JPH05299719A - Stacked actuator element and manufacture of the same - Google Patents

Stacked actuator element and manufacture of the same

Info

Publication number
JPH05299719A
JPH05299719A JP9652892A JP9652892A JPH05299719A JP H05299719 A JPH05299719 A JP H05299719A JP 9652892 A JP9652892 A JP 9652892A JP 9652892 A JP9652892 A JP 9652892A JP H05299719 A JPH05299719 A JP H05299719A
Authority
JP
Japan
Prior art keywords
resin
exterior resin
bubbles
manufacturing
piezoelectric actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9652892A
Other languages
Japanese (ja)
Inventor
Yoshihiro Goto
芳宏 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP9652892A priority Critical patent/JPH05299719A/en
Publication of JPH05299719A publication Critical patent/JPH05299719A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve moisture resistant load life of a stacked type piezoelectric actuator. CONSTITUTION:After an element 8 is eletrostatically painted with an external loading resin 10, the element is hardened by the heat treatment. In this case, the element is hardened by the heat treatment under the vacuum atmosphere, without leaving bubbles within the external loading resin 10. Otherwise, after the element is hardened by the heat treatment under the atmospheric condition, like the existing method, the liquid resin 12 is supplied with pressure to eliminate bubbles within the external loading resin 10. Thereby, since any bubbles are not left in the external loading resin, even if the external loading resin absorbes the moisture in the air during operation of element, quantity of saturated and absorbed water content can be reduced and moisture resistant load life can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は積層型圧電アクチュエ
ータ素子およびその製造方法に関し、その信頼性を改善
するための素子構造および製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated piezoelectric actuator element and its manufacturing method, and more particularly to an element structure and manufacturing method for improving its reliability.

【0002】[0002]

【従来の技術】従来の積層型圧電アクチュエータ素子
(以下素子と記す)は、図4に示すような諸工程を経て
図5に示す構造のものを作っていた。(例えば特開昭5
7−79034、参考文献として「Multilayer Piezoel
ectric Ceramic Actuators and The Applications」Jp
n.J.Appl.Phys.,Vol.24. Suppl.24-2,p41(1985).があ
る。)図4は従来の素子の製造方法を示す工程図であ
り、図5はその製造工程途中の素子の状態を示す斜視図
である。
2. Description of the Related Art A conventional laminated piezoelectric actuator element (hereinafter referred to as an element) has a structure shown in FIG. 5 through various steps shown in FIG. (For example, JP-A-5
7-79034, as a reference, "Multilayer Piezoel
ectric Ceramic Actuators and The Applications 」Jp
nJAppl.Phys., Vol.24. Suppl. 24-2, p41 (1985). ) FIG. 4 is a process diagram showing a conventional device manufacturing method, and FIG. 5 is a perspective view showing the state of the device during the manufacturing process.

【0003】まず、図4に示すように、混練工程Aで圧
電セラミックの粉末と溶剤とを混練した泥しょうを作っ
た後、厚膜セラミックシート形成工程Bで100〜20
0μmのセラミックシートを形成する。次に電極ペース
ト印刷工程Cでセラミックシート上に電極ペーストを1
0〜20μmの厚さに印刷し、シート打ち抜き工程Dで
所定の大きさに打ち抜く。この後積層プレス工程Eで打
ち抜いたシートを数十枚積層しプレスしてから、焼結工
程Fで高温で焼結を行って図5(a)に示すようなセラ
ミックシート2と内部電極3とが多数積層された焼結体
1を得る。
First, as shown in FIG. 4, after making a slurry by kneading a piezoelectric ceramic powder and a solvent in a kneading step A, 100 to 20 in a thick film ceramic sheet forming step B.
A 0 μm ceramic sheet is formed. Next, in the electrode paste printing step C, 1 electrode paste is applied on the ceramic sheet.
Printing is performed to a thickness of 0 to 20 μm, and the sheet is punched into a predetermined size in the sheet punching step D. After this, several tens of sheets punched out in the laminating press step E are laminated and pressed, and then sintered at a high temperature in a sintering step F to form a ceramic sheet 2 and internal electrodes 3 as shown in FIG. A sintered body 1 in which a large number of are laminated is obtained.

