 4713010), silver -Cadmium catalyst (JP-A-53-18506, JP-A-1-1277041)
Japanese Patent Publication No. 4), a platinum catalyst modified with iron and silver (US Pat. No. 3,284,617), a catalyst in which rhodium is supported on Amberlyst (US Pat. No. 4,292,452), and the like have been proposed.

【0004】しかしながら、これらの触媒は、いずれも
高価であったり、反応率及びα,β−不飽和アルコール
の選択率が低く、また、カドミウムやオスミウムは毒性
が高いなどの問題があった。また、還元剤として、水素
化ホウ素ナトリウム、水素化リチウムアルニウム等の金
属水素化物、アルミニウムエトキシド等のアルミニウム
アルコキシドなどを化学量論量使用する方法もあるが、
これらの方法は、高価な還元剤を多量に使用する必要が
あり、工業的に有利なものではない。
However, all of these catalysts have problems that they are expensive, the reaction rate and the selectivity of α, β-unsaturated alcohol are low, and that cadmium and osmium are highly toxic. As a reducing agent, there is a method of using a stoichiometric amount of sodium borohydride, metal hydride such as lithium aluminum hydride, or aluminum alkoxide such as aluminum ethoxide.
These methods require the use of large amounts of expensive reducing agents and are not industrially advantageous.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、安価
で毒性の低い金属を使用し、工業的な製造に適したα,
β−不飽和アルコールの製造方法を提供することであ
る。
SUMMARY OF THE INVENTION The object of the present invention is to use a metal which is inexpensive and has low toxicity and which is suitable for industrial production.
It is to provide a method for producing β-unsaturated alcohol.

【0006】[0006]

【課題を解決するための手段】本発明は、α,β−不飽
和アルデヒドを、触媒の存在下に水素と反応させて、
α,β−不飽和アルコールを製造する方法において、触
媒として、インジウム、ネオジム、マグネシウム、バリ
ウム、及び、ランタンよりなる群から選ばれる一種以上
の金属と、銀とからなり、銀以外の該金属と銀との割合
が原子比で1:1〜1:20である触媒を用いることを
特徴とする、α,β−不飽和アルコールの製造方法であ
る。
The present invention comprises reacting an α, β-unsaturated aldehyde with hydrogen in the presence of a catalyst,
In the method for producing α, β-unsaturated alcohol, as a catalyst, one or more metals selected from the group consisting of indium, neodymium, magnesium, barium, and lanthanum, and silver, and a metal other than silver. A method for producing an α, β-unsaturated alcohol, which comprises using a catalyst whose ratio to silver is 1: 1 to 1:20 in atomic ratio.

【0007】(α,β−不飽和アルデヒド)本発明で用
いられるα,β−不飽和アルデヒドは、炭素数3〜10
の脂肪族α,β−不飽和アルデヒド、炭素数9〜16の
芳香族α,β−不飽和アルデヒドであり、具体的には、
アクロレイン、メタクロレイン、クロトンアルデヒド、
シンナムアルデヒド等が挙げられる。
(Α, β-Unsaturated Aldehyde) The α, β-unsaturated aldehyde used in the present invention has 3 to 10 carbon atoms.
Are aliphatic α, β-unsaturated aldehydes and aromatic α, β-unsaturated aldehydes having 9 to 16 carbon atoms, and specifically,
Acrolein, methacrolein, crotonaldehyde,
Examples thereof include cinnamaldehyde.

【0008】(触媒)本発明の製造方法では、α,β−
不飽和アルデヒドの水素化に際して、インジウム、ネオ
ジム、マグネシウム、バリウム、及び、ランタンよりな
る群から選ばれる一種以上の金属と、銀とからなり、銀
以外の該金属と銀との割合が原子比で1:1〜1:2
0、好ましくは、1:1〜1:15である触媒が用いら
れる。銀以外の該金属に対する銀の割合が、原子比で、
1未満では、水素化活性が低下し、また、20を超える
と不飽和アルデヒドの選択性が低下し、好ましくない。
(Catalyst) In the production method of the present invention, α, β-
Upon hydrogenation of the unsaturated aldehyde, one or more metals selected from the group consisting of indium, neodymium, magnesium, barium, and lanthanum, and silver, and the ratio of the metal other than silver and silver in atomic ratio. 1: 1 to 1: 2
A catalyst of 0, preferably 1: 1 to 1:15 is used. The ratio of silver to the metal other than silver is an atomic ratio,
When it is less than 1, the hydrogenation activity is lowered, and when it exceeds 20, the selectivity of unsaturated aldehyde is lowered, which is not preferable.

