JPH05299901A - Circularly polarized wave device - Google Patents

Circularly polarized wave device

Info

Publication number
JPH05299901A
JPH05299901A JP10414192A JP10414192A JPH05299901A JP H05299901 A JPH05299901 A JP H05299901A JP 10414192 A JP10414192 A JP 10414192A JP 10414192 A JP10414192 A JP 10414192A JP H05299901 A JPH05299901 A JP H05299901A
Authority
JP
Japan
Prior art keywords
waveguide
circular
polarized wave
polarization
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10414192A
Other languages
Japanese (ja)
Inventor
Hiroki Shiyouki
裕樹 庄木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10414192A priority Critical patent/JPH05299901A/en
Publication of JPH05299901A publication Critical patent/JPH05299901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

PURPOSE:To maintain an excellent circularly polarized wave characteristic at a required band with simple configuration by connecting circularly polarized waveguides side by side so that a direction of a polarized wave giving a long guide wavelength of one waveguide and a direction of a polarized wave giving a short guide wavelength of other waveguide are coincident with each other. CONSTITUTION:Parts of axial lengths L1, L2 of a circular waveguide are decreased by h1, h2 respectively in the direction X. A step difference is provided in the inside of the circular waveguide to differentiate a propagation speed of a radio wave in the X polarized wave component in the direction X and in the Y polarized wave component in the direction Y. Two waveguides whose guide wavelength for orthogonal polarized waves is changed are employed and they are connected so that the direction of the polarized wave with longer guide wavelength of one waveguide and the direction of the polarized wave with shorter guide wavelength of the other waveguide are coincident with each other, then the two circular polarized wave devices are connected together in which the frequency characteristics of a phase difference of two polarized waves are opposite to each other. Thus, the phase difference between the two orthogonal polarized waves caused when a radio wave passes through the two circular polarized wave devices has a flat characteristic with respect to the frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、広帯域若しくは2つの
異なる周波数帯域において良好な円偏波特性を持つ円偏
波器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circular polarizer having good circular polarization characteristics in a wide band or two different frequency bands.

【0002】[0002]

【従来の技術】反射鏡アンテナの一次放射器やアレーア
ンテナの素子アンテナに用いられるホーンアンテナにお
いて円偏波を発生させる場合には、直交する2つの偏波
の位相差がちょうど90度になるように導波管の形状を
変えたり、誘電体等を導波管内部に挿入する円偏波器が
用いられる。以下にその具体例を示す。
2. Description of the Related Art When a circularly polarized wave is generated in a horn antenna used as a primary radiator of a reflector antenna or an element antenna of an array antenna, the phase difference between two orthogonal polarized waves is just 90 degrees. A circular polarizer is used in which the shape of the waveguide is changed or a dielectric or the like is inserted inside the waveguide. Specific examples are shown below.

【0003】図11は、直交する2つの偏波の位相差に
よって円偏波を発生させる円偏波器を示す図である。
(a)は導波管開口から見た図、(b)は導波管軸に沿
って切った場合の断面図を各々示す。図11において、
円偏波器の円形導波管の内径が一部でx方向とy方向の
大きさが異なるので、x方向の電界をもつ偏波成分の管
内波長よりもy方向の電界をもつ偏波成分の管内波長が
大きくなり、電波が通過する際にy偏波の位相がx偏波
に比べ遅れるように見えることになる。ここで、距離L
を2つの偏波の位相差が90度となるように設定するこ
とにより、P方向又はQ方向(x,y方向に対して45
度傾いた方向)の偏波をもつ電界を入力した場合に円偏
波を発生させることができる。なお、この場合P方向の
偏波とQ方向の偏波を入力した場合に発生する円偏波
は、互いに逆偏波の関係になる。
FIG. 11 is a diagram showing a circular polarizer which generates a circular polarized wave by the phase difference between two orthogonal polarized waves.
(A) is a view seen from the waveguide opening, and (b) is a cross-sectional view taken along the waveguide axis. In FIG.
Since the circular waveguide of a circular polarizer has a part of the inner diameter that is different in the x-direction and the y-direction, the polarization component that has an electric field in the y direction that is greater than the guide wavelength of the polarization component that has the electric field in the x direction. The in-tube wavelength of becomes larger, and the phase of the y-polarized wave appears to be delayed compared with the x-polarized wave when the radio wave passes. Where distance L
Is set so that the phase difference between the two polarized waves is 90 degrees, the P direction or the Q direction (45 degrees with respect to the x and y directions) is set.
Circularly polarized waves can be generated when an electric field having a polarized wave (in a tilted direction) is input. In this case, the circularly polarized waves generated when the polarized waves in the P direction and the polarized waves in the Q direction are input have a relationship of mutually opposite polarized waves.

