JP2003190976A - Apparatus and method for treating wastewater - Google Patents

Apparatus and method for treating wastewater

Info

Publication number
JP2003190976A
JP2003190976A JP2001396482A JP2001396482A JP2003190976A JP 2003190976 A JP2003190976 A JP 2003190976A JP 2001396482 A JP2001396482 A JP 2001396482A JP 2001396482 A JP2001396482 A JP 2001396482A JP 2003190976 A JP2003190976 A JP 2003190976A
Authority
JP
Japan
Prior art keywords
wastewater
ozone
dispersing
gas containing
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001396482A
Other languages
Japanese (ja)
Other versions
JP2003190976A5 (en
Inventor
Kentaro Takagi
健太朗 高木
Shinichi Minegishi
進一 峯岸
Masahiro Henmi
昌弘 辺見
Takao Sasaki
崇夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001396482A priority Critical patent/JP2003190976A/en
Publication of JP2003190976A publication Critical patent/JP2003190976A/en
Publication of JP2003190976A5 publication Critical patent/JP2003190976A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for treating wastewater capable of enhancing contact efficiency of wastewater and ozonated air and realizing a shortening of a retention time of wastewater in a reaction tank and reducing dioxins in treated water by an accelerated oxidation treatment combining O<SB>3</SB>/ oxidating agent/metal element. <P>SOLUTION: The apparatus for treating wastewater is provided with a means for adding an oxidating agent to wastewater and a means for dispersing the wastewater to a gas containing ozone. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、廃水中に含まれる
有害物質、特にダイオキシンなどの難分解性物質を効率
的に分解する廃水処理装置および方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment apparatus and method for efficiently decomposing harmful substances contained in wastewater, particularly difficult-to-decompose substances such as dioxins.

【0002】[0002]

【従来の技術】わが国では近年、強い酸化力を持つオゾ
ンを利用した水処理の研究や開発が注目されるようにな
った。オゾンを廃水処理に利用する主な目的としては、
1.臭気の除去、2.色度の除去、3.有機物の除去、
4.鉄・マンガン等の除去、5.フェノールの除去、
6.ABS等のクロロホルム抽出可能な物質の大幅な減
少、7.病原性細菌の殺菌およびウイルスの不活性化等
が挙げられる。しかしオゾン処理による水質改善の優れ
た効果を認めながらも、積極的な導入計画は停滞気味
で、その理由として消費電力の大きいことや、運転管理
の難しさなどが挙げられていた。
2. Description of the Related Art In recent years, research and development of water treatment using ozone, which has a strong oxidizing power, has been attracting attention in Japan. The main purposes of using ozone for wastewater treatment are:
1. Removal of odor, 2. Removal of chromaticity, 3. Removal of organics,
4. Removal of iron, manganese, etc., 5. Removal of phenol,
6. Substantial reduction of chloroform extractable substances such as ABS, 7. Examples include sterilization of pathogenic bacteria and inactivation of viruses. However, while recognizing the excellent effect of improving the water quality by ozone treatment, the aggressive introduction plan was stagnant, and the reasons for this were high power consumption and difficulty in operation management.

【0003】従来のオゾンによる廃水処理方法は、反応
槽内の水中にオゾン化空気を多くの細かい気泡として散
気し、廃水とオゾン化空気の接触を図るものである。し
かしオゾンは水への溶解度が低いため極めて水に溶解し
にくいうえ、水中に気泡として散気するだけでは気泡の
表面積が小さいことから、気液の接触面積も小さくな
り、従ってオゾンの利用効率が低い等の問題があった。
A conventional wastewater treatment method using ozone is to diffuse the ozonized air into the water in the reaction tank as many fine bubbles to bring the wastewater into contact with the ozonized air. However, since ozone has a low solubility in water, it is extremely difficult to dissolve in water, and since the surface area of bubbles is small if they are diffused as bubbles in water, the contact area of gas-liquid also becomes small, and therefore the utilization efficiency of ozone is reduced. There was a problem such as low.

【0004】より効果的に廃水中の有機物質を分解する
ために、O3/UV処理、O3/H22処理、O3/UV
/H22処理のようなオゾン処理とその他の方法の組み
合わせによる促進酸化処理技術も開発されてきている
が、このような方法でも反応槽内の水中にオゾン化空気
を多くの細かい気泡として散気するという点で、オゾン
を有効に活用しているとは言い難く、消費エネルギーが
大きい処理方法である。
In order to decompose organic substances in wastewater more effectively, O 3 / UV treatment, O 3 / H 2 O 2 treatment, O 3 / UV treatment
/ H 2 O 2 treatment has also been developed to promote accelerated oxidation treatment technology by combining ozone treatment with other methods. Even with such a method, ozonized air is converted into many fine bubbles in the water in the reaction tank. It is difficult to say that ozone is effectively used in terms of diffused air, and this is a treatment method that consumes a large amount of energy.

【0005】[0005]

【発明が解決しようとする課題】従来のオゾンを廃水中
に散気する処理法では、オゾンと廃水の接触効率が悪い
ため廃水中のダイオキシン類の分解が効率的でなく、エ
ネルギーを多く消費し、装置もコンパクトではなかっ
た。本発明は上記の課題を解決せんとするものであり、
難分解性の有害物質を効率的に分解する装置および方法
を提供することを目的とするものである。
In the conventional method of diffusing ozone into wastewater, the contact efficiency of ozone and wastewater is poor, so that dioxins in wastewater are not efficiently decomposed and consume a lot of energy. , The device was not compact either. The present invention is intended to solve the above problems,
It is an object of the present invention to provide an apparatus and method for efficiently decomposing hardly decomposable harmful substances.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は、
「廃水に酸化剤を添加する手段および廃水をオゾンを含
有する気体中に分散する手段を具備する廃水処理装
置」、「廃水をオゾンを含有する気体中に分散する手段
および廃水に紫外線を照射する手段を具備する廃水処理
装置」、「酸化剤を添加した廃水を、または、廃水と酸
化剤とを同時に、オゾンを含有する気体中に分散させる
廃水処理方法」、「廃水をオゾンを含有する気体中に分
散させるとともに、該分散させた廃水に紫外線を照射す
る廃水処理方法」からなるものである。
That is, the present invention is
"Wastewater treatment device equipped with a means for adding an oxidant to wastewater and a means for dispersing the wastewater in a gas containing ozone", "A means for dispersing the wastewater in a gas containing ozone, and irradiating the wastewater with ultraviolet rays "Wastewater treatment apparatus having means", "Wastewater treatment method of dispersing wastewater to which an oxidant is added, or simultaneously disposing wastewater and an oxidant in a gas containing ozone", "Gas containing wastewater containing ozone" Waste water treatment method of irradiating the dispersed waste water with ultraviolet rays.