【0009】これら元素の供給源としては、例えば、加
水分解、及び、その後の焼成により金属または金属酸化
物に変換され得る可溶性の金属化合物が用いられ、具体
的には、硝酸塩、硫酸塩、酢酸塩、各種のハロゲン化物
等の無機酸及び有機酸の塩類;錯塩;キレート化合物;
アルコキサイドなどの金属含有化合物が挙げられる。触
媒は、シリカ、アルミナ等の適当な担体に担持すること
もでき、担体などの、本触媒の必須金属以外の成分の含
有量は、97%以下、好ましくは90%以下である。
As a supply source of these elements, for example, a soluble metal compound which can be converted into a metal or a metal oxide by hydrolysis and subsequent calcination is used, and specifically, nitrates, sulfates, acetic acid are used. Salts, salts of inorganic and organic acids such as various halides; complex salts; chelate compounds;
Examples include metal-containing compounds such as alkoxide. The catalyst can also be supported on a suitable carrier such as silica or alumina, and the content of components other than the essential metals of the present catalyst such as the carrier is 97% or less, preferably 90% or less.

【0010】触媒の製造方法としては、触媒成分の金属
が、緊密な混合状態で含有される方法であれば任意であ
るが、例えば、銀と、インジウム、ネオジム、ランタ
ン、マグネシウム、バリウムよりなる群から選ばれる一
種以上の金属の上記の金属含有化合物を、それぞれ、加
水分解に続く焼成によって金属または金属酸化物とし、
それらを含浸法、沈澱法、共沈法などの従来の方法に供
することによって、製造することができる。含浸法とし
ては、例えば、予め成型した酸化アルミニウム、酸化ケ
イ素、酸化チタン等の多孔質担体の粒または微粉に、可
溶性の銀、及び、インジウム、ネオジム、ランタン、マ
グネシウム、バリウムよりなる群から選ばれる一種以上
の金属を含浸、乾燥、焼成する。
The catalyst may be produced by any method as long as the metal of the catalyst component is contained in an intimate mixed state. For example, the group consisting of silver, indium, neodymium, lanthanum, magnesium and barium. The above metal-containing compound of one or more metals selected from, respectively, to a metal or a metal oxide by firing subsequent to hydrolysis,
It can be produced by subjecting them to conventional methods such as an impregnation method, a precipitation method and a coprecipitation method. As the impregnation method, for example, it is selected from the group consisting of insoluble, silver, and indium, neodymium, lanthanum, magnesium, and barium in particles or fine powder of a porous carrier such as preformed aluminum oxide, silicon oxide, and titanium oxide. Impregnation, drying and firing of one or more metals.

【0011】共沈法としては、インジウム、ネオジム、
ランタン、マグネシウム、及び、バリウムよりなる群か
ら選ばれる一種以上の金属と、銀との混合溶液から共沈
により調製する。生成した金属混合物の沈澱は、それ自
体、成型、焼成し、触媒として使用することも、また
は、更に、シリカ、アルミナなどの適当な担体上に担持
して使用することも可能である。本発明の触媒の形態
は、粉状または成型されたものであり、成型触媒の形状
は、柱状、錠剤、球状、粒状、顆粒状、板状などであ
る。
The coprecipitation method includes indium, neodymium,
It is prepared by coprecipitation from a mixed solution of one or more metals selected from the group consisting of lanthanum, magnesium and barium, and silver. The precipitate of the formed metal mixture can be molded, calcined and used as a catalyst itself, or can be further used by supporting it on a suitable carrier such as silica or alumina. The form of the catalyst of the present invention is powder or molded, and the shape of the molded catalyst is columnar, tablet, spherical, granular, granular, plate-like or the like.