【0004】次にブロック切断工程Gでこの焼結体1を
図5(b)に示すような短冊状のブロック4に切断した
後、ガラス絶縁部形成工程Hで図5(b)に示すように
ブロック4の切断面に露出した内部電極3の露出部を一
層おきにガラス絶縁部5で覆う。
Next, in a block cutting step G, the sintered body 1 is cut into strip-shaped blocks 4 as shown in FIG. 5 (b), and then in a glass insulating portion forming step H as shown in FIG. 5 (b). The exposed portions of the internal electrodes 3 exposed on the cut surface of the block 4 are covered with the glass insulating portion 5 every other layer.

【0005】次いで外部電極形成工程Jでブロック4の
側面上に図5(b)に示すように外部電極6を形成し
て、この側面に露出した内部電極3の露出部を一層おき
に電気的に接続する。
Next, in an external electrode forming step J, external electrodes 6 are formed on the side surfaces of the block 4 as shown in FIG. 5B, and the exposed portions of the internal electrodes 3 exposed on the side surfaces are electrically separated by one layer. Connect to.

【0006】その後、素子切断工程Kに入りブロック4
を図5(b)に示す切断部9に沿ってマルチワイヤーソ
ーにて個々の素子個片に切断し、さらにリード付け工程
Lにて外部電極6にリード線7を半田付けする。次に静
電塗装工程Mにて樹脂を静電塗装し、樹脂硬化工程Nに
て外装樹脂を大気中で加熱硬化させて素子8を完成す
る。
Thereafter, the element cutting step K is started and the block 4
5 is cut into individual element pieces along a cutting portion 9 shown in FIG. 5B with a multi-wire saw, and the lead wire 7 is soldered to the external electrode 6 in the lead attaching step L. Next, in the electrostatic coating process M, the resin is electrostatically coated, and in the resin curing process N, the exterior resin is heated and cured in the atmosphere to complete the element 8.

【0007】[0007]

【発明が解決しようとする課題】ところで、上述した製
造方法により得られた素子8は以下に述べるように信頼
性が十分ではなかった。
By the way, the element 8 obtained by the above-mentioned manufacturing method has insufficient reliability as described below.

【0008】まず、従来の素子8に対して信頼性試験を
行った。試験は耐湿負荷寿命試験で、65℃95%RH
の環境条件で、定格直流電圧を連続印加して、素子8に
直列に接続したヒューズの溶断により短絡不良を検知す
る。この試験結果を図3に示す。従来素子は、試験開始
から50〜100時間後に最初の不良が発生し、さらに
約500時間後に約50%が不良となり、約1000時
間後には全数が不良になった。
First, a reliability test was conducted on the conventional element 8. The test is a humidity resistance load life test, 65 ° C 95% RH
Under the environmental conditions, the rated DC voltage is continuously applied, and the short circuit failure is detected by blowing the fuse connected in series to the element 8. The test results are shown in FIG. In the conventional device, the first failure occurred 50 to 100 hours after the start of the test, about 50% became defective after about 500 hours, and the total number became defective after about 1000 hours.

【0009】不良となった素子は、大半が図5(c)に
示す内部電極露出面Sで放電破壊を起こしていた。この
放電の原因を調査した結果、以下の要因が統計確立的に
有意であることが分かった。
Most of the defective elements caused discharge breakdown on the exposed surface S of the internal electrode shown in FIG. 5 (c). As a result of investigating the cause of this discharge, the following factors were found to be statistically significant.