【0004】このように2つの直交する偏波の位相差を
90度とするような方法としては、上記の例の他に、誘
電体を導波管に挿入する方法や金属ビスを導波管内部に
突出させる方法があるが、これらの方法はある特定の周
波数においては、周波数特性を最適に設定できるが、管
内波長等が周波数特性をもつために広帯域において良好
な円偏波特性を維持することは難しい。例えば、衛星搭
載用や地球局のアンテナにおいては送受共用することが
コスト等の点から重要であるが、送信周波数と受信周波
数が比較的離れていることが一般的であるために広帯域
の円偏波器を構成できない場合がある。
As a method for making the phase difference between two orthogonal polarized waves 90 degrees in this way, in addition to the above-mentioned example, a method of inserting a dielectric into the waveguide or a waveguide of metal screws is used. There is a method of projecting inward, but these methods can set the frequency characteristics optimally at a certain specific frequency, but maintain good circular polarization characteristics in a wide band because the wavelength inside the tube has frequency characteristics. Hard to do. For example, it is important from the standpoint of cost, etc. to share transmission / reception for antennas for satellites and for earth stations, but it is common that the transmission frequency and the reception frequency are relatively far apart, so that a wideband circular polarization is used. In some cases, wave instruments cannot be configured.

【0005】そこで、位相特性の異なる2つの導波管を
接続することによって円偏波を発生させる方法が知られ
ている(特開平3−220901号公報)。すなわち、
図12に示すように、第一導波管91aにおいてはx方
向について円形導波管を縮め、第二導波管91bにおい
てはx−z面内に金属ビスを配置し、この二つの導波管
を接続することによって、広帯域の円偏波器を構成す
る。この場合におけるx偏波を基準にしたときのy偏波
の位相差を図13に示す。第一導波管については、周波
数f0 でαとなり、周波数の増加とともに位相差が減少
していく特性をもつ。第二導波管については、第一導波
管とは逆の周波数特性をもち、周波数f0でγであった
位相差が周波数の増加とともに増加する特性をもつた
め、この2つの導波管の位相の特性の和は平坦になる。
Therefore, a method is known in which circularly polarized waves are generated by connecting two waveguides having different phase characteristics (Japanese Patent Laid-Open No. 3-220901). That is,
As shown in FIG. 12, in the first waveguide 91a, the circular waveguide is contracted in the x direction, and in the second waveguide 91b, metal screws are arranged in the xz plane, and these two waveguides are arranged. A broadband circular polariser is constructed by connecting the tubes. FIG. 13 shows the phase difference of the y polarization when the x polarization is used as a reference in this case. The first waveguide has a characteristic that it becomes α at the frequency f0 and the phase difference decreases as the frequency increases. The second waveguide has a frequency characteristic opposite to that of the first waveguide, and the phase difference that was γ at the frequency f0 has the characteristic of increasing as the frequency increases. The sum of the phase characteristics becomes flat.

【0006】このような位相特性の異なる円偏波器は、
第一導波管として導波管形状を変形させたもの、或いは
第二導波管として誘電体又は金属ビス等からなるチュー
ニングスクリューを用いたものから構成される。しかし
ながら、誘電体を用いた導波管は、誘電体の特性が劣化
しやすいので、周囲の環境変化の激しい場所や高出力の
電磁波を送受信する場合に用いることは好ましくなく、
また、チューニングスクリューを用いた導波管は、チュ
ーニングが困難で、チューニングが不完全であると電力
損失や漏れ、スパークの発生等の不都合があった。さら
に、このような円偏波器においては、異なる2つの導波
管を接続するため、設計、製造に手間がかかるという難
があった。
Circular polarizers having different phase characteristics are
The first waveguide is formed by deforming the waveguide shape, or the second waveguide is formed by using a tuning screw made of a dielectric material or a metal screw. However, a waveguide using a dielectric is not preferable for use in a place where the environment changes drastically or when transmitting and receiving high-power electromagnetic waves, because the characteristics of the dielectric easily deteriorate.
Further, a waveguide using a tuning screw has difficulty in tuning, and if tuning is incomplete, there are disadvantages such as power loss, leakage, and spark generation. Further, in such a circular polarizer, since two different waveguides are connected, it is difficult to design and manufacture.

【0007】[0007]

【発明が解決しようとする課題】以上述べたように、従
来の位相特性の異なる組み合わせからなる円偏波器にお
いては、誘電体や金属ビス等を用いていたので、耐環境
性や調整が面倒であった。また、異なる円偏波器を組み
合わせていたので、設計、製造の手間が煩雑であった。
As described above, in the conventional circular polarizer having a combination of different phase characteristics, the dielectric and the metal screw are used, so that the environmental resistance and the adjustment are troublesome. Met. Moreover, since different circular polarisers were combined, the effort of designing and manufacturing was complicated.

【0008】本発明は、以上のような問題点を解決し、
送受共用アンテナでもその帯域において良好な円偏波特
性を維持できる簡単な構成の円偏波器を提供することを
目的とする。
The present invention solves the above problems,
It is an object of the present invention to provide a circular polarizer having a simple structure capable of maintaining a good circular polarization characteristic even in the antenna for both transmission and reception.

