JPH0530093Y2 - - Google Patents
Info
- Publication number
- JPH0530093Y2 JPH0530093Y2 JP1984162454U JP16245484U JPH0530093Y2 JP H0530093 Y2 JPH0530093 Y2 JP H0530093Y2 JP 1984162454 U JP1984162454 U JP 1984162454U JP 16245484 U JP16245484 U JP 16245484U JP H0530093 Y2 JPH0530093 Y2 JP H0530093Y2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- pipe
- insulating material
- heat insulating
- heat pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011810 insulating material Substances 0.000 claims description 24
- 239000007788 liquid Substances 0.000 claims description 12
- 230000002528 anti-freeze Effects 0.000 claims description 5
- 230000003068 static effect Effects 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 3
- 108010053481 Antifreeze Proteins Proteins 0.000 claims 1
- 238000009795 derivation Methods 0.000 claims 1
- 230000008014 freezing Effects 0.000 description 7
- 238000007710 freezing Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000011491 glass wool Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Measuring Fluid Pressure (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
本考案は、断熱材に被覆された液輸送管に備え
られる静圧導出用突出部と計器との間に設けられ
る導圧管に対して、一端側部位を地中に埋設した
ヒートパイプの他端側部位を導圧管に接触状態で
並設した計器凍結防止装置に関する。[Detailed description of the invention] [Industrial field of application] The present invention provides a pressure pipe provided between a meter and a protrusion for deriving static pressure provided in a liquid transport pipe covered with a heat insulating material. The present invention relates to an instrument freeze prevention device in which one end of a heat pipe is buried underground and the other end of a heat pipe is arranged in parallel with a pressure impulse pipe in contact with the other end.
上記の計器凍結防止装置は、従来、地熱を利用
して内部の液体が液輸送管の様にはほとんど流れ
ない計器の凍結を防止するために、ヒートパイプ
の放熱部を導圧管に接触させると共に、吸熱部を
単に2〜5mの深さの地中に埋設するものが知ら
れていた。
The above-mentioned instrument antifreeze device conventionally utilizes geothermal heat to prevent freezing of instruments in which internal liquid hardly flows like liquid transport pipes, by bringing the heat dissipation part of the heat pipe into contact with the impulse pipe. It was known that the heat absorbing part was simply buried underground at a depth of 2 to 5 m.
(例えば特開昭58−58414号公報)
〔考案が解決しようとする問題点〕
しかし、冬期の寒冷時には地表面近傍の地中部
が非常に低温になり、深い地中部で吸収した地熱
が上記地表面近傍の地中部で放熱されて失なわれ
るために、効率良く地上の導圧管に伝えることが
できなかつた。(For example, Japanese Patent Application Laid-open No. 58-58414) [Problem that the invention attempts to solve] However, during cold winters, the underground part near the earth's surface becomes very cold, and the geothermal heat absorbed in the deep underground part is absorbed by the earth. Because the heat is radiated and lost in the underground near the surface, it could not be efficiently transmitted to the impulse pipes above ground.
また液輸送管が有する熱も充分には利用されて
いなかつた。 Furthermore, the heat possessed by the liquid transport pipe has not been fully utilized.
本考案の目的は、深い地中部で吸収した地熱を
損失少く地上の導圧管に効率良く伝える点にあ
る。 The purpose of this invention is to efficiently transmit geothermal heat absorbed deep underground to the above-ground impulse pipe with little loss.
本考案の計器凍結防止装置の特徴構成は、ヒー
トパイプに対して地中部のうち地表付近50〜75cm
をヒートパイプ内から地中部への放熱を防止する
保温材で囲繞するとともに地表部をヒートパイプ
と外気との熱交換を防止する断熱材で囲繞し、ヒ
ートパイプの径方向への保温材の厚さを断熱材の
厚さより大に構成し、さらに、他端側部位の先端
部が、静圧導出用突出部の近傍で、断熱材内に配
設されていることにあり、その作用効果は次の通
りである。
The characteristic configuration of the instrument freeze prevention device of this invention is that the heat pipe is located 50 to 75 cm near the ground surface in the underground part.
is surrounded by a heat insulating material that prevents heat radiation from inside the heat pipe to the underground part, and the ground surface is surrounded by a heat insulating material that prevents heat exchange between the heat pipe and the outside air, and the thickness of the heat insulating material in the radial direction of the heat pipe is The thickness is made larger than the thickness of the heat insulating material, and the tip of the other end is disposed within the heat insulating material near the protrusion for deriving static pressure. It is as follows.