【0010】(1)図4に示す素子製造工程のうち、素
子切断工程Kの後は図5に示す切断面13は内部電極が
露出したままであること。
(1) In the device manufacturing process shown in FIG. 4, after the device cutting process K, the internal surface of the cutting surface 13 shown in FIG. 5 is exposed.

【0011】(2)素子個片に切断した後、リード線を
半田付けし外装樹脂で素子本体を覆うが、外装樹脂を加
熱硬化後に研磨し、樹脂内部を観察した結果、図6の素
子8の縦断面図に示すように、外装樹脂10中に50〜
100μm径の大きさの気泡11を数多く含んでおり、
いわば多孔体的性状であり、大気中の水分が用意に侵入
し易いこと。
(2) After cutting the element into individual pieces, the lead wire is soldered and the element body is covered with the exterior resin. The exterior resin is heated and cured and then polished, and the inside of the resin is observed. As a result, the element 8 in FIG. 6 is obtained. As shown in the vertical sectional view of FIG.
Contains a large number of bubbles 11 with a diameter of 100 μm,
It is, so to speak, a porous property and it is easy for moisture in the atmosphere to easily enter.

【0012】(3)外装樹脂の飽和給水量は、外装樹脂
中の気泡の大きさおよび単位重量当たりの発生個数とに
強い相関性があること。すなわち外装樹脂中の気泡の大
きさが相対的に大きく、また単位重量当たりの気泡の個
数が多いほど単位重量当たりの外装樹脂の飽和吸水量は
大きくなること。
(3) The saturated water supply amount of the exterior resin has a strong correlation with the size of bubbles in the exterior resin and the number of bubbles generated per unit weight. That is, the saturated water absorption amount of the exterior resin per unit weight increases as the size of the bubbles in the exterior resin relatively increases and the number of bubbles per unit weight increases.

【0013】(4)外装樹脂中の気泡の大きさや個数
は、外装樹脂工程の作業条件の変動の影響を受け一定で
はないが、気泡の大きさや個数の多いものほど耐湿負荷
寿命試験での放電にいたる時間が短い傾向にあること。
(4) The size and the number of bubbles in the exterior resin are not constant because they are affected by the fluctuation of the working conditions in the exterior resin process. However, the larger the size and the number of bubbles, the more the discharge in the moisture resistance load life test. The time it takes to get there tends to be short.

【0014】[0014]

【課題を解決するための手段】本発明の積層型圧電アク
チュエータ素子の製造方法は、前記外装樹脂中の気泡の
発生を防止するか、もしくは、発生した外装樹脂中の気
泡を後で消滅させる等により、外装樹脂中に気泡を含ま
ない素子を提供するものである。
In the method of manufacturing a laminated piezoelectric actuator element according to the present invention, generation of bubbles in the exterior resin is prevented, or bubbles generated in the exterior resin are extinguished later. Thus, an element in which air bubbles are not contained in the exterior resin is provided.

【0015】[0015]

【作用】上記の構成によると、圧電アクチュエータ素子
の外装樹脂中に気泡を含まないため、大気中の水分が外
装樹脂中に侵入した場合、樹脂中の単位重量当たりの飽
和吸水量は大幅に低減し、したがって前記内部電極の露
出した素子の表面に到達する水分が減り、素子の耐湿負
荷寿命が改善される。
With the above structure, since the exterior resin of the piezoelectric actuator element does not contain air bubbles, when moisture in the atmosphere enters the exterior resin, the saturated water absorption amount per unit weight of the resin is significantly reduced. Therefore, the moisture reaching the exposed surface of the element of the internal electrode is reduced, and the moisture resistance load life of the element is improved.

【0016】[0016]

【実施例1】以下に本発明の最適な実施例について図面
を参照して説明する。
First Embodiment An optimum embodiment of the present invention will be described below with reference to the drawings.

【0017】図1(a)は本発明の実施例を示す素子の
縦断面図である。本実施例では図2に示す製造工程にし
たがって以下に述べる条件で素子を形成し、信頼性試験
を行って効果を確認した。
FIG. 1A is a vertical sectional view of an element showing an embodiment of the present invention. In this example, an element was formed under the conditions described below according to the manufacturing process shown in FIG. 2, and a reliability test was performed to confirm the effect.