【0007】[0007]

【発明の実施の形態】本発明ではオゾンを含有する気体
中に廃水を分散させる。分散の形態は、後述のようにい
ろいろあり、特に限定されないが、オゾンを含有する気
体中に廃水を分散させることにより、廃水中にオゾンを
気泡として散気する方法より、気液の接触面積を大きく
し、効率よく難分解性の有害物質を分解することができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, waste water is dispersed in a gas containing ozone. There are various forms of dispersion as will be described later, and are not particularly limited, but by dispersing waste water in a gas containing ozone, the contact area of gas-liquid can be increased by a method of dispersing ozone as bubbles in waste water. It is possible to increase the size and efficiently decompose persistent hazardous substances.

【0008】以下、図面を参照しつつ、本発明の実施の
形態について具体的に説明する。図1に本発明の廃水処
理装置の一例を示す。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 shows an example of the wastewater treatment apparatus of the present invention.

【0009】図1に示された廃水処理装置において、廃
水をオゾンを含有する気体中に分散する手段(以下、反
応塔と呼ぶ)は、スプレーノズル3およびオゾンガスの
送入口および排出口を有する。
In the wastewater treatment apparatus shown in FIG. 1, the means for dispersing wastewater in a gas containing ozone (hereinafter referred to as a reaction tower) has a spray nozzle 3 and an ozone gas inlet and outlet.

【0010】ダイオキシン等の難分解性物質を含有する
廃水は、反応塔2に導かれスプレーノズル3により分散
されてオゾンガスを含有する気体と気液接触する。この
際、酸化剤添加手段5から酸化剤が添加され、オゾンと
酸化剤が反応して促進酸化雰囲気を形成し、難分解性物
質を効率的に分解する。
Waste water containing a hardly decomposable substance such as dioxin is introduced into the reaction tower 2 and dispersed by the spray nozzle 3 to come into gas-liquid contact with a gas containing ozone gas. At this time, an oxidizing agent is added from the oxidizing agent adding means 5, ozone reacts with the oxidizing agent to form an accelerated oxidizing atmosphere, and the hardly decomposable substance is efficiently decomposed.

【0011】ここで難分解性物質とは、化学的に安定で
動物の生体内に取り込まれた場合に催奇形性、発ガン
性、免疫毒性があり、また本来その生体内で営まれてい
る正常なホルモン作用に影響を与える外因性の物質と定
義される物質であり、例えばダイオキシン類であるポリ
塩化ジベンゾフラン(PCDF)、ポリ塩化ジベンゾ−
パラ−ジオキサン(PCDD)、ポリ塩化ビフェニル
や、内分泌攪乱化学物質として疑われている農薬、殺菌
剤、染料、紫外線吸収剤、界面活性剤などが挙げられ
る。特にVOC(揮発性有機化合物)であるトリクロロ
エチレン、テトラクロロエチレンに対しては効果が高く
本発明の装置の適用に好適である。
The term "hardly-degradable substance" as used herein means that it is chemically stable and has teratogenicity, carcinogenicity, and immunotoxicity when taken into the living body of an animal, and it is originally used in the living body. Substances that are defined as exogenous substances that affect normal hormonal action, such as dioxins polychlorinated dibenzofuran (PCDF), polychlorinated dibenzo-
Para-dioxane (PCDD), polychlorinated biphenyls, pesticides suspected as endocrine disrupting chemicals, fungicides, dyes, ultraviolet absorbers, surfactants and the like can be mentioned. In particular, it is highly effective against VOC (volatile organic compounds) such as trichloroethylene and tetrachloroethylene, and is suitable for application of the device of the present invention.

【0012】酸化剤添加手段は、反応塔に廃水を供給す
る前段で、または反応塔の中に廃水と同時に酸化剤を供
給する。本発明における酸化剤とは、酸化能力を持った
オゾン以外の物質で、過酸化水素、次亜塩素酸ナトリウ
ム、過酸、過硫酸、ヒドロペルオキシド、キノン類等の
水中で分解した際にヒドロキシルラジカルを発生可能な
物質の水溶液が好ましく用いることができる。なかでも
過酸化水素が最も好ましい。
The oxidant adding means supplies the oxidant before the waste water is supplied to the reaction tower or at the same time as the waste water is supplied into the reaction tower. The oxidizing agent in the present invention is a substance having an oxidizing ability other than ozone, and a hydroxyl radical when decomposed in water such as hydrogen peroxide, sodium hypochlorite, peracid, persulfuric acid, hydroperoxide, and quinones. An aqueous solution of a substance capable of generating is preferably used. Of these, hydrogen peroxide is the most preferable.