つまり、ヒートパイプの地中埋設部における地
表側を保温材で囲繞することによつて、深い地中
部で吸収した地熱は寒冷時でも前記地表側で放熱
することが少くなり、熱損失少く地上の導圧管に
効率良く伝えることができる。その際、土より空
気の方が熱容量が小さいために、特に凍結し易い
明け方には、地中であつて地表に近い部分が冷え
やすいことに着目して、地中のうち地表付近での
断熱効果を高めるとともに、地表部での断熱材の
厚さを薄く構成して、断熱材の必要量を少なくで
きるという経済的効果を達成できる。さらに、保
温材の厚さを大に構成してあるので、ヒートパイ
プに折れ曲げ力が作用しても、保温材の厚みがそ
の力を吸収するので容易に折れ曲がることがない
という効果を達成できる。
In other words, by surrounding the surface side of the underground part of the heat pipe with heat insulating material, the geothermal heat absorbed deep underground is less likely to be radiated on the surface side even in cold weather, reducing heat loss and transferring it to the surface. It can be efficiently transmitted to the impulse pipe. At that time, we focused on the fact that the heat capacity of air is smaller than that of soil, so especially in the early morning hours when freezing occurs, the parts of the earth that are close to the surface of the earth are likely to get cold. In addition to increasing the effectiveness, the thickness of the insulation material at the ground surface can be made thinner, thereby achieving an economical effect of reducing the amount of insulation material required. Furthermore, since the thickness of the heat insulating material is large, even if a bending force is applied to the heat pipe, the thickness of the heat insulating material absorbs the force, making it possible to achieve the effect that it will not easily bend. .
上記の構成により地中部で地表面側の部位の保
温を確保するとともに、さらに、ヒートパイプの
他端側部位の先端部を液輸送管に近接させて設け
るとともに、これを十分に保温することによつ
て、凍結の可能性の無い温度に維持されている液
輸送管及びこの管内を流れる流体(工水)が保持
する熱を導圧管の凍結防止に有効に利用し、ヒー
トパイプは凍結の可能性の高い導圧管部位まで、
有効に地熱を伝達することができる。 With the above configuration, it is possible to ensure heat retention of the part on the ground side in the underground part, and also to provide sufficient heat insulation by providing the tip of the other end of the heat pipe close to the liquid transport pipe. Therefore, the heat held by the liquid transport pipe, which is maintained at a temperature that does not allow freezing, and the fluid (technical water) flowing inside this pipe, is effectively used to prevent the impulse pipe from freezing, and the heat pipe can prevent freezing. up to the highly sensitive impulse pipe parts.
Geothermal heat can be transferred effectively.
従つて、計器の凍結防止に地熱を十分利用でき
る経済的、且つ、効率の良い装置を提供できる。
Therefore, it is possible to provide an economical and efficient device that can sufficiently utilize geothermal heat to prevent freezing of instruments.
次に実施例を図面に基いて説明する。 Next, embodiments will be described based on the drawings.
断熱材7で被覆された液輸送管2には、その長
手方向の途中部分に、支柱5に支持された圧力計
又は流量計等の計器3が導圧管4を界して接続し
てあり、液輸送管2に比してほとんど内部の液体
が流動しないため、冬場の寒冷時には凍結しやす
い前記導圧管4には、一端側部位が土壌6中約2
〜5mの深さに埋設されたヒートパイプ1の他端
側部位1bを接触状態で並設させ、それらの外側
にグラスウールから成る断熱材8を被覆して計器
凍結防止装置を形成してある。 A gauge 3 such as a pressure gauge or a flow meter supported by a column 5 is connected to the liquid transport pipe 2 covered with a heat insulating material 7 at an intermediate portion in the longitudinal direction across a pressure impulse pipe 4. Compared to the liquid transport pipe 2, the internal liquid hardly flows, so the impulse pipe 4 is prone to freezing during cold winters, and one end of the impulse pipe 4 is about 2.