【0018】なお、以下の製造の説明では先に示した図
5も参照し、同様な工程は同一符号を表示している。ま
ず、圧電性セラミックの粉末と溶剤およびパインダーを
混練した後、約130μmのセラミックシートを形成す
る。次にこのセラミックシート2上に電極ペーストを1
0μmの厚さに印刷して内部電極3を形成した後、この
シートを所定の大きさに打ち抜き、例えば130枚積層
してプレスしプレス体を作る。次にこのプレス体を11
20℃で2時間焼成して図5(a)に示すような焼結体
とした後、図5(b)に示すような短冊上のブロック4
に切断する。
In the following description of manufacturing, reference is also made to FIG. 5 described above, and similar steps are designated by the same reference numerals. First, the powder of the piezoelectric ceramic, the solvent, and the powder are kneaded, and then a ceramic sheet of about 130 μm is formed. Next, 1 electrode paste is applied on the ceramic sheet 2.
After printing with a thickness of 0 μm to form the internal electrodes 3, this sheet is punched to a predetermined size, and 130 sheets are laminated and pressed to form a pressed body. Next, press this 11
After firing at 20 ° C. for 2 hours to obtain a sintered body as shown in FIG. 5 (a), a block 4 on a strip as shown in FIG. 5 (b).
Disconnect.

【0019】ついで、この短冊上のブロック4の一方の
切断面に露出した内部電極3上に、一層おきにガラス絶
縁部5を形成する。ついでもう一方の切断面に露出した
内部電極にも一層おきにガラス絶縁部5を形成する。そ
の後、ガラス絶縁部5の形成された2つの側面に外部電
極6を設け、マルチワイヤーソーにて個々の素子8に切
断して分割する。次に外部電極6にリード線7を半田付
けし外装樹脂を静電塗装した後、外装樹脂を硬化する
が、硬化の手順について次に説明する。
Next, glass insulating portions 5 are formed on every other layer on the internal electrodes 3 exposed on one cut surface of the block 4 on the strip. Next, the glass insulating portions 5 are formed on every other internal electrode exposed on the other cut surface. After that, the external electrodes 6 are provided on the two side surfaces on which the glass insulating portion 5 is formed, and each element 8 is cut by a multi-wire saw and divided. Next, the lead wire 7 is soldered to the external electrode 6 and the exterior resin is electrostatically coated, and then the exterior resin is cured. The curing procedure will be described below.

【0020】まず、静電塗装後の素子を真空加熱オーブ
ン中にセットする。次に、前記オーブン内の圧力を1T
orr以下の低圧力にし、低圧力を維持したまま、樹脂
硬化温度まで加熱し、一定時間保持する。その後、前記
オーブン内の温度を室温まで下げて素子を完成する。降
温時オーブン内の圧力は大気圧でも良いし、1Torr
以下の低圧力のまま降温しその後大気圧に戻してもよ
い。
First, the element after electrostatic coating is set in a vacuum heating oven. Next, the pressure in the oven is set to 1T.
The pressure is set to a low pressure of orr or less, and while maintaining the low pressure, the resin is heated to the resin curing temperature and held for a certain period of time. Then, the temperature in the oven is lowered to room temperature to complete the device. At the time of cooling, the pressure in the oven may be atmospheric pressure, or 1 Torr
The temperature may be lowered at the following low pressure and then returned to atmospheric pressure.

【0021】次に完成した素子の外装樹脂の飽和吸水量
を調査した。飽和水蒸気測定条件として、完成した素子
を、40℃95%RHの雰囲気中に100時間放置し、
その後取り出して、カールフィッシャー法により樹脂中
の水分量を測定し従来工法の素子と飽和吸水量を比較し
た。
Next, the saturated water absorption of the exterior resin of the completed element was investigated. As a saturated water vapor measurement condition, the completed element was left in an atmosphere of 40 ° C. and 95% RH for 100 hours,
Then, it was taken out and the amount of water in the resin was measured by the Karl Fischer method to compare the saturated water absorption with the element of the conventional method.