【0009】[0009]

【課題を解決するための手段】本発明は上記従来の課題
を解決するために、第一の発明においては、直交する偏
波のうち一方の偏波に対して管内波長を変える手段を有
した導波管を少なくとも2つ連接した円偏波器であっ
て、一方の前記導波管における管内波長の長い偏波の方
向と他方の前記導波管における管内波長の短い偏波の方
向とを一致するように連接したものである。
In order to solve the above-mentioned conventional problems, the present invention has, in the first invention, means for changing the guide wavelength for one of the orthogonal polarizations. A circular polarizer in which at least two waveguides are connected to each other, wherein a direction of a long-wavelength polarization in one of the waveguides and a direction of a short-wavelength polarization in the other waveguide are set. They are connected so that they match.

【0010】また、第二の発明においては、直交する偏
波のうち一方の偏波に対して管内波長を変える手段を有
した導波管及びこの導波管に連接された直交偏波分離用
分波器を有する円偏波器であって、前記管内波長を変え
る手段は異なる2つの周波数帯域のうち低い方の周波数
帯域の通過位相差を270度、高い方の周波数帯域の通
過位相差を90度に設定し、前記直交偏波分離用分波器
は前記異なる2つの周波数帯域の各々の円偏波成分を直
交する偏波として別個に入出力するようにしたものであ
る。
According to the second aspect of the invention, a waveguide having a means for changing the guide wavelength for one polarization of the orthogonal polarizations and an orthogonal polarization separation connected to the waveguide. A circular polarizer having a demultiplexer, wherein the means for changing the in-tube wavelength has a pass phase difference of 270 degrees in a lower frequency band and a pass phase difference of a higher frequency band in two different frequency bands. The demultiplexer for orthogonal polarization separation is set to 90 degrees, and the circular polarization components of the two different frequency bands are separately input and output as orthogonal polarizations.

【0011】[0011]

【作用】第一の発明によれば、直交する偏波の管内波長
を変えた導波管を2つ用いて、片方の導波管の管内波長
の長い偏波の方向と、もう片方の導波管の管内波長が短
い偏波の方向が一致するように接続することにより、2
つの偏波の位相差の周波数特性が互いに逆の特性になる
2つの円偏波器を接続したようになる。従って、2つの
円偏波器を電波が通過した際に生じる直交2偏波の位相
差が周波数に関して平坦な特性をもつように設定でき
る。ここで広帯域において2つの偏波の位相差を90度
に維持することができ、広帯域で良好な円偏波特性を維
持することができる。
According to the first aspect of the present invention, by using two waveguides in which the waveguide wavelengths of the orthogonal polarizations are changed, the direction of the polarization with the longer waveguide wavelength of one waveguide and the waveguide of the other waveguide are used. By connecting the waveguides so that the directions of polarized waves with short wavelengths in the waveguide match,
It seems that two circular polarizers are connected in which the frequency characteristics of the phase difference of one polarization are opposite to each other. Therefore, the phase difference between the two orthogonally polarized waves generated when the radio waves pass through the two circular polarisers can be set to have a flat characteristic with respect to frequency. Here, the phase difference between the two polarized waves can be maintained at 90 degrees in the wide band, and good circular polarization characteristics can be maintained in the wide band.

【0012】また、第二の発明では、直交する偏波の管
内波長を変えた導波管において、二つの直交する偏波の
位相差が周波数とともに小さくなることを利用し、直交
する偏波の位相差を低い周波数fa では270度に、高
い周波数fb では90度になるように設定する。この円
偏波器に直交偏波分離用分波器(OMT)を接続し、f
a とfb で互いに直交する偏波成分を入出力することに
より、同一方向の円偏波成分を発生させることができ
る。
Further, in the second invention, in the waveguide in which the guide wavelengths of the orthogonal polarizations are changed, the fact that the phase difference between the two orthogonal polarizations decreases with the frequency is utilized, and The phase difference is set to 270 degrees at a low frequency fa and 90 degrees at a high frequency fb. An orthogonal polarization demultiplexer (OMT) is connected to this circular polarizer, and f
Circular polarization components in the same direction can be generated by inputting and outputting polarization components orthogonal to each other at a and fb.

【0013】[0013]

【実施例】以下、図面を参照しながら本発明の一実施例
について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】図1は、第一の発明の実施例に係るホーン
アンテナの構成を示す図である。ホーンアンテナ1は、
ホーン2、導波管3、導波管変換器4が順次連接されて
なっている。ホーンアンテナ1は、導電性の金属で構成
され、又は導波管内部に導電性の材料が用いられる。導
波管変換器4は、例えば円形導波管から矩形導波管へ変
換するものである。
FIG. 1 is a diagram showing the configuration of a horn antenna according to an embodiment of the first invention. The horn antenna 1 is
The horn 2, the waveguide 3, and the waveguide converter 4 are sequentially connected. The horn antenna 1 is made of a conductive metal, or a conductive material is used inside the waveguide. The waveguide converter 4 converts, for example, a circular waveguide into a rectangular waveguide.

