JPH05301004A - Liquid purifying device - Google Patents
Liquid purifying deviceInfo
- Publication number
- JPH05301004A JPH05301004A JP4130060A JP13006092A JPH05301004A JP H05301004 A JPH05301004 A JP H05301004A JP 4130060 A JP4130060 A JP 4130060A JP 13006092 A JP13006092 A JP 13006092A JP H05301004 A JPH05301004 A JP H05301004A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- adsorbent
- ozone
- contact
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Sorption (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は各種の液体中に存在する
各種溶存物質特に有機溶存物質を除去する液体の浄化装
置に関したもので、特に各種排水や、河川、湖沼等の水
の有機溶存物質を連続的に安定して除去する液体浄化装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid purification apparatus for removing various dissolved substances existing in various liquids, particularly organic dissolved substances, and particularly to the organic dissolved water of various drainage water and rivers, lakes and marshes. The present invention relates to a liquid purification device that continuously and stably removes substances.
【0002】[0002]
【従来の技術】都市化の進行に伴う家庭排水の増加によ
る河川の汚濁や、ゴルフ場等での各種農薬の大量散布に
よる残留農薬の流出といったことに見られるように、近
年河川、湖沼、地下水等の有機物質による水質汚染が大
きな社会問題となっている。2. Description of the Related Art In recent years, rivers, lakes and marshes and groundwater have been polluted as seen in the pollution of rivers due to the increase of domestic drainage due to the progress of urbanization and the outflow of residual pesticides due to the large amount of various pesticides sprayed at golf courses. Water pollution due to such organic substances has become a major social problem.
【0003】これらの有機溶存物質を液体中より除去す
る浄化方法としては、微生物の酸化分解作用等を用い
た生物化学的に分解除去する方法、塩素やオゾン等の
各種酸化剤や紫外線を用いた光化学反応等により物理化
学的に分解除去する方法、活性炭やセラミックス等の
吸着剤により溶存物質を吸着除去する方法、等が用いら
れている。As a purification method for removing these organic dissolved substances from the liquid, a biochemical decomposition and removal method using the oxidative decomposition action of microorganisms, various oxidizing agents such as chlorine and ozone, and ultraviolet rays are used. A method of physically and chemically decomposing and removing by a photochemical reaction, a method of adsorbing and removing a dissolved substance with an adsorbent such as activated carbon or ceramics, and the like are used.
【0004】これらの方法のなかで、オゾンは極めて高
い酸化能力を有する酸化剤であり、オゾンを用いた酸化
分解方法は塩素等にみられるような処理後の液体中に酸
化剤が残留することによる問題や、塩素化合物の発生と
いった問題がない有効な方法として近年次第に利用され
るようになっている。又紫外線による光化学反応による
分解も、処理後の液体に残留等の問題がない方法であ
り、又吸着剤による吸着除去も安全で効果的な浄化方法
である。Among these methods, ozone is an oxidant having an extremely high oxidative ability, and the oxidative decomposition method using ozone is that the oxidant remains in the liquid after treatment such as that found in chlorine. In recent years, it has been gradually used as an effective method that does not suffer from problems such as the above and the generation of chlorine compounds. In addition, decomposition by a photochemical reaction by ultraviolet rays is a method without problems such as remaining in the liquid after treatment, and adsorption removal by an adsorbent is also a safe and effective purification method.
【0005】[0005]
【発明が解決しようとする課題】これまでのオゾンを用
いた液体浄化装置は、目的の液体に対して直接オゾンを
含む空気等を注入して酸化分解を行っているが、オゾン
の水中での溶解度が低いために基本的に効率が悪いとい
う欠点がある。より効果的に液体中の有機溶存物質の分
解除去を行うには、液体中のオゾン濃度を高くしたり液
体とオゾンとの接触時間を長くすることが必要となる。
供給したオゾンの殆どは液体に吸収されないで排気され
てしまうので、液体中のオゾン濃度を上げるには過剰に
高濃度のオゾンを供給する必要性があるが、高濃度のオ
ゾンは毒性が強く排気中より除去する必要がある。以上
のように溶解度の点や、排気中のオゾン除去の点からあ
まり液体中のオゾン濃度を高くすることができないのが
現状である。In the liquid purifying apparatus using ozone up to now, oxidative decomposition is carried out by directly injecting air containing ozone or the like into the target liquid to oxidize and decompose it. Since it has a low solubility, it is basically inefficient. In order to more effectively decompose and remove the organic dissolved substance in the liquid, it is necessary to increase the ozone concentration in the liquid or to lengthen the contact time between the liquid and ozone.
Most of the supplied ozone is exhausted without being absorbed by the liquid, so it is necessary to supply an excessively high concentration of ozone in order to raise the ozone concentration in the liquid, but high concentration ozone is highly toxic and exhausted. It is necessary to remove it from the inside. As described above, the present situation is that the ozone concentration in the liquid cannot be increased so much in terms of solubility and removal of ozone in the exhaust gas.
【0006】紫外線照射を用いた浄化装置も、紫外線ラ
ンプを石英硝子等の紫外線透過性の防水ケース内に設置
し、これを液体中に入れて直接照射する構造のものが用
いられている。液体中では紫外線の照射強度は急激に減
衰するので、紫外線ランプ近傍の液体にしか効果が十分
に及ばず反応に時間がかかるという欠点がある。これを
補う為にオゾンや塩素等の酸化剤を併用して処理を実施
することも行われているが、何れも液体中において実施
されているので液体による効果の低減は避けられない。
又液体が着色している場合にはさらに効果が低下し、又
防水ケース表面に液体中の汚れが付着して照射強度が低
下してしまうといった問題点がある。The purifying apparatus using ultraviolet irradiation also has a structure in which an ultraviolet lamp is installed in an ultraviolet permeable waterproof case such as quartz glass, and is put in a liquid for direct irradiation. In the liquid, the irradiation intensity of the ultraviolet rays is rapidly attenuated, so that the effect is sufficiently exerted only on the liquid in the vicinity of the ultraviolet lamp and the reaction takes a long time. In order to compensate for this, the treatment is also carried out by using an oxidizing agent such as ozone or chlorine, but since the treatment is carried out in a liquid, it is inevitable to reduce the effect by the liquid.