【0012】(反応条件)本発明を実施する反応の形態
としては、液相、気相のいずれでも可能である。また、
その際の、原料と触媒の接触方式としては、従来から知
られている方法の中から適宜選択でき、例えば、液相反
応においては、連続または回分式での粉体触媒による懸
濁床方式、気相反応では、通常の固定床方式はもちろ
ん、流動床、移動床方式などが可能である。
(Reaction Conditions) The reaction mode for carrying out the present invention may be either a liquid phase or a gas phase. Also,
At that time, the contact method between the raw material and the catalyst can be appropriately selected from conventionally known methods, for example, in a liquid phase reaction, a suspension bed method using a powder catalyst in a continuous or batch system, In the gas phase reaction, not only the usual fixed bed system, but also a fluidized bed system, a moving bed system or the like is possible.

【0013】水素の使用量は、原料のα,β−不飽和ア
ルデヒド1モルに対して、1〜1000モル、好ましく
は、2〜200モルである。水素が少なすぎると、炭素
析出などにより触媒の失活を招きやすく、また、水素が
多すぎると、経済的に好ましくない。使用する水素は必
ずしも高い純度のものでなくともよく、本反応を阻害す
るものでない物質、例えば、窒素、アルゴン等を水素に
対して任意の割合で混合して使用することもできる。
The amount of hydrogen used is 1 to 1000 mol, preferably 2 to 200 mol, per 1 mol of the α, β-unsaturated aldehyde as the raw material. If the amount of hydrogen is too small, the catalyst tends to be deactivated due to carbon deposition, and if the amount of hydrogen is too large, it is economically unfavorable. The hydrogen to be used does not necessarily have to be of high purity, and a substance that does not inhibit this reaction, such as nitrogen or argon, may be mixed with hydrogen at an arbitrary ratio and used.

【0014】反応温度は、水素の圧力によって、最適値
が変化するが、一般に50〜350℃、好ましくは10
0〜250℃の範囲である。50℃未満では、不飽和ア
ルデヒドの反応率が低く、実用的ではなく、また、30
0℃を越えると、分解などの副反応が増加し、目的物の
選択率が低下する。反応の圧力は、特に制限はないが、
気相反応の場合、α,β−不飽和アルデヒドと水素の分
圧の和が常圧〜50kg/cm2 、液相反応の場合、1
0〜100kg/cm2 程度が好ましい。
Although the optimum reaction temperature varies depending on the hydrogen pressure, it is generally 50 to 350 ° C., preferably 10
It is in the range of 0 to 250 ° C. If the temperature is lower than 50 ° C, the reaction rate of unsaturated aldehyde is low, which is not practical.
When the temperature exceeds 0 ° C, side reactions such as decomposition increase, and the selectivity of the target product decreases. The reaction pressure is not particularly limited,
In the case of a gas phase reaction, the sum of the partial pressures of α, β-unsaturated aldehyde and hydrogen is atmospheric pressure to 50 kg / cm 2 , and in the case of a liquid phase reaction, 1
About 0 to 100 kg / cm 2 is preferable.

【0015】[0015]

【発明の効果】本発明の製造方法によれば、有害な金属
を使用することなく、高活性、かつ、高選択的に、α,
β−不飽和アルコールを製造することができ、工業的に
有益である。
EFFECTS OF THE INVENTION According to the production method of the present invention, α,
A β-unsaturated alcohol can be produced, which is industrially beneficial.

【0016】[0016]

【実施例】次に、本発明を実施例により更に具体的に説
明する。 <実施例1>硝酸銀1.70g(10ミリモル)及び硝
酸インジウム(In (NO3)3 ・3H2 O)0.35g
(1ミリモル)を、350mlの蒸留水に溶解し、そこ
に酸化ケイ素担体(商品名:キャリアーアクト−50−
富士デビソン社製)9.6gを加えた。この混合物を、
回転式エバポレーター中、室温で1時間攪拌した後、減
圧し、温度を80℃まで上昇して、2時間乾燥した。次
に、120℃の乾燥器中で16時間乾燥後、500℃の
電気炉で、空気中、3時間焼成した。
EXAMPLES Next, the present invention will be described more specifically by way of examples. <Example 1> Silver nitrate 1.70 g (10 mmol) and indium nitrate (In (NO 3) 3 · 3H 2 O) 0.35g
(1 mmol) was dissolved in 350 ml of distilled water, and the silicon oxide carrier (trade name: Carrier Act-50-) was dissolved therein.
9.6 g (manufactured by Fuji Devison Co., Ltd.) was added. This mixture
After stirring for 1 hour at room temperature in a rotary evaporator, the pressure was reduced, the temperature was raised to 80 ° C., and drying was performed for 2 hours. Next, after drying for 16 hours in a dryer at 120 ° C., it was baked for 3 hours in air in an electric furnace at 500 ° C.