【0015】導波管3は、第一導波管3a及び第二導波
管3bが相対して開口面で連接され、円形導波管内部の
一方向において段差が設けられている。図2は、第一導
波管3a及び第二導波管3bを示す図である。ここで、
導波管の軸方向をz軸、垂直方向をx軸、それに直交す
る方向をy軸(以下同じ)として、図2(a)は、x−
y正面図、(b)はx−z縦断面図、(c)はy−z横
断面図を各々示している。この円形導波管3の軸方向の
長さL1 及びL2 の領域において、x方向をh1 ,h2
だけ短くする。このように円形導波管内部に段差を設け
ることにより、直交する2つの偏波成分、すなわち、電
界方向がx方向のx偏波成分とy方向のy偏波成分の電
波の伝搬速度が異なってくる。図3は、この場合の基本
モード(TE11モード)における2つの偏波成分のh
/rに対する遮断波長λc特性を示す図である。図3か
ら明らかなように、h/rが大きくなるに従って、x偏
波では遮断波長が長くなり、y偏波では遮断波長が短く
なる。従って、ある周波数における管内波長はx偏波よ
りもy偏波の方が大きくなり、2つの直交する偏波がこ
の導波管を通過した際にx偏波の方がy偏波よりも位相
が進むので、図2における長さL1 及びL2 を任意に設
定することにより、x偏波とy偏波の位相差を所望の値
にすることができる。なお、長さL1 の領域に対して長
さL2 の領域の内径が異なるのは、2つの領域の特性イ
ンピーダンスを調整することにより伝送線路としての整
合性を向上させるためであり、図4に示すように、テー
パを設けてもよい。
In the waveguide 3, the first waveguide 3a and the second waveguide 3b face each other and are connected by an opening face, and a step is provided in one direction inside the circular waveguide. FIG. 2 is a diagram showing the first waveguide 3a and the second waveguide 3b. here,
Assuming that the axial direction of the waveguide is the z-axis, the vertical direction is the x-axis, and the direction orthogonal thereto is the y-axis (the same applies below), x-
y is a front view, (b) is an xz vertical sectional view, and (c) is a yz horizontal sectional view. In the region of the axial lengths L1 and L2 of the circular waveguide 3, the x direction is h1, h2.
Just shorten it. By providing the step inside the circular waveguide in this way, the propagation speeds of two orthogonal polarization components, that is, the x polarization component in the x direction and the y polarization component in the y direction, are different. Come on. FIG. 3 shows h of two polarization components in the fundamental mode (TE11 mode) in this case.
It is a figure which shows the cutoff wavelength (lambda) c characteristic with respect to / r. As is clear from FIG. 3, as h / r increases, the cutoff wavelength becomes longer in the x polarization and becomes shorter in the y polarization. Therefore, the in-tube wavelength at a certain frequency is larger in the y-polarized wave than in the x-polarized wave, and when two orthogonal polarized waves pass through this waveguide, the x-polarized wave is more phase-shifted than the y-polarized wave. , The phase difference between the x polarization and the y polarization can be set to a desired value by arbitrarily setting the lengths L1 and L2 in FIG. The reason why the inside diameter of the region of length L2 is different from that of the region of length L1 is to improve the matching as a transmission line by adjusting the characteristic impedance of the two regions, as shown in FIG. Thus, a taper may be provided.

【0016】上記のように構成された第一導波管3a及
び第二導波管3bは、z軸回りに90度回転して互いに
その開口面で連接されている。具体的には、図5に示す
ように、第一導波管3aはx方向について段差が設けら
れているのに対して、第二導波管3bはそれと直交する
y方向について段差が設けられた位置関係において連接
されている。
The first waveguide 3a and the second waveguide 3b configured as described above are rotated 90 degrees about the z-axis and are connected to each other at their opening surfaces. Specifically, as shown in FIG. 5, the first waveguide 3a is provided with a step in the x direction, whereas the second waveguide 3b is provided with a step in the y direction orthogonal thereto. Are connected in a positional relationship.