【0013】また、反応を促進させるために反応塔内に
UVランプ7等の紫外線照射手段を設けることも好まし
く採用できる。O3は波長200nmから300nmの
紫外域に大きな吸収係数を持ち、O3単独で用いるより
も特定波長域の紫外線と併用することにより著しい酸化
力が引き出せる。特にO3分解のための光吸収の係数は
240から260nmで最大となるため、本発明では波
長253.7nmの光を放出する低圧水銀ランプを用い
ることが好ましく採用できる。UVランプ7を設置する
位置は、分散された廃水に紫外線を照射できる位置であ
ればよい。
In order to accelerate the reaction, it is also preferable to provide an ultraviolet irradiation means such as a UV lamp 7 in the reaction tower. O 3 has a large absorption coefficient in the ultraviolet region of wavelength 200 nm to 300 nm, and when it is used in combination with ultraviolet rays in a specific wavelength region, O 3 can bring out a remarkable oxidizing power as compared with the case where O 3 is used alone. In particular, since the coefficient of light absorption for O 3 decomposition becomes maximum at 240 to 260 nm, it is preferable to use a low pressure mercury lamp that emits light having a wavelength of 253.7 nm in the present invention. The position where the UV lamp 7 is installed may be any position where the dispersed wastewater can be irradiated with ultraviolet rays.

【0014】酸化剤添加手段および紫外線照射手段は、
どちらか一方のみを設置してもよいが、両方を設けた方
が、より分解効果が高い。
The oxidant addition means and the ultraviolet irradiation means are
Only one of them may be installed, but the disassembly effect is higher when both are installed.

【0015】本発明におけるオゾンを含有する気体とは
オゾンを1000ppm以上好ましくは5000ppm
以上の気体のことである。このとき温度30℃以下、圧
力0.2MPa以上であることが好ましい。オゾンの生
成方法には、紫外線照射法、水電解法、無声放電法など
があるが、消費電力、発生オゾン濃度、装置の小型化が
優れた無声放電法で行うことが好ましい。これは、一対
の電極間に絶縁物を挿入し、乾燥させた空気または酸素
を流し、数千から1万数千ボルトの交流電圧を加え放電
空気中の酸素からオゾンを発生させる方法である。発生
させたオゾンは反応塔下方より送入して、廃水と向流接
触させることが好ましい。
The ozone-containing gas in the present invention means ozone of 1000 ppm or more, preferably 5000 ppm.
It means the above gas. At this time, it is preferable that the temperature is 30 ° C. or lower and the pressure is 0.2 MPa or higher. Examples of ozone generation methods include an ultraviolet irradiation method, a water electrolysis method, and a silent discharge method. However, it is preferable to use the silent discharge method, which is excellent in power consumption, generated ozone concentration, and device miniaturization. This is a method in which an insulator is inserted between a pair of electrodes, dry air or oxygen is flown, and an AC voltage of several thousand to ten thousand thousand volts is applied to generate ozone from oxygen in the discharge air. The generated ozone is preferably fed from below the reaction tower and brought into countercurrent contact with the wastewater.

【0016】本発明の反応塔2は、効率よく気液接触が
できれば良いが、液分散型ガス吸収装置が好ましい。例
えばスプレー塔、濡れ壁塔、充填塔、スクラバー、ディ
スク塔、液注塔、連球塔、円盤回転式吸収装置、充填物
流動層吸収装置、遠心式吸収装置等が採用できる。いず
れの装置も向流接触であり並流に比べオゾンと液の接触
効率がよい。ここでスプレー塔とはスプレーノズル3を
一定間隔で、複数段配置した構造で、気体をスプレーノ
ズル3で微細化した液体と接触させる装置である。濡れ
壁塔とは垂直円管の内壁に沿って液体を液膜状で流し、
管中央部を流れる気体と接触させる装置である。また、
充填塔とは各種充填材4を使用した反応塔で、充填層部
で上方より供液された液体と、下方より送入した気体が
向流接触する装置である。充填材4にはラシヒリング、
レッシングリング、ベルルサドル、インタロックスサド
ル、テラレッテパッキング、ポールリングなどがある
が、本発明においてはいずれの充填材でもよい。しか
し、オゾンは腐食性が強いため充填材4には耐食性の素
材を使うことが好ましく、その素材にはポリ塩化ビニ
ル、テフロン(登録商標)、ガラス、コンクリート、ス
テンレス鋼などがある。
The reaction tower 2 of the present invention is only required to make efficient gas-liquid contact, but a liquid dispersion type gas absorption device is preferable. For example, a spray tower, a wetting wall tower, a packed tower, a scrubber, a disk tower, a liquid injection tower, a continuous ball tower, a disk rotary absorption device, a packed fluidized bed absorption device, a centrifugal absorption device and the like can be adopted. Both devices are in countercurrent contact and have a better contact efficiency between ozone and liquid than in parallel flow. Here, the spray tower has a structure in which the spray nozzles 3 are arranged in a plurality of stages at regular intervals, and is a device for bringing gas into contact with the liquid atomized by the spray nozzles 3. A wet wall tower is a liquid film that flows liquid along the inner wall of a vertical pipe.
It is a device that makes contact with the gas flowing in the center of the tube. Also,
The packed tower is a reaction tower using various packing materials 4, and is a device in which the liquid supplied from above in the packed bed portion and the gas sent from below come into countercurrent contact. Raschig ring for the filler 4,
There are a lessing ring, a berl saddle, an interlocks saddle, a terrarette packing, a pole ring and the like, but any filler may be used in the present invention. However, since ozone is highly corrosive, it is preferable to use a corrosion-resistant material for the filler 4, such as polyvinyl chloride, Teflon (registered trademark), glass, concrete, and stainless steel.