Further, if the liquid is colored, there is a problem that the effect is further lowered, and that dirt in the liquid adheres to the surface of the waterproof case to lower the irradiation intensity.
【0007】活性炭等の吸着剤による浄化方法は安全で
効果的であるが、処理液量に対応した吸着剤量が必要と
なり、これを用いた装置には大きな混合槽や充填塔等が
必要である。又吸着物質量が増加するにつれて吸着能力
が低下してしまうので、吸着剤の廃棄や交換が必要とな
り処理が連続的に実施できない問題点がある。吸着能力
の低下した吸着剤を再生処理することにより再度使用す
ることが可能となるが、そのための設備等が別個に必要
でありコストがかかる問題があった。[0007] Although the purification method using an adsorbent such as activated carbon is safe and effective, it requires an adsorbent amount corresponding to the treatment liquid amount, and an apparatus using this requires a large mixing tank or packed tower. is there. Further, as the amount of the adsorbed substance increases, the adsorbing ability decreases, so that there is a problem that the adsorbent needs to be discarded or replaced and the treatment cannot be continuously performed. It is possible to reuse the adsorbent whose adsorption capacity has been lowered by regenerating it, but there is a problem in that equipment and the like for it are required separately and the cost is high.
【0008】[0008]
【課題を解決しようとする手段】本発明者等は液体中の
有機溶存物質を酸化剤や紫外線照射による分解反応を利
用して除去する浄化装置と、活性炭等の吸着剤による吸
着除去方法を用いて除去する浄化装置の欠点を改善し
た、より効率的で安全な長期間に亙って安定した除去を
実施しうる液体浄化装置に関して鋭意検討を重ねた結
果、吸着剤による吸着除去と紫外線や、オゾン等による
分解反応を組み合わせた構成の装置を用いることによ
り、極めて効果的に液体中の有機溶存物質の除去が実施
しうることを見出だし本発明に至った。The present inventors have used a purifying device for removing organic dissolved substances in a liquid by utilizing a decomposition reaction by an oxidant or ultraviolet irradiation, and an adsorption removing method by an adsorbent such as activated carbon. As a result of repeated studies on a liquid purification device that improves the drawbacks of the purification device that can be removed by more efficient, safe and stable removal over a long period of time, adsorption removal by an adsorbent and ultraviolet rays, It has been found that the organic dissolved substance in the liquid can be removed extremely effectively by using an apparatus having a configuration in which decomposition reactions such as ozone are combined, and the present invention has been completed.
【0009】即ち本発明の液体浄化装置は、吸着剤を用
いてベルト状に成形した吸着部を、前記吸着部に液体を
浸漬させて前記液体中の溶存物質を前記吸着剤に吸着さ
せる前記液体の接触部と、前記接触部外に設けた前記吸
着剤に吸着させた前記溶存物質を分解する分解反応部、
に繰り返し連続的に通過させるようにし、さらに前記接
触部において、前記吸着部の一方の表面から他方の表面
に前記液体が通過するような前記液体の流れが形成され
るように構成して、上記液体の浄化処理を効果的に実施
しうるようにしたものである。That is, in the liquid purifying apparatus of the present invention, the adsorption part formed in the shape of a belt using an adsorbent is immersed in the adsorption part to adsorb the dissolved substance in the liquid onto the adsorbent. And a decomposition reaction part for decomposing the dissolved substance adsorbed by the adsorbent provided outside the contact part,
In the contact portion, a flow of the liquid such that the liquid passes from one surface of the adsorption portion to the other surface is formed, This is to enable effective purification of liquid.
【0010】[0010]
【作用】以下図に基づいて本発明の作用を詳細に説明す
る。図1は分解反応部に紫外線照射を用いた本発明の液
体浄化装置の一例を示した斜視図である。吸着剤を用い
てベルト状に成形した吸着部1は回転ドラム2、駆動ロ
ール3等に図に示したように設置され、これらは貯留槽
4、蓋体5により構成される容器6の内部に収容されて
いる。原液7は原液導入ライン8より導入されて貯留槽
4中に一次貯留された後、処理液出口9より処理液10
として流出する。この原液7の貯留された部分が液体と
の接触部11としての機能を果たす。接触部11の上部
に紫外線ランプ12が組み込まれた紫外線照射部13が
設置され、分解反応部14が構成されている。The operation of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing an example of the liquid purification apparatus of the present invention in which ultraviolet rays are applied to the decomposition reaction section. A belt-shaped suction unit 1 made of an adsorbent is installed on a rotary drum 2, a driving roll 3, etc. as shown in the figure, and these are placed inside a container 6 composed of a storage tank 4 and a lid 5. It is housed. The stock solution 7 is introduced from the stock solution introduction line 8 and is primarily stored in the storage tank 4, and then the process solution 10 is discharged from the process solution outlet 9.
As outflow. The stored portion of the undiluted solution 7 functions as the contact portion 11 with the liquid. An ultraviolet irradiation unit 13 incorporating an ultraviolet lamp 12 is installed above the contact unit 11, and a decomposition reaction unit 14 is configured.
【0011】回転ドラム2はその内部が中心部分から外
周部分に放射状に伸びた隔壁15により複数の小部屋に
分割されており、これらの小部屋の外周部分即ち、回転
ドラムの外周部分にはドラム外部への連通部が形成され
ている。これらの小部屋は、回転ドラム2の中心部分に
設置された回転バルブ16によって、丁度ベルト状の吸
着部1と回転ドラム2の外周部が接触して貯留槽4の原
液中を移動する間、各々が排出ライン17に連通するよ
うになっている。排出ライン17には排出ポンプ18が
設置されている。The inside of the rotary drum 2 is divided into a plurality of small chambers by a partition wall 15 extending radially from the central portion to the outer peripheral portion. The outer peripheral portion of these small chambers, that is, the outer peripheral portion of the rotary drum is a drum. A communication portion to the outside is formed. These small chambers are moved by the rotary valve 16 installed in the central portion of the rotary drum 2 while the belt-shaped adsorption unit 1 and the outer peripheral portion of the rotary drum 2 are in contact with each other while moving in the stock solution of the storage tank 4. Each communicates with the discharge line 17. A discharge pump 18 is installed in the discharge line 17.
