JPH04349675A - Piezoelectric actuator - Google Patents

Piezoelectric actuator

Info

Publication number
JPH04349675A
JPH04349675A JP3123511A JP12351191A JPH04349675A JP H04349675 A JPH04349675 A JP H04349675A JP 3123511 A JP3123511 A JP 3123511A JP 12351191 A JP12351191 A JP 12351191A JP H04349675 A JPH04349675 A JP H04349675A
Authority
JP
Japan
Prior art keywords
piezoelectric element
desiccant
tube
silver
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3123511A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Watabe
嘉幸 渡部
Junichi Watanabe
純一 渡辺
Takahiro Sometsugu
孝博 染次
Shigeru Sadamura
定村 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3123511A priority Critical patent/JPH04349675A/en
Publication of JPH04349675A publication Critical patent/JPH04349675A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a laminated type piezoelectric element having high reliability by improving an initial insulating characteristic of the element by improving moisture resistance of the element. CONSTITUTION:A laminated piezoelectric element 1 is sealed in a metal can 7 provided with a driver so composed as to transmit a displacement in a displacing direction of the element 1. Desiccant 8 is sealed in the can to shut OFF invasion of moisture from the exterior and to largely reduce a humidity in the can thereby to improve reliability. As the driver of the can, a movable element such as a diaphragm 6, etc., a can formed in bellows to be driven, are indicated, but the other structure in which displacement is externally transmitted, may be used.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、流体制御弁や半導体露
光装置等に用いられる微少位置決め機構用の圧電アクチ
ュエータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric actuator for a minute positioning mechanism used in fluid control valves, semiconductor exposure equipment, and the like.

【0002】0002

【従来の技術】従来、この種の圧電アクチュエータは、
例えばチタン酸ジルコン酸鉛を主成分とする圧電材料の
粉末に、微量の有機バインダーを添加し、これを有機溶
媒中に分散させたスラリーを作りドクターブレード法に
より膜状に形成した圧電シートを形成し、この圧電シー
トの片面に、白金粉末やあるいは、銀粉末とパラジウム
粉末とを混合させた粉末を主成分とする導体ペーストを
スクリーン印刷等で被着形成した内部電極導体を形成し
、これらの複数枚を積層して積層体を形成し、その側面
に露出した内部電極に一層おきに絶縁物を形成し、更に
その上から第1の外部電極を形成する。一方、前記側面
に対向する側面では、先に絶縁物を形成しなかった内部
電極の露出部に選択的に絶縁物を形成し、その上から第
2の外部電極を形成する。そして両側面の外部電極にリ
ード線をハンダで接続した構造である。
[Prior Art] Conventionally, this type of piezoelectric actuator
For example, a small amount of organic binder is added to a piezoelectric material powder whose main component is lead zirconate titanate, a slurry is made by dispersing this in an organic solvent, and a piezoelectric sheet is formed into a film using the doctor blade method. Then, on one side of this piezoelectric sheet, an internal electrode conductor is formed by applying a conductive paste mainly composed of platinum powder or a mixture of silver powder and palladium powder by screen printing, etc. A plurality of sheets are stacked to form a laminate, an insulator is formed every other layer on the internal electrodes exposed on the side surfaces, and a first external electrode is formed on top of the insulator. On the other hand, on the side surface opposite to the side surface, an insulator is selectively formed on the exposed portions of the internal electrodes on which no insulator was previously formed, and a second external electrode is formed thereon. It has a structure in which lead wires are connected to external electrodes on both sides with solder.