【0017】図6は、電波が第一導波管3a及び第二導
波管3bを通過した際のx偏波の位相に対するy偏波の
電波の位相差を示す図である。図6において、第一導波
管3aは、y偏波はx偏波に比較して遅れて進むので、
ある周波数f0 において位相量の差はα(正の値)にな
る。また、第二導波管では、y偏波はx偏波に比較して
進んでいるので、ある周波数f0 において位相量の差は
β(負の値)になる。第一導波管3a及び第二導波管3
bはともに周波数特性をもち、周波数の増加に伴い位相
差は小さくなっていく。すなわち、x偏波に比較したy
偏波の位相差の絶対値は小さくなっていく。これら2つ
の導波管の両方を電波が通過したときの位相差は、これ
ら2つの導波管の位相差の和をとることにより図6に示
すような特性になる。周波数f0 においては位相差はα
+βとなり、周波数特性は個々の導波管の場合に比較し
て比較的平坦な特性が得られる。第一導波管3aと第二
導波管3bの周波数による位相差の傾きが全く正負逆の
値に設定すれば、周波数に依存しない位相差を設定する
ことができる。この位相差を90度に設定することによ
り、非常に広い帯域で良好な軸比特性をもつ円偏波器が
実現できる。第一導波管3a及び第二導波管3bの円形
導波管の内径を短くする段差hとその領域の長さLを任
意に設定することにより、第一導波管3aと第二導波管
3bの周波数による位相差の傾きが正負逆で絶対値の等
しい値に近づけることが可能である。以上のような構成
により、広帯域で円偏波特性の良好な円偏波器を実現で
きる。従って、送信と受信を共用するアンテナや広帯域
で利用するアンテナ等に使用する円偏波器として非常に
有効である。また、整合性を向上させるための領域を設
けることができるので反射特性も良好なものが実現でき
る。本発明の円偏波器は、鋳型に金属を溶かしたものを
つけて、金属が固まった後に鋳型を引き抜くダイキャス
ト成形法等により精度良く製造することが容易となる。
さらに、誘電体等を利用せずに全て金属で構成できるの
で、熱の発生が問題になる高出力のアンテナに対して
も、熱による特性の劣化がないので効果が大きく、導波
管内に突起する部分もないので強度的にも優れている。
従って、耐環境性が問題となる衛星搭載用アンテナの給
電に対して有効である。
FIG. 6 is a diagram showing the phase difference between the radio waves of the y polarization and the phase of the x polarization when the radio waves pass through the first waveguide 3a and the second waveguide 3b. In FIG. 6, in the first waveguide 3a, since the y-polarized wave advances later than the x-polarized wave,
At a certain frequency f0, the difference in the amount of phase becomes α (a positive value). Further, in the second waveguide, the y-polarized wave is advanced compared to the x-polarized wave, so that the difference in the phase amount is β (negative value) at a certain frequency f0. First waveguide 3a and second waveguide 3
Both b have frequency characteristics, and the phase difference becomes smaller as the frequency increases. That is, y compared to x polarization
The absolute value of the phase difference between polarized waves becomes smaller. The phase difference when radio waves pass through both of these two waveguides has the characteristic shown in FIG. 6 by taking the sum of the phase differences of these two waveguides. At frequency f0, the phase difference is α
It becomes + β, and the frequency characteristic is relatively flat as compared with the case of individual waveguides. If the inclination of the phase difference depending on the frequencies of the first waveguide 3a and the second waveguide 3b is set to a value that is exactly positive and negative, the phase difference that does not depend on the frequency can be set. By setting this phase difference to 90 degrees, a circular polarizer having a good axial ratio characteristic in a very wide band can be realized. By setting the step h that shortens the inner diameter of the circular waveguides of the first waveguide 3a and the second waveguide 3b and the length L of the region, the first waveguide 3a and the second waveguide 3a It is possible to make the inclination of the phase difference depending on the frequency of the wave tube 3b close to a value having the same absolute value by reversing positive and negative. With the above configuration, it is possible to realize a circular polarizer having a wide band and good circular polarization characteristics. Therefore, it is very effective as a circular polarizer used for an antenna for both transmission and reception, an antenna for a wide band, and the like. Further, since a region for improving the matching property can be provided, it is possible to realize the one having excellent reflection characteristics. The circular polarizer of the present invention can be easily manufactured with high precision by a die-cast molding method in which a molten metal is attached to a mold and the mold is pulled out after the metal is solidified.
Furthermore, since it can be composed entirely of metal without the use of dielectrics, etc., even for high-power antennas where heat generation is a problem, there is no deterioration of the characteristics due to heat, so the effect is great, and the projection inside the waveguide is large. Since there is no part to do, it is also excellent in strength.
Therefore, it is effective for feeding power to a satellite-mounted antenna in which environmental resistance is a problem.

【0018】なお、第一導波管と第二導波管として円形
導波管の内径を一方向に段差を設けることによって直交
偏波の管内波長を変える方法を用いたが、この他の方法
により直交偏波の管内波長を変えても全く同様の効果が
得られる。例えば、図7に示すように、円形導波管内部
の一方のみに段差を設けるようにしてもよい。また、円
形導波管の代わりに導波管断面の縦横の大きさが違う矩
形導波管や楕円形の導波管を用いてもよい。
As the first waveguide and the second waveguide, a method of changing the waveguide wavelength of orthogonal polarization by providing a step in the inner diameter of a circular waveguide in one direction was used. Therefore, even if the in-tube wavelength of the orthogonal polarization is changed, the same effect can be obtained. For example, as shown in FIG. 7, a step may be provided only on one side inside the circular waveguide. Further, instead of the circular waveguide, a rectangular waveguide or an elliptic waveguide having different vertical and horizontal sizes of the waveguide cross section may be used.

【0019】次に、第二の発明の実施例について説明す
る。図8は、第二の発明の実施例に係るホーンアンテナ
の構成を示す図である。図11に示すように、ホーンア
ンテナ1は、導波管3、OMT(直交偏波分離用分波
器)5、導波管変換器4,4’が連接されてなってい
る。
Next, an embodiment of the second invention will be described. FIG. 8 is a diagram showing the configuration of the horn antenna according to the embodiment of the second invention. As shown in FIG. 11, the horn antenna 1 is composed of a waveguide 3, an OMT (orthogonal polarization separation duplexer) 5, and waveguide converters 4 and 4'connected to each other.