【0017】また反応塔内で促進酸化雰囲気を高めるた
めに金属触媒を用いることが好ましく採用できる。中で
もFe、Mn、Co、Ni、Cu、Pt等の遷移金属元
素を触媒として用いることが好ましい。金属触媒を用い
る方法はどのような方法でも良いが、例えば充填層の充
填材4にこれらの金属を用いる方法や、これらの金属元
素を含む化合物の水溶液を反応塔に供給する方法などが
好ましく採用できる。金属元素を含む化合物としては、
酸化物、硫酸塩、酢酸塩、アンモニウム塩、ハロゲン化
物等が挙げられる。金属元素を含む化合物の水溶液を反
応塔に供給する方法としては、反応塔に廃水を供給する
前段で供給しても良いし、反応塔の中に廃水と同時に供
給してもよい。
Further, it is preferable to use a metal catalyst in order to enhance the accelerated oxidizing atmosphere in the reaction tower. Above all, it is preferable to use a transition metal element such as Fe, Mn, Co, Ni, Cu, or Pt as a catalyst. Although any method may be used using a metal catalyst, for example, a method of using these metals for the packing material 4 of the packed bed, a method of supplying an aqueous solution of a compound containing these metal elements to a reaction tower, etc. are preferably adopted. it can. As a compound containing a metal element,
Examples thereof include oxides, sulfates, acetates, ammonium salts and halides. As a method of supplying the aqueous solution of the compound containing a metal element to the reaction tower, it may be supplied before the waste water is supplied to the reaction tower, or may be supplied into the reaction tower simultaneously with the waste water.

【0018】本発明で対象とする廃水は、工業排水、都
市下水、ゴミ処理場の浸出水などいずれでも良いが、難
分解性物質以外の濁質成分を多く含む場合には、反応塔
の前段に濁質を除去する前処理手段を設けることが、分
解効率を高め、副生成物の生成を抑制でき、反応塔の清
掃などのメンテナンスが軽減でき好ましい。但し濁質成
分に吸着する難分解性物質の場合は、その処理について
別途考慮する必要がある。
The wastewater to be used in the present invention may be any of industrial wastewater, municipal wastewater, leachate from a waste treatment plant, etc. It is preferable to provide a pretreatment means for removing turbidity because the decomposition efficiency can be increased, the production of by-products can be suppressed, and maintenance such as cleaning of the reaction tower can be reduced. However, in the case of a persistent substance that is adsorbed by turbid components, it is necessary to consider the treatment separately.

【0019】ここで、前処理には、凝集沈殿、砂濾過、
凝集濾過、保安フィルター、膜ろ過などが適用できる
が、特に平均孔径3nm〜10μmの分離膜を用いた分
離膜モジュールを用いてろ過することが好ましく採用で
きる。ここで分離膜とは、廃水中の濁質を除去できる膜
で本発明においては膜透過水濁度が1度以下であるもの
が好ましい。濁度とは水に浮遊する微小粒子を濁りの程
度で表したもので、カオリン1gを濁りのない水1lに
懸濁させたものを1000度としている。
Here, the pretreatment includes coagulation sedimentation, sand filtration,
Coagulation filtration, safety filter, membrane filtration and the like can be applied, but filtration using a separation membrane module using a separation membrane having an average pore diameter of 3 nm to 10 μm can be preferably employed. Here, the separation membrane is a membrane capable of removing suspended matter in wastewater, and in the present invention, a membrane having a turbidity of permeated water of 1 degree or less is preferable. Turbidity refers to fine particles floating in water expressed by the degree of turbidity, and 1 g of kaolin suspended in 1 liter of water without turbidity is 1000 degrees.

【0020】分離膜の孔径(Rp:m)は、膜透過速度
(Jv:m3/(m2・s))および透過膜による圧力差
(ΔP:Pa)から(1)式により膜の透水性(Lp:
3/(m2・s・Pa))を求め、算出した膜の透水性
を用いて(2)式から算出できる。ただし、H:膜含水
率、L:膜の厚さ(m)、η:水の粘度(Pa・s)と
する。
The pore diameter (Rp: m) of the separation membrane is determined by the equation (1) from the membrane permeation rate (Jv: m 3 / (m 2 · s)) and the pressure difference (ΔP: Pa) due to the permeation membrane. Sex (Lp:
m 3 / (m 2 · s · Pa)) is obtained, and it can be calculated from the equation (2) using the calculated water permeability of the membrane. Here, H is the water content of the film, L is the thickness of the film (m), and η is the viscosity of water (Pa · s).

【0021】 Jv=Lp×ΔP (1) Lp=(H/L)×Rp×2/(8×η) (2) さらに、分離膜の素材には、ポリアクリロニトリル、ポ
リスルフォン、ポリフェニレンスルフォン、ポリフェニ
レンスルフィドスルフォン、ポリフッ化ビニリデン、酢
酸セルロース、ポリエチレン、ポリプロピレンなどや、
セラミック等の無機素材を挙げることができる。いずれ
の素材も適用できるが親水性のポリアクリロニトリル、
酢酸セルロースは、汚れにくく洗浄回復性が高いため好
ましい。また、耐薬品性の高いポリフッ化ビニリデンも
好ましく採用できる。
Jv = Lp × ΔP (1) Lp = (H / L) × Rp × 2 / (8 × η) (2) Further, the material of the separation membrane is polyacrylonitrile, polysulfone, polyphenylene sulfone, polyphenylene. Sulfide sulfone, polyvinylidene fluoride, cellulose acetate, polyethylene, polypropylene, etc.,
Inorganic materials such as ceramics can be mentioned. Any material can be applied, but hydrophilic polyacrylonitrile,
Cellulose acetate is preferable because it is less likely to become dirty and has high washing recovery property. Further, polyvinylidene fluoride having high chemical resistance can also be preferably adopted.