The other end portions 1b of the heat pipes 1 buried at a depth of ~5 m are arranged side by side in contact with each other, and a heat insulating material 8 made of glass wool is coated on the outside to form an instrument antifreeze device.
そして、ヒートパイプ1の地中埋設部1aの地
表側(約50cm〜75cmの深さ)を、グラスウールか
ら成る保温材9で囲繞してあり、寒冷時の地表近
くでの放熱を防いでいる。又、土より空気の方が
熱容量が小さいために、特に凍結し易い明け方に
は、地中であつて地表に近い部分が冷えやすいこ
とに着目して、前記ヒートパイプ1の径方向への
前記保温材9の厚さを前記断熱材8の厚さより大
に構成してある。従つて、保温しない場合には保
温する場合の4〜6倍の放熱量があり、保温によ
つてより効率良く地熱を地上に輸送できる。 The surface side of the underground portion 1a of the heat pipe 1 (approximately 50 cm to 75 cm deep) is surrounded by a heat insulating material 9 made of glass wool to prevent heat radiation near the surface during cold weather. In addition, since air has a smaller heat capacity than soil, we focused on the fact that the parts underground and close to the surface of the earth are likely to get cold, especially in the early morning hours when it is easy to freeze. The thickness of the heat insulating material 9 is configured to be larger than the thickness of the heat insulating material 8. Therefore, when not insulated, the amount of heat released is 4 to 6 times as much as when insulated, and by insulating, geothermal heat can be transported to the ground more efficiently.
さらに、前記他端側部位1bの先端部1cが、
静圧導出用突出部2aの近傍で、前記断熱材7内
に配設されている。 Furthermore, the tip portion 1c of the other end portion 1b is
It is disposed within the heat insulating material 7 in the vicinity of the static pressure deriving protrusion 2a.
尚、ヒートパイプ1は、銅管から成る円筒の容
器中にアンモニア、フロン、メチルアルコール等
の作動液体が封入された熱伝導率が極めて高い伝
熱素子を示すものである。 The heat pipe 1 is a heat transfer element having an extremely high thermal conductivity, in which a working liquid such as ammonia, fluorocarbon, or methyl alcohol is sealed in a cylindrical container made of a copper tube.
前記断熱材7,8及び保温材9はグラスウール
の他に、断熱効果の高いものであればいかなるも
のでも良い。
The heat insulating materials 7 and 8 and the heat insulating material 9 may be made of any material other than glass wool as long as it has a high heat insulating effect.
また、ヒートパイプ1は、その内側に毛管材料
(ウイツク)を内張りしてあるものでも良い。 Further, the heat pipe 1 may be lined with a capillary material (wick).
図面は本考案に係わる計器凍結防止装置の一部
断面を示す全体図である。
1……ヒートパイプ、1a……地中埋設部、1
b……他端側部位、2……液輸送管、3……計
器、4……導圧管、9……保温材。
The drawing is an overall view, partially in section, of the instrument antifreeze device according to the present invention. 1...Heat pipe, 1a...Underground part, 1
b... Other end side part, 2... Liquid transport pipe, 3... Meter, 4... Impulse tube, 9... Heat insulating material.