【0017】以上の操作により、銀の含有量約10重量
%、銀:インジウム=10:1(原子比)の顆粒状触媒
を得た。この触媒10mlを小型反応管に充填し、アク
ロレインと水素を、下記の反応条件で反応させた。その
結果を表1に示す。 (反応条件) 水素/アクロレイン=20.8(モル
比) 水素流量=151/hr 反応温度=200℃ 反応圧力=2.0kg/cm2 SV =1567hr-1
By the above operation, a granular catalyst having a silver content of about 10% by weight and silver: indium = 10: 1 (atomic ratio) was obtained. A small reaction tube was filled with 10 ml of this catalyst, and acrolein and hydrogen were reacted under the following reaction conditions. The results are shown in Table 1. (Reaction conditions) Hydrogen / acrolein = 20.8 (molar ratio) Hydrogen flow rate = 151 / hr Reaction temperature = 200 ° C. Reaction pressure = 2.0 kg / cm 2 SV = 1567 hr −1

【0018】<実施例2>銀:インジウム=5:2とな
るように硝酸銀と硝酸インジウムの割合を変えて調製し
た触媒を用いた以外は、実施例1と同様に反応を行っ
た。その結果を表1に示す。
Example 2 The reaction was carried out in the same manner as in Example 1 except that the catalyst prepared by changing the ratio of silver nitrate and indium nitrate was changed so that silver: indium = 5: 2. The results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】<実施例3〜6>実施例1と同様の方法で
調製した銀−インジウム触媒に、さらに第3成分とし
て、表2中の各種の金属を、各々、Na2CO3 、CsN
3 、Zr(NO3)4 ・5H2 O、Zn(NO3)2 ・6H2
Oの形態で所定量添加して調製した触媒を用いた以外
は、実施例1と同様に反応を行った。その結果を表2に
示す。
<Examples 3 to 6> Silver-indium catalyst prepared by the same method as in Example 1 was further added with various metals in Table 2 as the third component, Na 2 CO 3 and CsN, respectively.
O 3, Zr (NO 3) 4 · 5H 2 O, Zn (NO 3) 2 · 6H 2
The reaction was performed in the same manner as in Example 1 except that a catalyst prepared by adding a predetermined amount in the form of O was used. The results are shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】<実施例7、8>硝酸銀7.08g(40
ミリモル)及び硝酸インジウム(In (NO3)3 ・3H
2 O)1.42g(4ミリモル)を、100mlの蒸留
水に溶解し、攪拌下、炭酸ナトリウム2.85gを蒸留
水100mlに溶解した溶液を滴下し、沈殿を生成させ
た。この沈殿を含む溶液を1時間攪拌した後、沈殿を濾
過し、蒸留水で十分に洗浄した。次に、この沈殿を、蒸
留水200mlとコロイド状シリカ(商品名:スノーテ
ックス:日産化学社製)200gを混合した溶液中に加
え、2時間攪拌し、十分に分散した後、沈殿を濾別し、
120℃の乾燥器中で16時間乾燥させた。続いて、5
00℃の電気炉で、空気中、3時間焼成した。
<Examples 7 and 8> 7.08 g of silver nitrate (40
Mmol) and indium nitrate (In (NO 3) 3 · 3H
2 O) (1.42 g, 4 mmol) was dissolved in 100 ml of distilled water, and a solution of 2.85 g of sodium carbonate in 100 ml of distilled water was added dropwise with stirring to form a precipitate. The solution containing this precipitate was stirred for 1 hour, and then the precipitate was filtered and thoroughly washed with distilled water. Next, this precipitate was added to a solution obtained by mixing 200 ml of distilled water and 200 g of colloidal silica (trade name: Snowtex: manufactured by Nissan Kagaku Co., Ltd.), stirred for 2 hours, sufficiently dispersed, and then filtered off the precipitate. Then
It was dried in a dryer at 120 ° C. for 16 hours. Then 5
Firing was performed in an electric furnace at 00 ° C. in air for 3 hours.