【0022】分離膜モジュールとしては、中空糸膜や管
状膜のモジュールや、平膜をプレートアンドフレーム式
またはスパイラル式にモジュール化したもの、回転円盤
上に平膜を設置した回転円盤式の平膜モジュールなどを
用いることができる。中でも、装置単位容積あたりの有
効膜面積が大きい中空糸膜を用いた中空糸膜モジュール
や、分離膜表面の洗浄性が高いプレートアンドフレーム
式または回転円盤式の平膜モジュールが好ましい。
As the separation membrane module, a hollow fiber membrane or tubular membrane module, a flat membrane made into a plate-and-frame type or a spiral type module, and a rotary disc type flat membrane in which a flat membrane is installed on a rotary disc A module or the like can be used. Above all, a hollow fiber membrane module using a hollow fiber membrane having a large effective membrane area per unit volume of the apparatus, and a plate-and-frame type or rotating disk type flat membrane module having a high cleaning property on the surface of the separation membrane are preferable.

【0023】また、反応塔の前段に、廃水を濃縮する手
段を設け、廃水中の難分解性物質を濃縮してから分解処
理することも、分解効率を高める観点から好ましく採用
できる。排水中に濁質成分を多く含む場合には、廃水を
濃縮する手段は、前記の前処理手段の後に設けることが
好ましい。
Further, it is also preferable to provide a means for concentrating the waste water in the preceding stage of the reaction tower and to condense the hardly decomposable substance in the waste water before the decomposition treatment, from the viewpoint of enhancing the decomposition efficiency. When the wastewater contains a large amount of turbid components, the means for concentrating the wastewater is preferably provided after the pretreatment means.

【0024】廃水を濃縮する手段としては、逆浸透膜を
用いたモジュールが好ましく用いられる。ここで逆浸透
膜とは、イオンレベルの不純物を分離できる膜で、本発
明においてはMg2+などの二価のイオンの阻止率が高け
ればよい。その素材には酢酸セルロースやポリアミドが
あり、これらの膜素材がいずれも適用できる。本発明に
おいてはダイオキシン生成の前駆体となる有機塩素化合
物の除去率が90%以上であるものが好ましく、より好
ましくは95%以上である。逆浸透膜モジュールはいず
れの形態でもよいがスパイラル型が一般的であり好まし
い。
As a means for concentrating wastewater, a module using a reverse osmosis membrane is preferably used. Here, the reverse osmosis membrane is a membrane that can separate impurities at the ion level, and in the present invention, it is sufficient if the rejection rate of divalent ions such as Mg 2+ is high. The material includes cellulose acetate and polyamide, and any of these membrane materials can be applied. In the present invention, it is preferable that the removal rate of the organic chlorine compound serving as a precursor for dioxin formation is 90% or more, and more preferably 95% or more. The reverse osmosis membrane module may have any form, but a spiral type is generally preferred and preferred.

【0025】反応塔下部に落下した液体は処理水として
そのまま自然界に放流または空調の冷却水、散水などに
再利用しても構わない。処理水中に残留したオゾンは
光、水分等により容易に酸素に分解するため問題ない。
The liquid dropped to the lower part of the reaction tower may be directly discharged to the natural world as treated water, or may be reused for cooling water for air conditioning, sprinkling water and the like. There is no problem because ozone remaining in the treated water is easily decomposed into oxygen by light, water and the like.

【0026】また排出された排ガス中のオゾンは排オゾ
ン処理装置8で分解処理することが好ましい。排オゾン
処理には、活性炭吸着分解法、加熱分解法、薬液洗浄
法、触媒接触法、土壌接触法等があるが、本発明ではい
ずれの処理方法でも良い。
Further, it is preferable that the ozone in the discharged exhaust gas is decomposed by the exhaust ozone treatment device 8. The exhaust ozone treatment includes an activated carbon adsorption decomposition method, a thermal decomposition method, a chemical cleaning method, a catalyst contact method, a soil contact method, and the like, but any treatment method may be used in the present invention.

【0027】以下に実施例を挙げて本発明を具体的に説
明するが、本発明はこれらの実施例によりなんら限定さ
れるものではない。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0028】[0028]

【実施例】実施例1 運転を実施した廃水分解装置装置を図2に示す。廃水は
前処理として平均孔径10nmポリアクリロニトリル製
分離膜11に加圧供給され、濁質成分を除去した後反応
塔2に流入させた。反応塔2には廃水の他に酸化剤を酸
化剤注入口5から、反応を促進させるための金属触媒水
溶液を触媒注入口6からそれぞれ流入させた。反応塔内
にはUVランプ7(λ=253.7nm)を設置した。
今回、酸化剤として過酸化水素を、金属触媒として硫酸
第一鉄を使用した。酸化剤は過酸化水素/テトラクロロ
エチレンのモル比が1:1になるように添加され、金属
触媒は酸化剤に対して1/100当量となるように添加
された。
EXAMPLES Example 1 FIG. 2 shows a wastewater decomposition apparatus apparatus which has been operated. As pretreatment, the wastewater was supplied under pressure to the polyacrylonitrile-made separation membrane 11 having an average pore diameter of 10 nm, and after removing the suspended matter, it was allowed to flow into the reaction column 2. In addition to waste water, an oxidizing agent was introduced into the reaction tower 2 from an oxidizing agent inlet 5, and a metal catalyst aqueous solution for promoting the reaction was introduced from a catalyst inlet 6. A UV lamp 7 (λ = 253.7 nm) was installed in the reaction tower.
This time, hydrogen peroxide was used as the oxidant and ferrous sulfate was used as the metal catalyst. The oxidizing agent was added so that the molar ratio of hydrogen peroxide / tetrachloroethylene was 1: 1 and the metal catalyst was added so as to be 1/100 equivalent to the oxidizing agent.