Claims (1)
静圧導出用突出部2aと計器3との間に設けられ
る導圧管4に対して、一端側部位を地中に埋設し
たヒートパイプ1の他端側部位1bを前記導圧管
4に接触状態で並設した計器凍結防止装置であつ
て、前記ヒートパイプ1に対して地中部のうち地
表付近50〜75cmの深さの部分を前記ヒートパイプ
1内から地中部への放熱を防止する保温材9で囲
繞するとともに地表部を前記ヒートパイプ1と外
気との熱交換を防止する断熱材8で囲繞し、前記
ヒートパイプ1の径方向への前記保温材9の厚さ
を前記断熱材8の厚さより大に構成し、さらに、
前記他端側部位1bの先端部1cが、前記静圧導
出用突出部2aの近傍で、前記断熱材7内に配設
されている計器凍結防止装置。 A heat pipe 1 whose one end is buried underground with respect to a pressure pipe 4 provided between a static pressure deriving protrusion 2a provided on a liquid transport pipe 2 covered with a heat insulating material 7 and a meter 3 This is an instrument anti-freeze device in which the other end side portion 1b is arranged in parallel with the pressure impulse pipe 4 in contact with the heat pipe 1, and the heat pipe The heat pipe 1 is surrounded by a heat insulating material 9 that prevents heat radiation from inside the heat pipe 1 to the underground part, and the ground surface is surrounded by a heat insulating material 8 that prevents heat exchange between the heat pipe 1 and the outside air. The thickness of the heat insulating material 9 is configured to be larger than the thickness of the heat insulating material 8, and further,
An instrument antifreeze device in which a tip portion 1c of the other end portion 1b is disposed within the heat insulating material 7 in the vicinity of the static pressure derivation protrusion 2a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1984162454U JPH0530093Y2 (en) | 1984-10-27 | 1984-10-27 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1984162454U JPH0530093Y2 (en) | 1984-10-27 | 1984-10-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6179215U JPS6179215U (en) | 1986-05-27 |
JPH0530093Y2 true JPH0530093Y2 (en) | 1993-08-02 |
Family
ID=33109745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1984162454U Expired - Lifetime JPH0530093Y2 (en) | 1984-10-27 | 1984-10-27 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0530093Y2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5858414A (en) * | 1981-10-01 | 1983-04-07 | Osaka Gas Co Ltd | Measuring device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5171159U (en) * | 1974-12-02 | 1976-06-04 |
-
1984
- 1984-10-27 JP JP1984162454U patent/JPH0530093Y2/ja not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5858414A (en) * | 1981-10-01 | 1983-04-07 | Osaka Gas Co Ltd | Measuring device |
Also Published As
Publication number | Publication date |
---|---|
JPS6179215U (en) | 1986-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1120029A (en) | Heat pipe bag system | |
US6789608B1 (en) | Thermally exposed, centrally insulated geothermal heat exchange unit | |
US6000459A (en) | U-bend pipe spacer | |
EP0596006A1 (en) | Solar collector with freeze damage protection. | |
US4339929A (en) | Heat pipe bag system | |
JPH0530093Y2 (en) | ||
JPS593608B2 (en) | antifreeze device | |
JPS62284193A (en) | Heat transfer pipe | |
JP2849699B2 (en) | Solar thermal storage snow melting device | |
JPH0132428B2 (en) | ||
JPH0354499Y2 (en) | ||
JP3177748B2 (en) | Thermal conductive film | |
JPS60233237A (en) | Heat pipe for preventing freezing of tap water pipe | |
RU2164274C2 (en) | Thermal device for cooling and freezing of soil | |
JPS6011354Y2 (en) | Thermal insulation coating structure for underground thermal fluid transport pipes | |
JPS60243486A (en) | Antifreezing heat pipe for water service pipe | |
KR900000573B1 (en) | Anti-freezing device made use of thermatap | |
JPS58140564A (en) | Solar heat collector | |
JPS61173080A (en) | Heat pipe | |
KR890005185B1 (en) | Device preventing bursting of pipe by freezing | |
JPS60223503A (en) | Heat pipe type snow melting and freezing preventing apparatus | |
JPH01268904A (en) | Snow melting device using sewage heat | |
JPS61128094A (en) | Heat pipe | |
JPH0355604B2 (en) | ||
JPS6346345A (en) | Heat pipe type heat collecting and radiating device |