【0022】測定の結果、従来工法素子は、外装樹脂の
単位重量当たり約0.5%の吸水率であったのに対し、
本提案で作成した素子は、約0.1%になり、吸水率
は、従来素子に比較して大幅に低減された。次に完成し
た素子8に対し信頼性試験を行った結果について述べ
る。信頼性の判定は65℃95%RHの環境下で、定格
直流電圧を素子8に印加し、素子8に直列に接続したヒ
ューズが溶断したか否かで、素子8の不良を検出し、不
良発生までの試験時間と累積不良率の関係を図にプロッ
トして判定した。
As a result of the measurement, the conventional method element had a water absorption rate of about 0.5% per unit weight of the exterior resin, whereas
The element produced by this proposal was about 0.1%, and the water absorption rate was significantly reduced as compared with the conventional element. Next, the result of the reliability test performed on the completed element 8 will be described. The reliability is determined under the environment of 65 ° C. and 95% RH by applying the rated DC voltage to the element 8 and detecting the failure of the element 8 depending on whether the fuse connected in series to the element 8 is blown or not. The relationship between the test time until occurrence and the cumulative defective rate was plotted in the figure and judged.

【0023】試験結果を図3に示す。図から本実施例よ
る素子では、前述した従来素子に比して不良発生が遅
く、試験開始から300〜400時間後に最初の不良が
発生し、2000時間で合計50%が不良となり、40
00時間で全数が不良になるという結果が得られた。
The test results are shown in FIG. From the figure, in the device according to the present example, the defects were generated later than the above-described conventional device, and the first defects were generated 300 to 400 hours after the start of the test, and a total of 50% became defective in 2000 hours.
The result was that all of them became defective at 00 hours.

【0024】[0024]

【実施例2】実施例2では、従来工法で外装樹脂を静電
塗装したのち硬化させ、その後低粘度の液状樹脂を外装
樹脂中の気泡に注入することを特徴とする。図1(b)
に実施例2の断面図を示す。まず、従来工法通り静電塗
装曝れ樹脂硬化された素子を圧力容器内にセットし圧力
容器内の圧力を10Torr以下にする。その後あらか
じめ脱気された低粘度の液状樹脂(例えば、エポキシ系
ないしシリコン系樹脂)を容器内に導入し圧力容器内を
100〜1000気圧になるよう加圧する。その後、容
器内の圧力を大気圧に戻し、液状樹脂を容器から抜き出
した後、素子を容器内から取り出す。素子方面に付着し
た液状樹脂を拭き取った後、必要なら加熱して液状樹脂
を硬化させて素子を完成する。実施例2により製造した
素子を用いて実施例1と同様な試験を実施すると樹脂の
単位重量当たりの飽和吸水量、耐湿負荷寿命のいずれか
の試験においても従来素子に比較して、実施例1と同様
に大幅に改善された。
Second Embodiment The second embodiment is characterized in that the exterior resin is electrostatically coated by a conventional method, then cured, and then a low-viscosity liquid resin is injected into the bubbles in the exterior resin. Figure 1 (b)
Sectional drawing of Example 2 is shown in FIG. First, according to the conventional method, an element which has been exposed to electrostatic coating and cured by resin is set in a pressure vessel, and the pressure in the pressure vessel is set to 10 Torr or less. After that, a low-viscosity liquid resin (for example, an epoxy resin or a silicon resin) that has been degassed in advance is introduced into the container, and the inside of the pressure container is pressurized to 100 to 1000 atm. Then, the pressure inside the container is returned to atmospheric pressure, the liquid resin is extracted from the container, and then the element is taken out from the container. After wiping off the liquid resin adhering to the surface of the device, if necessary, heating is applied to cure the liquid resin to complete the device. When the same test as in Example 1 is carried out using the element manufactured according to Example 2, in comparison with the conventional element in any of the saturated water absorption amount per unit weight of resin and the moisture resistance load life test, As well as greatly improved.