【0029】実験には平均濁度5.2度、平均TOC
2.9mg/lの琵琶湖水に、テトラクロロエチレンを
濃度1.5mg/lになるように添加して調製した人工
廃水を用いた。反応塔2の処理水量は4m3/dayと
した。この膜処理水を反応塔中のスプレーノズル3で分
散化させ反応塔中のオゾンガスと接触させた。反応塔2
の運転は、オゾン注入率3.6mg/lで行った。オゾ
ン注入率(Applied Ozone Dosag
e:D)は次式により算出した。
In the experiment, the average turbidity was 5.2 degrees and the average TOC.
An artificial wastewater prepared by adding tetrachlorethylene to a concentration of 1.5 mg / l in 2.9 mg / l Lake Biwa water was used. The amount of treated water in the reaction tower 2 was 4 m 3 / day. The membrane-treated water was dispersed by the spray nozzle 3 in the reaction tower and brought into contact with ozone gas in the reaction tower. Reaction tower 2
Was operated at an ozone injection rate of 3.6 mg / l. Ozone injection rate (Applied Ozone Dosag
e: D) was calculated by the following formula.

【0030】D(mgO3/l)=Ci×(QG/QL) ここで、: Ci:注入ガスオゾン濃度(mg/l) QG:ガス流量(l/min) L:液流量(l/min) 注入ガスオゾン濃度 Ci=5(mg/l) ガス流量QG=2(l/min) 液流量 L=2.78(l/min) D=5×(2/2.78) =3.6(mg/l)となる。D (mgO3/ L) = Ci× (QG/ QL) here,: Ci: Injection gas ozone concentration (mg / l) QG: Gas flow rate (l / min) QL: Liquid flow rate (l / min) Injection gas ozone concentration Ci= 5 (mg / l) Gas flow rate QG= 2 (l / min) Liquid flow rate QL= 2.78 (l / min) D = 5 × (2 / 2.78) = 3.6 (mg / l).

【0031】また発生器に導入する空気中の湿度は、発
生オゾン濃度に影響を与えるため乾燥剤で湿気を十分に
除去した。電圧も発生オゾン濃度に影響を与えるため安
定器を設置、電圧を安定させ発生オゾン濃度を一定に調
節した。
Further, the humidity in the air introduced into the generator has an effect on the generated ozone concentration, so that the humidity was sufficiently removed with a desiccant. Since the voltage also affects the generated ozone concentration, a ballast was installed to stabilize the voltage and adjust the generated ozone concentration to a constant value.

【0032】反応塔下部より回収された処理水のテトラ
クロロエチレン濃度は約0.03mg/lとなり、水質
汚濁防止法に定められている許容限度0.1mg/lを
下回り自然水に放流することが可能であった。また本廃
水処理装置によるテトラクロロエチレンの分解率は約9
8%であった。
The concentration of tetrachloroethylene recovered from the lower part of the reaction tower is about 0.03 mg / l, which is less than the allowable limit of 0.1 mg / l specified in the Water Pollution Control Law and can be discharged into natural water. Met. Moreover, the decomposition rate of tetrachlorethylene by this wastewater treatment device is about 9
It was 8%.

【0033】比較例1 従来の廃水分解装置を図3に示す。廃水は前処理として
平均孔径10nmポリアクリロニトリル製分離膜11に
加圧供給され、濁質成分を除去した後反応槽9に流入さ
せた。流入した廃水中に散気管10により水中にオゾン
を圧入するディフューザー方式で廃水とオゾンガスを接
触させた。反応槽9には廃水の他に酸化剤を酸化剤注入
口5から、反応を促進させるための金属触媒水溶液を触
媒注入口6からそれぞれ流入させた。廃水の処理量、膜
処理条件、オゾン注入率、UVランプ、また酸化剤、金
属元素を含有する物質の種類、添加量については実施例
1と同様の条件で実験を行った。
Comparative Example 1 A conventional wastewater decomposition apparatus is shown in FIG. As a pretreatment, the wastewater was supplied under pressure to a separation membrane 11 made of polyacrylonitrile having an average pore diameter of 10 nm to remove turbid components and then flowed into the reaction tank 9. The waste water and the ozone gas were brought into contact with each other by a diffuser system in which ozone was injected into the waste water that had flowed in by the diffuser pipe 10. In addition to waste water, an oxidizing agent was introduced into the reaction tank 9 through the oxidizing agent inlet 5, and an aqueous metal catalyst solution for promoting the reaction was introduced through the catalyst inlet 6. An experiment was conducted under the same conditions as in Example 1 regarding the treatment amount of wastewater, the membrane treatment conditions, the ozone injection rate, the UV lamp, the type of substance containing an oxidizing agent and a metal element, and the addition amount.

【0034】反応槽より回収された処理水のテトラクロ
ロエチレン濃度は0.13mg/lであり自然水に放流
することは不可能であった。また本廃水処理装置による
テトラクロロエチレンの分解率は約91%であった。
The tetrachloroethylene concentration of the treated water recovered from the reaction tank was 0.13 mg / l, and it was impossible to discharge it to natural water. The decomposition rate of tetrachloroethylene by this wastewater treatment device was about 91%.

【0035】[0035]

【発明の効果】廃水処理において、オゾンを含有する気
体中に廃水を分散させ接触させる反応塔を設置すること
によって、従来よりも反応塔内での副生成物の生成を抑
制し、廃水の反応塔内の滞留時間を短縮し、処理水中の
難分解性物質濃度を放流可能な濃度に下げることができ
る。さらに反応塔前段において、廃水中の濁質の除去を
行った後、難分解性の有害物質を濃縮すれば、より効率
的に有害物質の分解を行うことができる。
EFFECTS OF THE INVENTION In the treatment of wastewater, by installing a reaction tower in which the wastewater is dispersed and brought into contact with a gas containing ozone, the production of by-products in the reaction tower is suppressed more than before, and the reaction of the wastewater is suppressed. The residence time in the tower can be shortened and the concentration of the hardly decomposable substance in the treated water can be lowered to a concentration at which it can be released. Further, if the persistent substance in the wastewater is removed in the preceding stage of the reaction tower and then the hardly-decomposable harmful substance is concentrated, the harmful substance can be decomposed more efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の廃水分解装置の一例を示すフロー図で
ある。
FIG. 1 is a flow chart showing an example of a wastewater decomposition apparatus of the present invention.