【0012】原液の浄化は以下のように実施される。即
ち吸着部1は駆動ロール3及び回転ドラム2等の回転に
より、図の矢印の方向に移動し液体の接触部11に導入
されてこの中を通過する間に原液7中の有機溶存物質を
吸着する。接触部11より出た吸着部1は次いで分解反
応部14に導入され、設置されている紫外線ランプ12
により紫外線照射を受け、吸着した有機溶存物質が分解
除去される。吸着した有機溶存物質が除去された吸着部
1は再度接触部11に導入され、以下この動作が繰り返
し行われるのである。Purification of the stock solution is carried out as follows. That is, the adsorption unit 1 is moved by the rotation of the driving roll 3 and the rotary drum 2 in the direction of the arrow in the figure to be introduced into the liquid contact unit 11 and adsorbs the organic dissolved substance in the undiluted liquid 7 while passing therethrough. To do. The adsorption part 1 coming out of the contact part 11 is then introduced into the decomposition reaction part 14 and installed in the ultraviolet lamp 12.
As a result, it is irradiated with ultraviolet rays to decompose and remove the adsorbed organic dissolved substance. The adsorbing part 1 from which the adsorbed organic dissolved substance has been removed is again introduced into the contact part 11, and this operation is repeated thereafter.
【0013】接触部11において、吸着部1は丁度回転
ドラム2の外周部分に添って貯留された原液7中を移動
するが、このとき上述したように回転ドラムの内側の各
小部屋が排出ライン17と連通し、排出ラインに設置さ
れた排出ポンプにより内部が減圧されるので、原液7が
吸着部1を通過して回転ドラム2内の小部屋に移動す
る。小部屋に移動した原液7はさらに回転バルブ16、
排出ライン17を通り、排出ポンプ19により処理液出
口9より排出される。In the contact portion 11, the adsorption portion 1 moves in the stock solution 7 just stored along the outer peripheral portion of the rotary drum 2. At this time, as described above, the small chambers inside the rotary drum are discharged lines. Since the inside is decompressed by the discharge pump installed in the discharge line in communication with 17, the stock solution 7 passes through the adsorption section 1 and moves to the small chamber in the rotary drum 2. The undiluted solution 7 moved to the small room is further rotated by a rotary valve 16,
It passes through the discharge line 17 and is discharged from the processing liquid outlet 9 by the discharge pump 19.
【0014】このようにベルト状の吸着部1が接触部1
1と分解反応部14間を連続的に繰り返し移動し、且つ
接触部11においてこの吸着部1の一方の表面から他方
の表面に向かって通過する原液の流れが形成されている
ので、吸着部1の吸着剤に原液中の有機溶存物質が効果
的に接触して吸着が行われ、原液中の有機溶存物質を連
続的に安定して、長期間に亙って効率的に除去すること
が可能となるのである。As described above, the belt-shaped suction portion 1 is connected to the contact portion 1.
1 and the decomposition reaction section 14 are continuously and repeatedly moved, and at the contact section 11, a flow of the undiluted solution passing from one surface of the adsorption section 1 toward the other surface is formed. The organic dissolved substances in the stock solution are effectively contacted and adsorbed by the adsorbent, and the organic dissolved substances in the stock solution can be continuously stabilized and efficiently removed over a long period of time. It becomes.
【0015】図2は同様に分解反応部に紫外線照射を用
いた本発明の液体浄化装置の他の例を示した斜視図であ
る。ベルト状に成形された吸着部1は、貯留槽4、蓋体
5で構成される容器6中に設置された駆動ロール3等の
間に、図に示したように交互に渡された形で設置されて
いる。原液7は原液導入ライン8より吐出ノズル20直
下の吸着部1に噴出される形で容器6中に導入される。
導入された原液7は左右に渡された数段の吸着部1に順
に接触しつつ落下し、貯留槽4の下部に一次貯流された
後、処理液出口9より処理液10として流出する。吐出
ノズル20以下の部分が吸着部1の液体との接触部11
としての機能を果たす。接触部11の上部に紫外線ラン
プ12が組込まれた紫外線照射部13が設置され、分解
反応部14が構成されている。FIG. 2 is a perspective view showing another example of the liquid purifying apparatus of the present invention in which the decomposition reaction section is similarly irradiated with ultraviolet rays. The belt-shaped suction unit 1 is alternately passed between the drive rolls 3 and the like installed in a container 6 composed of a storage tank 4 and a lid 5 as shown in the figure. is set up. The stock solution 7 is introduced into the container 6 in a form of being jetted from the stock solution introduction line 8 to the adsorption section 1 just below the discharge nozzle 20.
The introduced undiluted solution 7 drops while coming into contact with the adsorbing sections 1 of several stages passed to the left and right in order, is primarily stored in the lower part of the storage tank 4, and then flows out as a processing solution 10 from a processing solution outlet 9. The portion below the discharge nozzle 20 is the contact portion 11 with the liquid of the adsorption portion 1
Function as. An ultraviolet irradiation unit 13 incorporating an ultraviolet lamp 12 is installed above the contact unit 11, and a decomposition reaction unit 14 is configured.
【0016】吸着部1は駆動ロール3により図の矢印の
方向に連続的に移動し、吐出ノズル20直下で原液7と
の接触が行われ、原液中に含まれる有機溶存物質の吸着
が行われる。このとき、重力により吸着部1の上面に吐
出された原液は吸着部1を通過して下段の吸着部に流下
する。このように吸着部の表面のみに原液が接触するだ
けでなく、吸着部の一方の表面から他方の表面に通過す
るような原液の流れが形成されているので吸着部1の吸
着剤に原液中の有機溶存物質が効果的に接触して吸着が
行われるのである。さらに吸着部1はその後下段に移動
し、ここで再度上部の吸着部1を通過してきた原液と接
触し、これが繰り返されて効果的な吸着除去が実施され
る。接触部下段に到達した吸着部1は次いで上部の分解
反応部14に導入され紫外線照射を受けて吸着した有機
溶存物質が分解除去される。吸着した有機溶存物質が除
去された吸着部1は再度接触部11に導入され、以下同
様にして繰り返し原液中の有機溶存物質の除去が連続し
て行われる。The adsorption part 1 is continuously moved in the direction of the arrow in the figure by the drive roll 3, and is brought into contact with the stock solution 7 directly below the discharge nozzle 20 to adsorb the organic dissolved substance contained in the stock solution. .. At this time, the undiluted solution discharged onto the upper surface of the adsorption unit 1 by gravity passes through the adsorption unit 1 and flows down to the lower adsorption unit. In this way, not only the undiluted solution comes into contact with the surface of the adsorption section, but also a flow of the undiluted solution that passes from one surface of the adsorption section to the other surface is formed. The organic dissolved substances are effectively contacted and adsorbed. Further, the adsorbing section 1 moves to the lower stage thereafter, and again contacts the stock solution that has passed through the upper adsorbing section 1, and this is repeated to effectively adsorb and remove. The adsorbing part 1 that has reached the lower part of the contact part is then introduced into the upper decomposition reaction part 14 and is irradiated with ultraviolet rays to decompose and remove the adsorbed organic dissolved substance. The adsorbing part 1 from which the adsorbed organic dissolved substance is removed is again introduced into the contact part 11, and thereafter, the organic dissolved substance in the stock solution is repeatedly removed in the same manner.