【0020】円形導波管3は導波管内部を第一の発明の
ように段差を設けたものである。この導波管を通過する
電波の伝搬速度については前述したとおりであるが、本
実施例においては、h1 ,h2 ,L1 ,L2 を任意の値
を選択することにより、x偏波に対するy偏波の位相差
を、図9に示すように周波数fa のときにφa 、周波数
fb のときにφb となるように設定する。ここで、例え
ばφa =270度、φb =90度に設定し、周波数fa
の時に入力又は出力の偏波の向きがP方向(x方向から
y方向へ45度回転した方向)、周波数fb の時に入力
又は出力の偏波の向きがQ方向(x方向から負のy方向
へ45度回転した方向)になるようにすれば、このアン
テナは2つの周波数fa 、fb において同じ偏波の円偏
波が送信(または受信)できる。φa とφb は、450
度と270度、630度と450度…といったような組
み合わせも可能であるが、円偏波特性の得られる帯域を
できるだけ広くすることを考えた場合にはφa =270
度、φb =90度とするのが望ましい。このような構成
の導波管3にOMT5を接続することにより、P及びQ
方向の偏波の入出力が行える。図10は、OMT5の構
成を示す図である。OMT5の開口面は、導波管3にお
けるP軸がOMT5におけるu軸に、Q軸がv軸に一致
するように導波管3の開口面と連接する。これによって
P方向の偏波の電波に対してはポートAに直接出力(入
力)され、Q方向の偏波の電波に対しては導体板6によ
りポートA方向へは遮断周波数以下となるため伝搬せ
ず、結合スロット7により結合してポートBへ入力(出
力)される。従って、ポートAに周波数fa 、ポートB
に周波数fb の入出力を行えば、アンテナ全体ではこの
2つの周波数で同一偏波の円偏波を送受することがで
き、どちらの周波数でも良好な円偏波特性を実現するこ
とができる。
The circular waveguide 3 is provided with a step inside the waveguide as in the first invention. The propagation velocity of the radio wave passing through this waveguide is as described above, but in the present embodiment, by selecting any value for h1, h2, L1, and L2, the y-polarized wave with respect to the x-polarized wave is selected. As shown in FIG. 9, the phase difference is set to φa at the frequency fa and to φb at the frequency fb. Here, for example, φa = 270 degrees and φb = 90 degrees are set, and the frequency fa
When the input or output polarization direction is the P direction (direction rotated by 45 degrees from the x direction to the y direction), the input or output polarization direction is the Q direction when the frequency is fb (the x direction is the negative y direction). This antenna can transmit (or receive) circularly polarized waves of the same polarization at two frequencies fa and fb. φa and φb are 450
.Degree. And 270.degree., 630.degree. And 450.degree., Etc. are possible, but φa = 270 when considering to widen the band where the circular polarization characteristic can be obtained.
It is desirable that φb = 90 °. By connecting the OMT 5 to the waveguide 3 having such a configuration, P and Q
Input and output of polarized waves in any direction. FIG. 10 is a diagram showing the configuration of the OMT 5. The opening surface of the OMT 5 is connected to the opening surface of the waveguide 3 so that the P axis of the waveguide 3 is aligned with the u axis of the OMT 5 and the Q axis is aligned with the v axis. As a result, the radio wave polarized in the P direction is directly output (input) to the port A, and the radio wave polarized in the Q direction is propagated to the port A direction due to the cut-off frequency or less by the conductor plate 6. Instead, they are coupled by the coupling slot 7 and input (output) to the port B. Therefore, port A has frequency fa and port B
If the input and output of the frequency fb is performed, the entire antenna can transmit and receive circularly polarized waves of the same polarization at these two frequencies, and good circularly polarized wave characteristics can be realized at either frequency.

【0021】以上示した円偏波器は、送信と受信の周波
数が大きく離れていて、送信と受信の間の全ての帯域に
亘って広帯域な円偏波器の実現が困難な場合に特に有効
である。また、この発明は衛星搭載用アンテナ等の送信
出力が非常に大きい場合にも有効である。その理由は、
入出力時において送信と受信の電波が直交しているため
に結合が小さく、OMTにより送受のアイソレーション
がかなりとれることにある。このために、送信機側から
受信機側へまわり込む電力を阻止するためのフィルタを
小さくすることができ、アンテナ全体の大きさ、重量を
低減でき、電力損失も小さくでき、非常に都合がよい。
また、本発明では、二つの周波数において右旋、左旋の
両方の円偏波を動作させる場合に対しても全く同じ構成
により実現でき、非常に有効である。
The circular polarizer shown above is particularly effective when the transmitting and receiving frequencies are widely separated and it is difficult to realize a broadband circular polarizer over the entire band between transmitting and receiving. Is. The present invention is also effective when the transmission output of a satellite antenna or the like is very large. The reason is,
Since the transmission and reception radio waves are orthogonal to each other at the time of input / output, the coupling is small, and OMT can provide a considerable isolation between transmission and reception. Therefore, it is possible to reduce the size of the filter for blocking the power flowing from the transmitter side to the receiver side, reduce the size and weight of the entire antenna, and reduce the power loss, which is very convenient. ..
Further, according to the present invention, it is possible to realize both the right-handed circular polarization and the left-handed circularly polarized wave at two frequencies with the same configuration, which is very effective.