【図2】実施例1の廃水分解装置例を示すフロー図であ
る。
FIG. 2 is a flow chart showing an example of a wastewater decomposition apparatus of Example 1.

【図3】比較例1の廃水分解装置例を示すフロー図であ
る。
FIG. 3 is a flow chart showing an example of a wastewater decomposition apparatus of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1:前処理または逆浸透膜モジュール 2:反応塔 3:スプレーノズル 4:充填材 5:酸化剤注入口 6:触媒注入口 7:UVランプ 8:排オゾン処理装置 9:反応槽 10:散気管 11:分離膜 1: Pretreatment or reverse osmosis membrane module 2: Reaction tower 3: Spray nozzle 4: Filling material 5: Oxidizing agent inlet 6: Catalyst injection port 7: UV lamp 8: Waste ozone treatment device 9: Reaction tank 10: Air diffuser 11: Separation membrane

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/72 C02F 1/72 Z 101 101 1/76 1/76 A (72)発明者 佐々木 崇夫 滋賀県大津市園山1丁目1番1号 東レ株 式会社滋賀事業場内 Fターム(参考) 4D006 GA03 HA01 HA21 HA41 HA61 HA83 KA72 KB30 MA01 MA02 MA03 MA04 MB09 MB11 MC03 MC18 MC22 MC23 MC29 MC39 MC54 MC62 MC63 PA02 PB08 PB70 4D037 AA11 AB11 AB14 BA18 CA03 CA11 4D050 AA12 AB13 AB19 BB02 BB06 BB07 BB09 BB10 BB12 BB13 BC04 BC09 BD02 CA09 4G069 BB04A BB08A BB10A BB10B BC29A BC31A BC62A BC66A BC66B BC67A BC68A BC75A BD01A BD06A CA05 CA07 CA11 CA19 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 1/72 C02F 1/72 Z 101 101 1/76 1/76 A (72) Inventor Takao Sasaki Shiga Prefecture 1-1 1-1 Sonoyama, Otsu-shi Toray Co., Ltd. Shiga Plant F-term (reference) 4D006 GA03 HA01 HA21 HA41 HA61 HA83 KA72 KB30 MA01 MA02 MA03 MA04 MB09 MB11 MC03 MC18 MC22 MC23 MC29 MC39 MC54 MC62 MC63 PA02 PB08 PB70 4D037 AA11 AB11 AB14 BA18 CA03 CA11 4D050 AA12 AB13 AB19 BB02 BB06 BB07 BB09 BB10 BB12 BB13 BC04 BC09 BD02 CA09 4G069 BB04A BB08A BB10A BB10B BC29A BC31A BC62A BC66A BC66B BC67A BC68A CA75A BD01A BD01A

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】廃水に酸化剤を添加する手段および廃水を
オゾンを含有する気体中に分散する手段を具備する廃水
処理装置。
1. A wastewater treatment apparatus comprising means for adding an oxidizing agent to wastewater and means for dispersing the wastewater in a gas containing ozone.
【請求項2】廃水をオゾンを含有する気体中に分散する
手段および廃水に紫外線を照射する手段を具備する廃水
処理装置。
2. A wastewater treatment apparatus comprising means for dispersing the wastewater in a gas containing ozone and means for irradiating the wastewater with ultraviolet rays.
【請求項3】促進酸化雰囲気を高める金属触媒を用いる
請求項1または2に記載の廃水処理装置。
3. The wastewater treatment apparatus according to claim 1, wherein a metal catalyst that enhances the accelerated oxidizing atmosphere is used.
【請求項4】促進酸化雰囲気を高める金属触媒が金属元
素を含む化合物であり、該化合物の水溶液を供給する手
段を具備する請求項3に記載の廃水処理装置。
4. The wastewater treatment apparatus according to claim 3, wherein the metal catalyst for enhancing the accelerated oxidizing atmosphere is a compound containing a metal element, and a means for supplying an aqueous solution of the compound is provided.
【請求項5】廃水をオゾンを含有する気体中に分散する
手段が、液分散型ガス吸収装置である請求項1ないし4
のいずれかに記載の廃水処理装置。
5. The liquid dispersion type gas absorption device as the means for dispersing the wastewater in a gas containing ozone.
The wastewater treatment device according to any one of 1.
【請求項6】オゾンを含有する気体と分散された廃水が
向流で接触する請求項1ないし5のいずれかに記載の廃
水処理装置。
6. The wastewater treatment apparatus according to claim 1, wherein the ozone-containing gas and the dispersed wastewater come into contact in countercurrent.
【請求項7】酸化剤が過酸化水素、次亜塩素酸ナトリウ
ム、過酸、過硫酸、ヒドロペルオキシドおよびキノン類
からなる群から選ばれた1つ以上の化合物である請求項
1ないし6のいずれかに記載の廃水処理装置。
7. The oxidizing agent is one or more compounds selected from the group consisting of hydrogen peroxide, sodium hypochlorite, peracids, persulfates, hydroperoxides and quinones. The wastewater treatment device described in Crab.
【請求項8】廃水をオゾンを含有する気体中に分散する
手段の前段に、前処理手段を具備する請求項1ないし7
のいずれかに記載の廃水処理装置。
8. A pretreatment means is provided in front of a means for dispersing wastewater in a gas containing ozone.
The wastewater treatment device according to any one of 1.
【請求項9】廃水をオゾンを含有する気体中に分散する
手段の前段に、廃水を濃縮する手段を具備する請求項1
ないし8のいずれかに記載の廃水処理装置。
9. A means for concentrating the waste water is provided before the means for dispersing the waste water in a gas containing ozone.
9. The wastewater treatment device according to any one of 8 to 8.
【請求項10】酸化剤を添加した廃水を、または、廃水
と酸化剤とを同時に、オゾンを含有する気体中に分散さ
せる廃水処理方法。
10. A method for treating wastewater, which comprises dispersing wastewater containing an oxidizing agent, or simultaneously dispersing the wastewater and the oxidizing agent in a gas containing ozone.
【請求項11】廃水をオゾンを含有する気体中に分散さ
せるとともに、該分散させた廃水に紫外線を照射する廃
水処理方法。
11. A method for treating wastewater, which comprises dispersing the wastewater in a gas containing ozone and irradiating the dispersed wastewater with ultraviolet rays.
JP2001396482A 2001-12-27 2001-12-27 Apparatus and method for treating wastewater Pending JP2003190976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001396482A JP2003190976A (en) 2001-12-27 2001-12-27 Apparatus and method for treating wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001396482A JP2003190976A (en) 2001-12-27 2001-12-27 Apparatus and method for treating wastewater