【0023】以上の操作により、銀の含有量約10重量
%、銀:インジウム=10:1(原子比)の顆粒状触媒
を得た。この触媒7.14gを小型反応管に充填し、S
V=1572hr-1とし、反応温度をそれぞれ、200
℃、250℃とした以外は、実施例1と同様の反応条件
で反応させた。その結果を表3に示す。
By the above operation, a granular catalyst having a silver content of about 10% by weight and silver: indium = 10: 1 (atomic ratio) was obtained. A small reaction tube was filled with 7.14 g of this catalyst, and S
V = 1572 hr −1 , and the reaction temperature was 200, respectively.
The reaction was carried out under the same reaction conditions as in Example 1 except that the temperature was 250 ° C and 250 ° C. The results are shown in Table 3.

【0024】[0024]

【表3】 [Table 3]

【0025】<実施例9>実施例1において、硝酸イン
ジウムの代わりに硝酸ネオジム(Nd (NO3)3・3H
2 O)0.44g(1ミリモル)を用いて触媒を調製
し、SV値を1558hr-1とした以外は実施例1と同
様に反応を行った。その結果を表4に示す。
[0025] <Example 9> Example 1, neodymium nitrate (Nd (NO 3 instead of indium nitrate) 3 · 3H
2 O) 0.44 g (1 mmol) was used to prepare a catalyst, and the reaction was performed in the same manner as in Example 1 except that the SV value was changed to 1558 hr −1 . The results are shown in Table 4.

【0026】<実施例10>実施例9において、SV値
を34369hr-1とした以外は、実施例9と同様に反
応を行った。その結果を表4に示す。
<Example 10> A reaction was carried out in the same manner as in Example 9 except that the SV value was changed to 34369 hr -1 . The results are shown in Table 4.

【0027】<実施例11、12>実施例9において、
銀:ネオジム=7:3、及び、1:10(原子比)とし
た以外は、実施例9と同様に反応を行った。その結果を
表4に示す。
<Examples 11 and 12> In Example 9,
The reaction was performed in the same manner as in Example 9 except that silver: neodymium = 7: 3 and 1:10 (atomic ratio). The results are shown in Table 4.

【0028】[0028]

【表4】 [Table 4]

【0029】<実施例13>実施例1において、硝酸イ
ンジウムの代わりに硝酸マグネシウム(Mg (NO 3)2
・3H2 O)0.20g(1ミリモル)を用いて触媒を
調製し、SV値を1567hr-1とした以外は実施例1
と同様に反応を行った。その結果を表5に示す。
<Example 13> In Example 1, nitric acid was added.
Magnesium nitrate (Mg (NO 3)2
・ 3H2O) 0.20 g (1 mmol) was used to
Prepared and SV value is 1567hr-1Example 1 except that
The reaction was performed in the same manner as in. The results are shown in Table 5.

【0030】<実施例14>実施例13において、SV
値を3336hr-1とした以外は、実施例12と同様に
反応を行った。その結果を表5に示す。
<Embodiment 14> In the embodiment 13, the SV
The reaction was carried out in the same manner as in Example 12 except that the value was 3336 hr -1 . The results are shown in Table 5.

【0031】<実施例15>実施例1において、硝酸イ
ンジウムの代わりに硝酸バリウム(Ba (NO3)2・3
2 O)0.261g(1ミリモル)を用いて触媒を調
製し、SV値を3352hr-1とした以外は実施例1と
同様に反応を行った。その結果を表5に示す。
[0031] <Example 15> Example 1, barium nitrate in place of indium nitrate (Ba (NO 3) 2 · 3
A catalyst was prepared by using 0.261 g (1 mmol) of H 2 O and the reaction was carried out in the same manner as in Example 1 except that the SV value was 3352 hr −1 . The results are shown in Table 5.

【0032】<実施例16>実施例1において、硝酸イ
ンジウムの代わりに硝酸ランタン(Ln (NO3)3・3
2 O)0.261g(1ミリモル)を用いて触媒を調
製し、SV値を3352hr-1とした以外は実施例1と
同様に反応を行った。その結果を表5に示す
[0032] <Example 16> Example 1, lanthanum nitrate (Ln (NO 3 instead of indium nitrate) 3.3
A catalyst was prepared by using 0.261 g (1 mmol) of H 2 O and the reaction was carried out in the same manner as in Example 1 except that the SV value was 3352 hr −1 . The results are shown in Table 5.