【0017】上述した二つの例では吸着部に吸着した有
機溶存物質の分解除去に紫外線照射を用いたが、紫外線
照射部13の代わりにオゾン供給部を設置して、オゾン
濃度を高めた空気を供給することにより、同様な効果を
得ることができる。In the above-mentioned two examples, ultraviolet irradiation was used for decomposing and removing the organic dissolved substances adsorbed in the adsorbing section. However, instead of the ultraviolet irradiating section 13, an ozone supplying section is installed so that the air having an increased ozone concentration is supplied. By supplying the same, the same effect can be obtained.
【0018】前述したようにこれまでの液体浄化装置で
は、液体中に直接オゾン等の酸化剤を注入したり紫外線
を照射しているので、酸化剤の液体に対する溶解度や液
体その物の影響による分解効果の低減は避けられない問
題であった。本発明の浄化装置では液体中に直接紫外線
を照射したりオゾンを注入するのではなく、一度液体中
の除去したい有機溶存物質を接触部において吸着剤に吸
着させ、これを接触部外に取り出して空中で直接オゾン
を作用させたり、紫外線を照射して分解反応を生じさせ
るのである。よって液体中で見られた分解反応の効率の
低下の問題が解決される。又吸着剤に液体中の有機溶存
物質を吸着させる一方で吸着した有機溶存物質を分解除
去し、この操作を連続的に繰り返し実施するので吸着剤
の吸着能力が維持され、長期間に亙って連続して安定し
た除去が実施できるのである。As described above, in the conventional liquid purifying apparatus, since the oxidizing agent such as ozone is directly injected into the liquid or the ultraviolet ray is irradiated, the solubility of the oxidizing agent in the liquid and the decomposition due to the influence of the liquid itself are decomposed. The reduction of the effect was an unavoidable problem. In the purifying apparatus of the present invention, instead of directly irradiating the liquid with ultraviolet rays or injecting ozone, once the organic dissolved substance to be removed in the liquid is adsorbed to the adsorbent at the contact portion, and taken out of the contact portion. Ozone is directly acted on in the air, or ultraviolet rays are irradiated to cause a decomposition reaction. Therefore, the problem of reduction in the efficiency of the decomposition reaction found in liquid is solved. Also, while adsorbing the organic dissolved substance in the liquid to the adsorbent, the adsorbed organic dissolved substance is decomposed and removed, and since this operation is continuously repeated, the adsorption capacity of the adsorbent is maintained, and for a long period of time. It is possible to carry out continuous and stable removal.
【0019】分解反応部における分解反応をさらに効果
的に実施するには、吸着部の吸着剤表面に紫外線やオゾ
ン等が直接が作用するようにすることが望ましい。よっ
て接触部11を通過した後、ベルト状の吸着部1を液体
の脱液機構、例えばロール状の絞り機構や、エアーを吹
き付けて付着している液体を吹き飛ばす機構等、に通過
させて付着した液体をできる限り除去することが好まし
い。In order to carry out the decomposition reaction in the decomposition reaction section more effectively, it is desirable that the surface of the adsorbent in the adsorption section is directly exposed to ultraviolet rays or ozone. Therefore, after passing through the contact portion 11, the belt-shaped suction portion 1 is passed and attached to a liquid removing mechanism such as a roll-shaped squeezing mechanism or a mechanism that blows air to blow away the attached liquid. It is preferable to remove as much liquid as possible.
【0020】吸着剤にはその浄化目的に応じて種々の原
理、機能を有するものが使用できる。例えば各種天然鉱
物やセラミックス、活性炭等が用いうるが、特に吸着能
力やコストの点から活性炭が好ましい。又これらの吸着
剤の形状としては、粒状や繊維状等種々の形状のものが
利用できるが、特に単位重量当たりの吸着剤の表面積が
大きい繊維状の物が好適である。尚液体中の特定の物質
を選択的に吸着する性質を有する吸着剤を用いれば、液
体中より特定の物質を連続的に除去することも可能とな
る。As the adsorbent, those having various principles and functions can be used depending on the purpose of purification. For example, various natural minerals, ceramics, activated carbon and the like can be used, but activated carbon is particularly preferable in terms of adsorption capacity and cost. As the shape of these adsorbents, various shapes such as granular shape and fibrous shape can be used, but in particular, fibrous shape having a large surface area of the adsorbent per unit weight is preferable. By using an adsorbent having a property of selectively adsorbing a specific substance in the liquid, it becomes possible to continuously remove the specific substance from the liquid.
【0021】吸着剤を用いたベルト状の吸着部は液体中
の有機溶存物質の吸着、及びそれを効果的に実施するた
めの液体の通過を容易に実施でき、且つ空中でのオゾン
等による酸化分解反応を効率的に実施するために多孔質
であることが望ましい。又紫外線照射による分解反応を
効果的に実施するためには、吸着部の実質的な表面積
(紫外線の照射面積)がより大きく得られるような形状
のものが好ましい。A belt-shaped adsorption section using an adsorbent can easily adsorb an organic dissolved substance in a liquid and pass the liquid to effectively carry it out, and can be oxidized by ozone in the air. It is desirable to be porous in order to efficiently carry out the decomposition reaction. Further, in order to effectively carry out the decomposition reaction by ultraviolet irradiation, it is preferable that the adsorption part has a shape such that the substantial surface area (ultraviolet irradiation area) can be obtained.