Publications (2)

Publication Number Publication Date
JP2003190976A true JP2003190976A (en) 2003-07-08
JP2003190976A5 JP2003190976A5 (en) 2005-04-07

Family

ID=27602563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001396482A Pending JP2003190976A (en) 2001-12-27 2001-12-27 Apparatus and method for treating wastewater

Country Status (1)

Country Link
JP (1) JP2003190976A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056461A (en) * 2009-09-14 2011-03-24 Fuji Koki Kk Apparatus and method for reducing volume of sludge
WO2010125450A3 (en) * 2009-04-30 2011-04-21 Loira Purifying device and method for elimination of xenobiotics in water
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
JP2014042896A (en) * 2012-08-28 2014-03-13 Kurita Water Ind Ltd Method and device for processing formaldehyde-containing waste water
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
CN105858993A (en) * 2016-04-14 2016-08-17 中国石油天然气股份有限公司 Airtight processing apparatus of vertical flow integration of gas field alcohol-containing waste water
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
CN108793382A (en) * 2018-06-06 2018-11-13 东南大学 A kind of filler modularized reactor of ozone catalytic
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
KR101996537B1 (en) * 2018-07-19 2019-07-04 (주) 테크로스 Water treatment device using electrolysis and heterogeneous catalyst
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US20200165144A1 (en) * 2018-11-28 2020-05-28 Photoscience Japan Corporation Ultraviolet treatment method and system

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
CN102428033A (en) * 2009-04-30 2012-04-25 卢瓦尔公司 Purifying device and method for elimination of xenobiotics in water
AU2010243319B2 (en) * 2009-04-30 2014-07-03 Derichebourg Aqua Purifying device and method for elimination of xenobiotics in water
WO2010125450A3 (en) * 2009-04-30 2011-04-21 Loira Purifying device and method for elimination of xenobiotics in water
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
JP2011056461A (en) * 2009-09-14 2011-03-24 Fuji Koki Kk Apparatus and method for reducing volume of sludge
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
JP2014042896A (en) * 2012-08-28 2014-03-13 Kurita Water Ind Ltd Method and device for processing formaldehyde-containing waste water
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
CN105858993A (en) * 2016-04-14 2016-08-17 中国石油天然气股份有限公司 Airtight processing apparatus of vertical flow integration of gas field alcohol-containing waste water
CN108793382A (en) * 2018-06-06 2018-11-13 东南大学 A kind of filler modularized reactor of ozone catalytic
KR101996537B1 (en) * 2018-07-19 2019-07-04 (주) 테크로스 Water treatment device using electrolysis and heterogeneous catalyst
US20200165144A1 (en) * 2018-11-28 2020-05-28 Photoscience Japan Corporation Ultraviolet treatment method and system
JP2020081996A (en) * 2018-11-28 2020-06-04 株式会社日本フォトサイエンス Ultraviolet treatment method and system
US11814304B2 (en) * 2018-11-28 2023-11-14 Photoscience Japan Corporation Ultraviolet treatment method and system
JP7489689B2 (en) 2018-11-28 2024-05-24 株式会社日本フォトサイエンス Ultraviolet treatment method and system

Similar Documents

Publication Publication Date Title
JP2003190976A (en) Apparatus and method for treating wastewater
US6991735B2 (en) Free radical generator and method
US8562828B2 (en) Wastewater treatment apparatus
JP2009262122A (en) Apparatus for water treatment
KR100999564B1 (en) Wet Processing System for efficiency hybrids VOCs using multi Vortex and bio filter
JP2005218983A (en) Wastewater treatment method and apparatus using electrolytic oxidation
JP2005034694A (en) Membrane cleaning method, and filter
KR100502946B1 (en) Method of treating substance to be degraded and its apparatus
JP2004243162A (en) Method and apparatus for treating hardly decomposable organic matter-containing liquid
EP0242941B1 (en) Process and apparatus for the deodorization of air
JP2007021408A (en) Water treatment device and method
RU2636076C2 (en) Method of photochemical purifying water and device for its implementation
JP2006281005A (en) Apparatus and method for treating water using photocatalyst
JP3803590B2 (en) Hydrogen peroxide residual concentration controller
CN109126433B (en) Method and device for removing volatile organic compounds by using ultraviolet activated gas-phase persulfate
JP2010099581A (en) Wastewater treatment method
JP2003080274A (en) Treatment method and equipment for sewage
JP2000117274A (en) Water treatment and device therefor
WO2002060820A2 (en) Photooxidation water treatment device
KR20190136839A (en) Ventilation system for removing ozone gas of activated carbon adsorber
JP2001259664A (en) Method and device for cleaning contaminated water and polluted gas
JP3547573B2 (en) Water treatment method
JPH11347576A (en) Method and apparatus for treating water
KR100493865B1 (en) Waterwork equipment using ozone
JPH1133569A (en) Treatment of sewage containing organochlorine compound

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

A977 Report on retrieval

Effective date: 20051024

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A02 Decision of refusal

Effective date: 20060919

Free format text: JAPANESE INTERMEDIATE CODE: A02