【0022】なお、以上述べた実施例の説明において、
導波管として円形導波管の一部分の大きさを縮めたもの
を例にあげて説明したが、直交する二つの偏波に位相差
が生じ、その位相差が周波数により変化するものであれ
ばこの他のものを用いてもよい。例えば矩形導波管で縦
横の大きさを変えたものや楕円導波管を利用したものが
利用できる。
In the above description of the embodiment,
As a waveguide, the circular waveguide is described as an example in which the size of a part of the circular waveguide is reduced. However, if a phase difference occurs between two orthogonal polarizations and the phase difference changes with frequency, Other than this may be used. For example, a rectangular waveguide whose vertical and horizontal sizes are changed or an elliptical waveguide can be used.

【0023】さらに、異なる2つの周波数において円偏
波の偏波の向きが逆である場合にはOMTの必要がない
簡単な構成になる。この場合には、導波管の形状を適当
に設定することにより低い周波数fa における位相差φ
a =270度、高い周波数fb における位相差φb =9
0度となるようにすればよい。
Furthermore, when the polarization directions of the circularly polarized waves are opposite at two different frequencies, the OMT is not necessary and the structure is simple. In this case, the phase difference φ at the low frequency fa is set by setting the shape of the waveguide appropriately.
a = 270 degrees, phase difference φb = 9 at high frequency fb
It may be 0 degree.

【0024】[0024]

【発明の効果】第一の発明によれば、広帯域や送信と受
信といった2つの異なる周波数帯で良好な円偏波特性も
つ円偏波器を簡単な構成で実現することができる。さら
に、整合性を良くするための領域を設けることも容易で
あり、反射特性が良く電力損失の小さな円偏波器が構成
できる。その製作はダイキャスト成形等の方法により容
易である。全てを金属により構成できるので熱の発生等
が問題になる衛星搭載用アンテナ等高出力のアンテナの
コンポーネントとして有効である。
According to the first aspect of the present invention, a circular polarizer having good circular polarization characteristics in two different frequency bands such as a wide band and transmission and reception can be realized with a simple structure. Furthermore, it is easy to provide a region for improving matching, and a circular polarizer having good reflection characteristics and small power loss can be configured. Its production is easy by a method such as die casting. Since it can be made entirely of metal, it is effective as a component of a high-power antenna such as a satellite-borne antenna where heat generation is a problem.

【0025】また、第二の発明によれば、OMTを接続
することによる直交偏波により送信と受信の電波の分離
ができるので、送信電力を受信機側へまわり込むことを
防ぐためのフィルタを小さくすることができ、アンテナ
全体の大きさや重量が小さいことがコスト等の点で重要
な衛星搭載用アンテナ等に非常に有効である。
Further, according to the second aspect of the present invention, since the radio waves for transmission and reception can be separated by the orthogonal polarization by connecting the OMT, a filter for preventing the transmission power from sneaking into the receiver side is provided. It can be made small, and it is very effective for a satellite-mounted antenna or the like, which is important in terms of cost, etc., because the size and weight of the whole antenna are small.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一の発明に係るホーンアンテナの構成の一実
施例を示す図。
FIG. 1 is a diagram showing an embodiment of a configuration of a horn antenna according to the first invention.

【図2】図1における円形導波管を示す図。FIG. 2 is a diagram showing a circular waveguide in FIG.

【図3】図1における円形導波管の断面形状に対する遮
断波長λc特性を示す図。
3 is a diagram showing a cutoff wavelength λc characteristic with respect to a cross-sectional shape of the circular waveguide in FIG.

【図4】第一の発明に係る円形導波管の他の実施例を示
す図。
FIG. 4 is a view showing another embodiment of the circular waveguide according to the first invention.

【図5】図1における2つの円形導波管を接続する場合
の位置関係を示す図。
5 is a diagram showing a positional relationship when two circular waveguides in FIG. 1 are connected.

【図6】第一の発明に係る円形導波管を電波が通過する
際の直交偏波の位相差を示す図。
FIG. 6 is a diagram showing a phase difference of orthogonal polarization when a radio wave passes through a circular waveguide according to the first invention.

【図7】第一の発明に係る円形導波管の他の実施例を示
す図。
FIG. 7 is a view showing another embodiment of the circular waveguide according to the first invention.

【図8】第二の発明に係るホーンアンテナの構成の一実
施例を示す図。
FIG. 8 is a diagram showing an embodiment of a configuration of a horn antenna according to the second invention.

【図9】図11における円形導波管を通過する際の直交
偏波の位相差を示す図。
9 is a diagram showing a phase difference of orthogonal polarized waves when passing through the circular waveguide in FIG.

【図10】図11におけるOMTを示す図。10 is a diagram showing OMT in FIG. 11. FIG.

【図11】従来のアンテナにおける円偏波器を示す図。FIG. 11 is a diagram showing a circular polarizer in a conventional antenna.

【図12】従来の2つの導波管を接続した円偏波器を示
す図。
FIG. 12 is a diagram showing a conventional circular polarizer in which two waveguides are connected.

【図13】図12における導波管を通過する際の直交偏
波の位相差を示す図。
13 is a diagram showing a phase difference of orthogonal polarization when passing through the waveguide in FIG.