【0022】ベルト状に成形した吸着部は、例えば繊維
状の活性炭をシート状に加工した物や、粒状の活性炭を
不織布等に絡めてシート状に加工したものをメッシュ状
のベルトで挟んで構成したり、メッシュを扁平な袋状や
箱状の容器に成形してその中に粒状の活性炭を詰めたも
のを多数連結して構成することができる。その他繊維状
の吸着剤を紡糸して、束ねたり織ったりして布状にした
もの等種々の構成のものが用いうる。何れの場合でも駆
動ロール等による駆動力に対してベルト形状が維持しう
る強度を有するように構成されていれば良い。The belt-shaped adsorption portion is formed by sandwiching, for example, a fibrous activated carbon processed into a sheet shape or a granular activated carbon entangled in a nonwoven fabric and processed into a sheet shape with mesh belts. Alternatively, the mesh can be formed into a flat bag-shaped or box-shaped container, and a large number of particles filled with granular activated carbon can be connected and configured. In addition, a fibrous adsorbent may be spun, and may be bundled or woven into a cloth to have various structures. In any case, it is sufficient that the belt shape is strong enough to maintain the driving force of the driving roll or the like.
【0023】又ベルト状の吸着部の駆動機構としては、
ロール状のものが好適に用いられるが、チェーン状の支
持機構をベルト状に成形した吸着部の両端に設けてこれ
を鎖歯車で駆動するようにしても良く、その他種々の駆
動方法を用いることができる。何れの駆動方法の場合も
吸着部を安定して移動させることができれば良い。Further, as a driving mechanism for the belt-shaped suction section,
A roll-shaped support is preferably used, but a chain-shaped support mechanism may be provided at both ends of the belt-shaped suction part and driven by chain gears, or other various drive methods may be used. You can In any of the driving methods, it is sufficient that the suction portion can be moved stably.
【0024】オゾンを分解に用いる場合に、例えば図1
に示した装置においては分解反応部14にオゾンを供給
する以外にオゾンを接触部11の液体中に注入すること
を合わせて実施することも酸化分解効果をより高められ
る点から好ましいことである。この場合はオゾン濃度を
高めた空気を直接液体中に注入したり、分解反応部14
と接触部11の間に分解反応部の空気を循環させる機構
を設けて循環させるようにして実施することができる。When ozone is used for decomposition, for example, as shown in FIG.
In the apparatus shown in (1), it is also preferable to inject ozone into the liquid of the contact portion 11 in addition to supplying ozone to the decomposition reaction portion 14 in order to further enhance the oxidative decomposition effect. In this case, air having an increased ozone concentration may be directly injected into the liquid, or the decomposition reaction unit 14
It can be carried out by providing a mechanism for circulating the air of the decomposition reaction portion between the contact portion 11 and the contact portion 11 so as to circulate the air.
【0025】又同様に図2の例においてオゾンを用いる
場合では、分解反応部14にオゾン濃度を高めた空気を
導入する以外に、原液導入ライン8の一部にもこの空気
を混合することを合わせて実施することも好ましい。こ
うすることによって酸化分解効果をより高めることが可
能となる。Similarly, in the case of using ozone in the example of FIG. 2, in addition to introducing air having an increased ozone concentration into the decomposition reaction section 14, mixing this air into a part of the stock solution introducing line 8 is also recommended. It is also preferable to carry out together. By doing so, it becomes possible to further enhance the oxidative decomposition effect.
【0026】又紫外線照射、オゾン処理を同時に作用さ
せて分解反応を実施することは、各々の分解能力が相乗
効果を発揮してより高い効果を得ることが可能となるの
で、望ましいことである。Further, it is desirable that the decomposition reaction is carried out by simultaneously acting the ultraviolet irradiation and the ozone treatment, because the respective decomposition capacities exert a synergistic effect and a higher effect can be obtained.
【0027】紫外線照射には種々の紫外線の波長を放出
する紫外線ランプが使用し得るが、特に有機物の分解に
高い効果のある波長253.7nmの紫外線と、空気中
の酸素をオゾンに変化させる波長184.9nmの波長
の紫外線を効率良く照射するものが好適に用い得る。上
記二つの波長の紫外線を同時に効率的に照射する紫外線
ランプとしては低圧水銀ランプがあるが、これを用いた
場合には紫外線の照射と同時にオゾンの生成が行われる
ので、特にオゾンの発生装置等を設置しなくても紫外線
照射とオゾンによる分解の相乗効果が得られる利点があ
る。An ultraviolet lamp which emits various wavelengths of ultraviolet rays can be used for the irradiation of ultraviolet rays, and particularly, ultraviolet rays having a wavelength of 253.7 nm, which is highly effective in decomposing organic substances, and a wavelength which changes oxygen in the air into ozone. Those that efficiently irradiate with ultraviolet rays having a wavelength of 184.9 nm can be suitably used. There is a low-pressure mercury lamp as an ultraviolet lamp that efficiently irradiates ultraviolet rays of the above two wavelengths at the same time, but when this is used, ozone is generated at the same time as the irradiation of ultraviolet rays. There is an advantage that a synergistic effect of ultraviolet irradiation and decomposition by ozone can be obtained without installing.
【0028】[0028]
実施例1 フェルト状に加工した繊維状活性炭(大阪ガス社製、A
−15)をステンレスメッシュで挟んで巾30cm長さ
1mのベルト状に成形し、これを吸着部として用いて図
1に示した構成の液体浄化装置を作製した。紫外線ラン
プには日本電池社製メタルハライドランプ(MB−75
N)を用いた。Example 1 Fibrous activated carbon processed into a felt shape (Osaka Gas Co., A
-15) was sandwiched between stainless steel meshes to form a belt having a width of 30 cm and a length of 1 m, and this was used as an adsorption part to produce a liquid purification device having the configuration shown in FIG. For the ultraviolet lamp, a metal halide lamp (MB-75 manufactured by Nihon Battery Co., Ltd.)
N) was used.