【0025】[0025]

【発明の効果】以上説明したように、本発明方法により
製造された圧電アクチュエータ素子の外装樹脂中には気
泡を含まないため大気中の水分が外装樹脂中に侵入した
場合、樹脂中の単位当たりの飽和吸水量は大幅に低減
し、したがって前記内部電極の露出した素子の表面に到
達する水分が減り、素子の耐湿負荷寿命が改善される。
As described above, since the exterior resin of the piezoelectric actuator element manufactured by the method of the present invention does not contain air bubbles, when moisture in the atmosphere penetrates into the exterior resin, The amount of saturated water absorption is significantly reduced, so that moisture reaching the surface of the exposed element of the internal electrode is reduced, and the moisture resistance load life of the element is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を示す積層型圧電アクチュエ
ータ (a)実施例1を示す素子の縦断面図。 (b)実施例2を示す素子の縦断面図。
FIG. 1 is a longitudinal sectional view of a laminated piezoelectric actuator showing an embodiment of the present invention (a) An element showing the embodiment 1. FIG. (B) A longitudinal sectional view of the element showing the second embodiment.

【図2】 本発明の実施例1の製造工程を示すブロック
図。
FIG. 2 is a block diagram showing a manufacturing process according to the first embodiment of the present invention.

【図3】 本発明の実施例1による素子及び従来の製造
方法による素子の信頼性試験結果を示す特性要因図。
FIG. 3 is a characteristic factor diagram showing reliability test results of an element according to Example 1 of the present invention and an element according to a conventional manufacturing method.

【図4】 従来の素子の製造工程を示すブロック図。FIG. 4 is a block diagram showing a manufacturing process of a conventional element.

【図5】 従来の素子の製造途中工程での素子の斜視
図。
FIG. 5 is a perspective view of an element in a conventional manufacturing process of the element.

【図6】 (a)従来の素子の断面図。 (b)図6(a)の一部拡大図。FIG. 6A is a sectional view of a conventional element. (B) A partially enlarged view of FIG.

【符号の説明】[Explanation of symbols]