【符号の説明】[Explanation of symbols]

1 ホーンアンテナ 2 ホーン 3 円形導波管 3a 第一導波管 3b 第二導波管 4,4’ 導波管変換器 5 OMT 6 導体板 7 結合スロット A,B ポート 1 Horn Antenna 2 Horn 3 Circular Waveguide 3a First Waveguide 3b Second Waveguide 4, 4'Waveguide Converter 5 OMT 6 Conductor Plate 7 Coupling Slot A, B Port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】直交する偏波のうち一方の偏波に対して管
内波長を変える手段を有した導波管を少なくとも2つ連
接した円偏波器であって、一方の前記導波管における管
内波長の長い偏波の方向と他方の前記導波管における管
内波長の短い偏波の方向とを一致するように連接したこ
とを特徴とする円偏波器。
1. A circular polarizer in which at least two waveguides having means for changing the guide wavelength for one of the orthogonal polarizations are connected to each other, wherein one of the waveguides is a circular polarizer. A circular polarizer characterized in that a polarization direction having a long guide wavelength and a polarization direction having a short guide wavelength in the other waveguide are connected so as to coincide with each other.
【請求項2】直交する偏波のうち一方の偏波に対して管
内波長を変える手段を有した導波管及びこの導波管に連
接された直交偏波分離用分波器を有する円偏波器であっ
て、前記管内波長を変える手段は異なる2つの周波数帯
域のうち低い方の周波数帯域の通過位相差を270度、
高い方の周波数帯域の通過位相差を90度に設定し、前
記直交偏波分離用分波器は前記異なる2つの周波数帯域
の各々の円偏波成分を直交する偏波として別個に入出力
することを特徴とする円偏波器。
2. A circular polarization having a waveguide having a means for changing the in-tube wavelength with respect to one of polarizations orthogonal to each other and a demultiplexer for orthogonal polarization separation connected to the waveguide. In the wave filter, the means for changing the guide wavelength changes the pass phase difference of the lower frequency band of two different frequency bands by 270 degrees,
The pass phase difference of the higher frequency band is set to 90 degrees, and the orthogonal polarization separation duplexer separately inputs and outputs the circular polarization components of the two different frequency bands as orthogonal polarizations. A circular polarizer characterized in that
JP10414192A 1992-04-23 1992-04-23 Circularly polarized wave device Pending JPH05299901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10414192A JPH05299901A (en) 1992-04-23 1992-04-23 Circularly polarized wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10414192A JPH05299901A (en) 1992-04-23 1992-04-23 Circularly polarized wave device

Publications (1)

Publication Number Publication Date
JPH05299901A true JPH05299901A (en) 1993-11-12

Family

ID=14372823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10414192A Pending JPH05299901A (en) 1992-04-23 1992-04-23 Circularly polarized wave device

Country Status (1)

Country Link
JP (1) JPH05299901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561947A1 (en) * 2018-04-25 2019-10-30 Rosenberger Hochfrequenztechnik GmbH & Co. KG Polariser for a waveguide and system for transmitting high-frequency electromagnetic signals

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561947A1 (en) * 2018-04-25 2019-10-30 Rosenberger Hochfrequenztechnik GmbH & Co. KG Polariser for a waveguide and system for transmitting high-frequency electromagnetic signals
WO2019206890A1 (en) * 2018-04-25 2019-10-31 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Polariser for a waveguide and system for transmitting high-frequency electromagnetic signals
CN112042048A (en) * 2018-04-25 2020-12-04 罗森伯格高频技术有限及两合公司 Polarizer for a waveguide and system for transmitting high-frequency electromagnetic signals

Similar Documents

Publication Publication Date Title
US4228410A (en) Microwave circular polarizer
US4498061A (en) Microwave receiving device
CA2599668C (en) Polarization transformation
US4126835A (en) Balanced phase septum polarizer
US10218076B1 (en) Hexagonal waveguide based circularly polarized horn antennas
US7944324B2 (en) Compact orthomode transduction device optimized in the mesh plane, for an antenna
US11367935B2 (en) Microwave circular polarizer
WO2003079483A1 (en) Waveguide type ortho mode transducer
US6417742B1 (en) Circular polarizer having two waveguides formed with coaxial structure
US4199764A (en) Dual band combiner for horn antenna
US6097264A (en) Broad band quad ridged polarizer
EP1492193B1 (en) High frequency module and antenna device
EP2131446A2 (en) Circular polarity elliptical horn antenna
JP6865903B2 (en) Power supply circuit
JPH05299901A (en) Circularly polarized wave device
JPH11112201A (en) Branching filter
JP3662446B2 (en) Dual frequency feed
Navarrini et al. Design of a dual polarization SIS sideband separating receiver based on waveguide OMT for the 275–370 GHz frequency band
JP3135049B2 (en) Circularly polarized primary radiator
JPS6251801A (en) Orthogonal polarizer
AU739731B2 (en) Polarisation diplexer for illuminating an aerial
CN108695600A (en) A kind of broadband circular polarizer
JP2002094301A (en) Converter for receiving linearly polarized wave
JP3723751B2 (en) Circular polarization generator
JP2010021864A (en) Double-frequency shared feed, converter using the same, and antenna apparatus