【0029】原液には庶糖を主成分として有機農薬、洗
剤等の各種の有機物質を混合した水道水を用いた(CO
D20ppm)。この原液を毎分100mlで装置に供
給して浄化処理を行い、装置より流出してきた処理液の
CODを測定した。尚CODの測定は100℃における
過マンガン酸カリウム消費量により行った。処理開始時
の処理液のCODは約3.5ppm(除去率約82
%)、積算処理量3000リットルの時点では約5.5
ppm(除去率約72%)であった。以後5000リッ
トルまで処理を継続したがほぼ同様な浄化効果が維持さ
れていた。As the stock solution, tap water containing sucrose as a main component and various organic substances such as organic pesticides and detergents was used (CO
D20 ppm). This stock solution was supplied to the device at 100 ml / min for purification treatment, and the COD of the treated liquid flowing out from the device was measured. The COD was measured by the consumption amount of potassium permanganate at 100 ° C. The COD of the treatment liquid at the start of treatment is about 3.5 ppm (removal rate about 82
%), And about 5.5 liters at the time of cumulative processing amount of 3000 liters.
It was ppm (removal rate about 72%). After that, the treatment was continued up to 5000 liters, but almost the same purification effect was maintained.
【0030】実施例2 実施例1において使用した液体浄化装置より紫外線ラン
プを外し、代わりにオゾン供給部を分解反応部に設置し
た浄化装置を作製した。実施例1と同様な原液を用いオ
ゾン濃度15mg/リットルの空気を装置に供給して浄
化処理を実施した(供給量毎分3リットル)。原液の供
給量は実施例1と同様に毎分100mlとした。処理開
始時の処理液のCODは約3ppm(除去率約85
%)、積算処理量3000リットルの時点では約4.5
ppm(除去率約77%)であった。以後5000リッ
トルまで処理を継続したがほぼ同様な浄化効果が維持さ
れていた。Example 2 A purification apparatus was produced in which the ultraviolet lamp was removed from the liquid purification apparatus used in Example 1 and instead the ozone supply section was installed in the decomposition reaction section. Using the same stock solution as in Example 1, air having an ozone concentration of 15 mg / liter was supplied to the apparatus for purification treatment (supplied amount: 3 liters per minute). The supply amount of the stock solution was 100 ml / min as in Example 1. The COD of the treatment liquid at the start of treatment is about 3 ppm (removal rate about 85
%), And about 4.5 liters at the time of cumulative processing volume of 3000 liters.
It was ppm (removal rate about 77%). After that, the treatment was continued up to 5000 liters, but almost the same purification effect was maintained.
【0031】実施例3 実施例2において使用した液体浄化装置にエアーノズル
を設置し、接触部11を通過後の吸着部1にエアーを吹
き付けて、付着した原液を除去するようにした装置を作
製し、実施例2と同様な条件で浄化処理を実施した。処
理開始時の処理液のCODは約2.5ppm(除去率約
87%)、積算処理量3000リットルの時点では約4
ppm(除去率約80%)であった。以後5000リッ
トルまで処理を継続したがほぼ同様な浄化効果が維持さ
れていた。Example 3 An apparatus was prepared in which an air nozzle was installed in the liquid purification apparatus used in Example 2 and air was blown to the adsorption section 1 after passing through the contact section 11 to remove the adhering stock solution. Then, the purification treatment was performed under the same conditions as in Example 2. The COD of the treatment liquid at the start of treatment is about 2.5 ppm (removal rate about 87%), and about 4 when the cumulative treatment amount is 3000 liters.
It was ppm (removal rate about 80%). After that, the treatment was continued up to 5000 liters, but almost the same purification effect was maintained.
【0032】実施例4 実施例1で使用した装置の分解反応部にさらにオゾン供
給部を設置した装置を作製し、紫外線照射とオゾンを同
時に用いて処理を実施した。実施例1と同様な原液を毎
分100ml供給して処理を実施した。オゾンの供給は
実施例2と同様な条件で行った。処理開始時の処理液の
CODは約2.5ppm(除去率約87%)、積算処理
量3000リットルの時点では約3.5ppm(除去率
約82%)と高い浄化効果が得られた。以後5000リ
ットルまで処理を継続したがほぼ同様な浄化効果が維持
されていた。Example 4 An apparatus was further prepared in which an ozone supply section was installed in the decomposition reaction section of the apparatus used in Example 1, and the treatment was carried out by simultaneously using ultraviolet irradiation and ozone. The same stock solution as in Example 1 was supplied at 100 ml / min for treatment. Ozone was supplied under the same conditions as in Example 2. The COD of the treatment liquid at the start of the treatment was about 2.5 ppm (removal rate about 87%), and when the cumulative treatment amount was 3000 liters, it was about 3.5 ppm (removal rate about 82%), which was a high purification effect. After that, the treatment was continued up to 5000 liters, but almost the same purification effect was maintained.
【0033】比較例1 実施例1に使用した装置の排出ライン17を閉鎖して回
転ドラム2部分での吸着部1を通過する原液の流れが形
成されないようにし、貯留槽4の一部に処理液出口を設
けて処理液が流出するように構成した装置を作製し、実
施例1と同様な条件で原液の処理を実施した。処理開始
時の処理液のCODは約5ppm(除去率約75%)、
積算処理量3000リットルの時点では約7ppm(除
去率約65%)であった。以後5000リットルまで処
理を継続し、この時点でもほぼ同様な浄化効果が維持さ
れていたが、実施例1に対してやや浄化効果が低い結果
であった。Comparative Example 1 The discharge line 17 of the apparatus used in Example 1 was closed so as to prevent the flow of the stock solution from passing through the adsorbing section 1 in the rotary drum 2 section to be formed, and a part of the storage tank 4 was treated. An apparatus having a liquid outlet so that the treatment liquid flows out was produced, and the raw liquid was treated under the same conditions as in Example 1. COD of the treatment liquid at the start of treatment is about 5 ppm (removal rate about 75%),
It was about 7 ppm (removal rate of about 65%) at the time of the integrated treatment amount of 3000 liters. After that, the treatment was continued up to 5000 liters, and the purification effect was almost the same at this time, but the purification effect was slightly lower than that of Example 1.