【0033】[0033]

【表5】 [Table 5]

【0034】<比較例1>実施例1において、硝酸イン
ジウムの代わりに硝酸カドミウム(1ミリモル)を用い
て触媒を調製し、実施例13と同様の反応条件で反応を
行った。その結果を表6に示す。
Comparative Example 1 A catalyst was prepared by using cadmium nitrate (1 mmol) instead of indium nitrate in Example 1, and the reaction was carried out under the same reaction conditions as in Example 13. The results are shown in Table 6.

【0035】[0035]

【表6】 [Table 6]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】α,β−不飽和アルデヒドを、触媒の存在
下に水素と反応させて、α,β−不飽和アルコールを製
造する方法において、触媒として、インジウム、ネオジ
ム、マグネシウム、バリウム、及び、ランタンよりなる
群から選ばれる一種以上の金属と、銀とからなり、銀以
外の該金属と銀との割合が原子比で1:1〜1:20で
ある触媒を用いることを特徴とする、α,β−不飽和ア
ルコールの製造方法。
1. A method for producing an α, β-unsaturated alcohol by reacting an α, β-unsaturated aldehyde with hydrogen in the presence of a catalyst, wherein indium, neodymium, magnesium, barium, and , A lanthanum, and at least one metal selected from the group consisting of lanthanum and silver, and the ratio of the metal other than silver and silver is 1: 1 to 1:20 in atomic ratio. A method for producing an α, β-unsaturated alcohol.
JP4104564A 1992-04-23 1992-04-23 Production of alpha,beta-unsaturated alcohol Pending JPH05301834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4104564A JPH05301834A (en) 1992-04-23 1992-04-23 Production of alpha,beta-unsaturated alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4104564A JPH05301834A (en) 1992-04-23 1992-04-23 Production of alpha,beta-unsaturated alcohol

Publications (1)

Publication Number Publication Date
JPH05301834A true JPH05301834A (en) 1993-11-16

Family

ID=14383957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4104564A Pending JPH05301834A (en) 1992-04-23 1992-04-23 Production of alpha,beta-unsaturated alcohol

Country Status (1)

Country Link
JP (1) JPH05301834A (en)

Similar Documents

Publication Publication Date Title
KR101067539B1 (en) Catalyst and Method for the Hydration of Carbonyl Compounds
ES2549439T3 (en) Catalyst for the preparation of alcohols
US7759530B2 (en) Moulded catalyst bodies and method for hydrogenation of carbonyl compounds
US6448457B1 (en) Method for hydrogenating carbonyl compounds
US20080207953A1 (en) Catalyst and Method for Hyrogenating Carbonyl Compounds
US20080071120A1 (en) Catalyst and Method for Hydrogenation of Carbonyl Compounds
JPH05310630A (en) Production of aldehyde compounds
KR20080039411A (en) Catalyst and method for hydrogenating carbonyl compounds
US5347056A (en) Process for producing unsaturated alcohols
EP0183225A1 (en) Catalyst for vapor-phase hydrogen transfer reaction
JPH07204509A (en) Production of unsaturated alcohol
JP2813770B2 (en) Ethanol production method
JP3556397B2 (en) Improved method for producing catalyst for carboxylic acid ester production
JPS58166936A (en) Catalyst for producing carboxylic ester and use thereof
JP3408700B2 (en) Method for continuous production of carboxylic acid ester
JP3091219B2 (en) Method for producing acid-resistant catalyst for direct hydrogenation to produce alcohol from carboxylic acid
JPH05301834A (en) Production of alpha,beta-unsaturated alcohol
JP3328340B2 (en) Process for producing acrolein or acrylic acid, and catalyst used therefor
JP2003192632A (en) Method for producing mixture of unsaturated carboxylic acid ester with unsaturated carboxylic acid
JP2003053188A (en) Metallic particle carrying and supporting body method of manufacturing carboxylate
JP4041953B2 (en) Hydrogenation catalyst and method for producing alcohol
JP3173273B2 (en) Method for producing glyoxylate
JP3392812B2 (en) Method for producing hydroxycarboxylic acid ester
JPH0665125A (en) Production of alcohol
JPH10158214A (en) Production of carboxylate