1 焼結体 2 セラミックシート 3 内部電極 4 ブロック 5 ガラス絶縁部 6 外部電極 7 リード線 8 素子 9 切断部 10 外装樹脂 11 気泡 12 液状樹脂 13 切断面 1 Sintered Body 2 Ceramic Sheet 3 Internal Electrode 4 Block 5 Glass Insulation Part 6 External Electrode 7 Lead Wire 8 Element 9 Cutting Part 10 Exterior Resin 11 Bubble 12 Liquid Resin 13 Cut Surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧電性セラミックシートと内部電極層とを
交互に積層し焼結して得られた焼結体をブロックに分割
する工程と、前記ブロックの対向する側面上にこのブロ
ック側面に露出した電極部を一層おきに絶縁体で被覆し
た後、前記側面上に外部電極を設ける工程と、前記外部
電極が設けられたブロックを切断して最小単位の素子個
片に分割する工程と、前記素子個片にリード線を接続し
外装を施す工程とを含む積層型圧電アクチュエータの製
造方法において、前記外装樹脂の加熱硬化を真空雰囲気
中で実施することを特徴とする積層型圧電アクチュエー
タ素子の製造方法。
1. A step of dividing a sintered body obtained by alternately stacking and sintering piezoelectric ceramic sheets and internal electrode layers into blocks, and exposing the side surfaces of the block on opposite side surfaces of the block. After coating the electrode portion with an insulator every other layer, a step of providing an external electrode on the side surface, a step of cutting the block provided with the external electrode to divide into a minimum unit of element pieces, In a method of manufacturing a laminated piezoelectric actuator, which includes a step of connecting a lead wire to an element piece and applying an exterior, manufacturing of the laminated piezoelectric actuator element, wherein heat curing of the exterior resin is performed in a vacuum atmosphere. Method.
【請求項2】前記積層型圧電アクチュエータ素子の製造
方法において、外装樹脂硬化時に発生する外装樹脂中の
気泡を、前記外装樹脂硬化後に外装樹脂表面から低粘度
の液状絶縁樹脂を圧入することにより消滅させることを
特徴とする積層型アクチュエータ素子の製造方法。
2. In the method for manufacturing a laminated piezoelectric actuator element, bubbles in the exterior resin generated when the exterior resin is cured are eliminated by press-fitting a low-viscosity liquid insulating resin from the surface of the exterior resin after the exterior resin is cured. A method of manufacturing a laminated actuator element, comprising:
【請求項3】前記外装樹脂中に約10μm以上の内径の
気泡を含まないことを特徴とする積層型圧電アクチュエ
ータ素子。
3. A laminated piezoelectric actuator element characterized in that the exterior resin does not contain bubbles having an inner diameter of about 10 μm or more.
JP9652892A 1992-04-16 1992-04-16 Stacked actuator element and manufacture of the same Pending JPH05299719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9652892A JPH05299719A (en) 1992-04-16 1992-04-16 Stacked actuator element and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9652892A JPH05299719A (en) 1992-04-16 1992-04-16 Stacked actuator element and manufacture of the same

Publications (1)

Publication Number Publication Date
JPH05299719A true JPH05299719A (en) 1993-11-12

Family

ID=14167641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9652892A Pending JPH05299719A (en) 1992-04-16 1992-04-16 Stacked actuator element and manufacture of the same

Country Status (1)

Country Link
JP (1) JPH05299719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411012B2 (en) 1999-12-08 2002-06-25 Tdk Corporation Multilayer piezoelectric element and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411012B2 (en) 1999-12-08 2002-06-25 Tdk Corporation Multilayer piezoelectric element and method of producing the same

Similar Documents

Publication Publication Date Title
US9966191B2 (en) Multilayer electronic component
EP1753039A1 (en) Multilayer piezoelectric element and its manufacturing method
EP2082870B1 (en) Method of manufacturing sensor element
JPH04340778A (en) Laminated piezoelectric actuator element
EP1675190A1 (en) Multilayer piezoelectric device
KR101463840B1 (en) Method of manufacturing multilayer ceramic electronic part
JPH04349675A (en) Piezoelectric actuator
JPH10172855A (en) Laminated layer chip parts and conductive paste used for the parts
JPH05299719A (en) Stacked actuator element and manufacture of the same
JPH10312933A (en) Laminated ceramic electronic parts
JP2003008092A (en) Laminated piezoelectric element and its manufacturing method as well as sealing material for laminated piezoelectric element
JP2623960B2 (en) Manufacturing method of laminated piezoelectric actuator element
JPH0266916A (en) Manufacture of laminated ceramic capacitor
JPH04273485A (en) Multilayer piezoelectric actuator element and its manufacture
JPH07263272A (en) Manufacture of laminated electronic component
JP2000173743A (en) Chip-type surge absorber and its manufacture
JPS61174681A (en) Manufacture of laminated piezoelectric device
JPH06181343A (en) Laminated displacement element and manufacture thereof
JPH02177309A (en) Manufacture of lamination type ceramic electronic component
JPH04273183A (en) Piezoelectric effect element and electrostriction effect element and its manufacture
JPH08181032A (en) Laminated ceramic capacitor
JPH08130149A (en) Layer-built ceramic electronic component
JP4737948B2 (en) Manufacturing method of multilayer piezoelectric element
JP4626742B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3094769B2 (en) Manufacturing method of multilayer ceramic capacitor