【0034】比較例2 図3に示した構造のオゾン処理を用いた液体浄化装置を
作製し、実施例と同様な原液を用いて浄化処理を行っ
た。空気21をオゾン発生機22に導入して実施例2の
場合と同様にオゾン濃度15mg/リットルの空気を作
成し、これを原液7を導入した貯留槽4の底部に設置し
たオゾン供給部23より原液中に注入した(注入量毎分
3リットル)。原液供給量は毎分100mlとし、装置
より流出してきた処理液10のCODを測定した。実施
例と同様に積算量5000リットルまで処理を実施し
た。処理開始時及び5000リットル処理時、装置から
流出してきた処理液のCODに差はなく、約9ppm
(除去率約55%)が維持されていたが、実施例に比較
して浄化効果が低かった。Comparative Example 2 A liquid purifying apparatus using the ozone treatment having the structure shown in FIG. 3 was produced, and the purifying treatment was performed using the same stock solution as in the example. Air 21 is introduced into the ozone generator 22 to create air having an ozone concentration of 15 mg / liter as in the case of Example 2, and this is supplied from the ozone supply unit 23 installed at the bottom of the storage tank 4 into which the stock solution 7 is introduced. It was injected into the stock solution (injection volume 3 liters per minute). The stock solution was supplied at a rate of 100 ml / min, and the COD of the processing solution 10 flowing out from the apparatus was measured. The treatment was carried out up to an integrated amount of 5000 liters as in the example. There is no difference in the COD of the processing liquid flowing out from the equipment at the start of processing and at the time of processing 5000 liters, approximately 9 ppm
(Removal rate: about 55%) was maintained, but the purification effect was low compared to the examples.
【0035】比較例3 図3に示した液体浄化装置の貯留槽中に実施例1に用い
たものと同様な活性炭を充填してここに原液を導入し、
さらにオゾンを注入して浄化処理を実施した。オゾンの
注入量等の処理条件は比較例2と同様に行った。処理開
始直後の処理液のCOD濃度は約2ppm(除去率約9
0%)と高い効果が得られていた。これは活性炭による
吸着とオゾンによる酸化分解の相乗効果によるものと推
定されたが、3000リットル処理時には約7ppm、
以後オゾンのみを用いた比較例2とほぼ同様なCOD値
となり(5000リットル処理時約9ppm、除去率約
55%)、活性炭を用いることの効果が見られなくなっ
た。Comparative Example 3 A storage tank of the liquid purifying apparatus shown in FIG. 3 was filled with activated carbon similar to that used in Example 1 and the stock solution was introduced thereinto,
Further, ozone was injected to carry out purification treatment. The processing conditions such as the injection amount of ozone were the same as those in Comparative Example 2. The COD concentration of the treatment liquid immediately after the start of treatment is about 2 ppm (removal rate about 9
0%) and a high effect was obtained. It was estimated that this was due to the synergistic effect of adsorption by activated carbon and oxidative decomposition by ozone, but when treated with 3000 liters, about 7 ppm,
After that, the COD value was almost the same as that of Comparative Example 2 using only ozone (about 9 ppm when treated with 5000 liters, removal rate about 55%), and the effect of using activated carbon was not seen.
【0036】本比較例により液体中で活性炭とオゾンを
併用して処理を行った時、処理開始初期は単独で用いる
よりは優れた除去効果を得ることが可能であるが、その
相乗効果はしだいに低下してしまうことが判った。液体
との接触部に活性炭を設置し、そこにオゾンを供給して
活性炭に吸着した有機溶存物質を分解除去しようとして
もその効果は十分に得られず、液体との接触部外で分解
反応を実施させる本発明がより優れた効果を有している
ことがわかる。According to this comparative example, when the treatment is carried out by using the activated carbon and ozone together in the liquid, it is possible to obtain a superior removing effect at the initial stage of the treatment as compared with the case of using the treatment alone, but the synergistic effect thereof depends on it. It turns out that it will fall to. Even if activated carbon is installed in the contact area with the liquid and ozone is supplied there to decompose and remove the organic dissolved substances adsorbed on the activated carbon, the effect is not sufficiently obtained and the decomposition reaction occurs outside the contact area with the liquid. It can be seen that the present invention to be carried out has more excellent effects.
【0037】以上本発明の液体浄化装置について吸着剤
として活性炭、又吸着剤に吸着された液体中の有機溶存
物質の分解に、紫外線照射及びオゾン処理を用いた例を
もとに説明してきたが、上記例以外の構成のものについ
てもその要旨を逸脱しない範囲で種々の応用例を採用す
ることができる。The liquid purification apparatus of the present invention has been described above based on an example in which ultraviolet irradiation and ozone treatment are used to decompose activated carbon as an adsorbent and organic dissolved substances in the liquid adsorbed by the adsorbent. With respect to configurations other than the above examples, various application examples can be adopted without departing from the scope of the invention.
【0038】[0038]
【発明の効果】以上説明した様に、本発明の液体浄化装
置を用いることにより、液体中の有機溶存物質の安全で
安定した除去を連続的に長期間に亙って行うことが可能
となる。これによって家庭排水や農薬散布等を始めとす
る種々の要因によって汚染された河川水や湖沼、地下水
等の水系の浄化を効果的に実施することが可能となる。
又各種排水を本発明の浄化装置で処理することにより、
水質汚染の防止を効果的に実施することが可能となる。As described above, by using the liquid purification apparatus of the present invention, it becomes possible to safely and stably remove the organic dissolved substance in the liquid continuously over a long period of time. .. As a result, it becomes possible to effectively carry out purification of water systems such as river water, lakes and marshes, groundwater, etc. which are contaminated by various factors such as domestic drainage and pesticide spraying.
In addition, by treating various wastewater with the purification device of the present invention,
It becomes possible to effectively prevent water pollution.
【図1】本発明を用いた液体浄化装置の一例を示した斜
視図である。FIG. 1 is a perspective view showing an example of a liquid purification device using the present invention.
【図2】本発明を用いた液体浄化装置の他の例を示した
斜視図である。FIG. 2 is a perspective view showing another example of the liquid purification apparatus using the present invention.
【図3】比較例2の液体浄化装置を示した模式図であ
る。FIG. 3 is a schematic diagram showing a liquid purification apparatus of Comparative Example 2.
1 吸着部 2 回転ドラム 3 起動ロール 4 貯留槽 5 蓋体 6 容器 7 原液 8 原液導入ライン 9 処理液出口 10 処理液 11 接触部 12 紫外線ランプ 13 紫外線照射部 14 分解反応部 15 隔壁 16 回転バルブ 17 排出ライン 18 排出ポンプ 20 吐出ノズル 21 空気 22 オゾン発生機 23 オゾン供給部 1 Adsorption Part 2 Rotating Drum 3 Starting Roll 4 Storage Tank 5 Lid 6 Container 7 Undiluted Solution 8 Undiluted Solution Introducing Line 9 Processing Solution Outlet 10 Processing Solution 11 Contact Section 12 Ultraviolet Lamp 13 Ultraviolet Irradiation Section 14 Decomposition Reaction Section 15 Partition 16 Rotating Valve 17 Discharge line 18 Discharge pump 20 Discharge nozzle 21 Air 22 Ozone generator 23 Ozone supply section
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 Z 8515−4D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C02F 9/00 Z 8515-4D
Claims (3)
部を、前記吸着部に液体を浸漬させて前記液体中の溶存
物質を前記吸着剤に吸着させる前記液体の接触部と、前
記接触部外に設けた前記吸着剤に吸着させた前記溶存物
質を分解する分解反応部に、繰り返し連続的に通過させ
るように構成した液体浄化装置であって、前記接触部に
おいて、前記吸着部の一方の表面から他方の表面に前記
液体が通過するような前記液体の流れが形成されている
ことを特徴とする液体浄化装置。1. A contact portion of the liquid, which adsorbs a dissolved substance in the liquid to the adsorbent by immersing a liquid in the adsorbent, the adsorbing portion formed in a belt shape using the adsorbent, and the contact. A liquid purification apparatus configured to repeatedly and continuously pass through a decomposition reaction section for decomposing the dissolved substance adsorbed by the adsorbent provided outside the adsorbent, wherein one of the adsorption sections is provided in the contact section. The liquid purifying apparatus is characterized in that a flow of the liquid is formed such that the liquid passes from the surface of the liquid to the other surface of the liquid.
外線照射部あるいはこの両者が設けられていることを特
徴とする請求項1記載の液体浄化方法。2. The liquid purification method according to claim 1, wherein the decomposition reaction section is provided with an ozone supply section, an ultraviolet irradiation section, or both.
前記吸着部の脱液機構を通過することを特徴とする請求
項1又は請求項2記載の液体浄化装置。3. The liquid purifying apparatus according to claim 1, wherein the adsorption unit passes through the liquid removal mechanism of the adsorption unit after passing through the contact unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4130060A JPH05301004A (en) | 1992-04-23 | 1992-04-23 | Liquid purifying device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4130060A JPH05301004A (en) | 1992-04-23 | 1992-04-23 | Liquid purifying device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05301004A true JPH05301004A (en) | 1993-11-16 |
Family
ID=15025067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4130060A Pending JPH05301004A (en) | 1992-04-23 | 1992-04-23 | Liquid purifying device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05301004A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2424877A (en) * | 2005-04-08 | 2006-10-11 | Malcolm Robert Snowball | Fluid disinfection with UV light |
WO2008090992A1 (en) * | 2007-01-26 | 2008-07-31 | Osaka Prefecture University Public Corporation | Apparatus for separating adsorbate and method of continuously separating adsorbate |
-
1992
- 1992-04-23 JP JP4130060A patent/JPH05301004A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2424877A (en) * | 2005-04-08 | 2006-10-11 | Malcolm Robert Snowball | Fluid disinfection with UV light |
WO2008090992A1 (en) * | 2007-01-26 | 2008-07-31 | Osaka Prefecture University Public Corporation | Apparatus for separating adsorbate and method of continuously separating adsorbate |
JPWO2008090992A1 (en) * | 2007-01-26 | 2010-05-20 | 公立大学法人大阪府立大学 | Adsorbent separation apparatus and continuous separation method of adsorbate |
US8404120B2 (en) | 2007-01-26 | 2013-03-26 | Osaka Prefecture University | Method of continuously separating adsorbate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4298467A (en) | Water treatment system | |
US6462250B1 (en) | Method for decomposing halogenated aliphatic hydrocarbon compounds having adsorption process and apparatus for decomposition having adsorption means | |
JP3440313B2 (en) | Method and apparatus for treating contaminated water | |
CA2350697C (en) | Apparatus for treating gas containing substance to be decomposed and method of treating its gas | |
JP2003190976A (en) | Apparatus and method for treating wastewater | |
CN107585970A (en) | The technique of hardly degraded organic substance advanced treating in a kind of Industrial reverse osmosis concentrated water | |
KR20090107468A (en) | A treatment apparatus of bankfiltered water by use of oxidation basin and bio activated carbon filter | |
EP1310274A1 (en) | Method of treating substance to be degraded and its apparatus | |
JPH05301004A (en) | Liquid purifying device | |
KR20010044325A (en) | A waste water treatment apparatus by the advanced oxidation processing method | |
JPH09155160A (en) | Apparatus for decomposing and removing volatile organic compound and method therefor | |
KR100461493B1 (en) | Water processing apparatus unifying ozone reactor and filtration equipment and the method for water purification thereby | |
JP2004081907A (en) | Method and apparatus for treating organic exhaust gas | |
JPH05301003A (en) | Method for pupifying liquid and device therefor | |
US20020144941A1 (en) | Photooxidation water treatment device | |
JPH09262429A (en) | Desulfurizer for sulfide containing gas | |
JPH0663571A (en) | Ozone-bioactive carbon treatment device | |
JPH0671273A (en) | Ozone contact tank in advance purifying water system | |
JP2554560B2 (en) | Method and apparatus for biological regeneration of activated carbon | |
JP2002096079A (en) | Method for processing waste water, method for regenerating adsorbent and waste water processing facility | |
JP2002273154A (en) | Deodorization device | |
JPH07260997A (en) | Method and device for treating radioactive waste liquid containing organic matter | |
JP2923494B1 (en) | Treatment method for dioxin-containing wastewater | |
JPH1085550A (en) | Digestive gas treating device and digestive gas treatment | |
CA1162664A (en) | Water treatment system |