【0003】0003

【発明が解決しようとする課題】上記従来の圧電アクチ
ュエータにおいて、内部電極を形成する金属に銀系材料
を使用した場合、湿性雰囲気においては側面に付着した
水分により銀がマイグレーションを起こし、積層焼結体
の側面を著しく汚染する。すなわち、銀系電極導体層の
端部は積層焼結体の側面に全て露出しているのでマイグ
レーションを生じやすく、汚染された積層焼結体の側面
はその絶縁性を急激に劣化させる。したがって、耐湿耐
久試験を行うと側面で放電するものが続出し、歩留りお
よび信頼性に大きな障害を与えるという問題点があった
。また、内部電極剤に金や白金等の非銀系材料を用いマ
イグレーションの発生を抑制したものの場合、前記の銀
系材料に比べるとその信頼性は大きく向上するものの積
層焼結体の側面に付着した水分によって素子の絶縁抵抗
が低下する。故に同上の試験を行った際に、偶発的に側
面で放電等の絶縁破壊を起こすことがあった。この対策
としては、特開昭61−27688のように側面に露出
した内部電極とその近傍の圧電材料上のみに有機絶縁材
料を形成し、側面への水分の侵入を阻止した構造や、特
開昭63−16685のように外部電極が設けられてい
ない素子側面に露出する内部電極端部を、ガラス膜で被
覆し水分の侵入を遮断する構造のものなどが出願されて
いるがその耐湿性は充分満足できるものではなかった。
[Problems to be Solved by the Invention] In the conventional piezoelectric actuator described above, when a silver-based material is used for the metal forming the internal electrode, in a humid atmosphere, the silver migrates due to moisture adhering to the side surfaces, resulting in laminated sintering. Significantly contaminates the sides of the body. That is, since the ends of the silver-based electrode conductor layer are all exposed on the side surfaces of the laminated sintered body, migration is likely to occur, and the contaminated side surfaces of the laminated sintered body rapidly deteriorate its insulation properties. Therefore, when a moisture resistance durability test is performed, discharge occurs on the side surface one after another, which poses a problem in that it greatly impairs yield and reliability. In addition, when non-silver-based materials such as gold and platinum are used for internal electrode materials to suppress the occurrence of migration, although the reliability is greatly improved compared to the silver-based materials mentioned above, it adheres to the side surfaces of the laminated sintered body. The resulting moisture reduces the insulation resistance of the element. Therefore, when conducting the same test as above, dielectric breakdown such as electrical discharge may occur accidentally on the side. As a countermeasure against this, there is a structure in which an organic insulating material is formed only on the internal electrode exposed on the side surface and the piezoelectric material in the vicinity to prevent moisture from entering the side surface, as in JP-A No. 61-27688; Applications have been made for structures such as 16685-1983, in which the ends of the internal electrodes exposed on the side surfaces of the element, which are not provided with external electrodes, are covered with a glass film to block the intrusion of moisture, but their moisture resistance is poor. It wasn't completely satisfying.

【0004】0004

【課題を解決するための手段】本発明では、上記の問題
点を解決すべく電気機械変換材料からなる薄板と導電材
料からなる内部電極とを各々複数個交互に積層して積層
体を形成し、この積層体の側面に前記内部電極と一層お
きに接続すべき一対の外部電極を設けて、さらにこの外
部電極に外部より電圧を印加すべくハンダにて接続され
たリード線よりなる積層型圧電素子を、乾燥剤を封入し
た金属性の密閉容器に収納すると共に、密閉容器内の密
閉を保ったまま前記リード線を容器外部に取り出すよう
構成し、この密閉容器の一部に、前記積層型圧電素子の
伸長する方向に伸長する可動部を形成したことを特徴と
する圧電アクチュエータを採用した。
[Means for Solving the Problems] In order to solve the above problems, the present invention forms a laminate by alternately laminating a plurality of thin plates made of an electromechanical conversion material and a plurality of internal electrodes made of a conductive material. , a stacked piezoelectric device comprising a pair of external electrodes to be connected to the internal electrodes every other layer on the side surface of the stacked body, and lead wires connected with solder to apply a voltage to the external electrodes from the outside. The device is housed in a metal sealed container filled with a desiccant, and the lead wires are taken out to the outside of the container while maintaining the airtightness inside the container. A piezoelectric actuator is employed, which is characterized by forming a movable part that extends in the direction in which the piezoelectric element extends.

【0005】[0005]

【作用】本発明は、積層型圧電素子の積層方向の一方の
端部に蓋部材を、もう一方の端部に端子部材を装着し、
この両部を積層型圧電素子と共に管の中に封入し、さら
に管内の空間部に乾燥剤を充填後、管の密閉を行い外部
からの水分の浸入を防ぎ、かつ密閉直後の管内の湿度も
減少させるものである。
[Operation] The present invention provides a stacked piezoelectric element with a lid member attached to one end in the stacking direction and a terminal member attached to the other end.
Both parts are sealed in a tube together with the laminated piezoelectric element, and after filling the space inside the tube with desiccant, the tube is sealed to prevent moisture from entering from the outside and to reduce the humidity inside the tube immediately after sealing. It is something that reduces

【0006】[0006]

【実施例】次に本発明の実施例について説明する。図1
は本発明の圧電アクチュエータの一実施例の断面図であ
る。この実施例の圧電アクチュエータは、積層型圧電素
子1と、その積層方向の一方の端面に、リード線2を介
して外部電極3が接続されていて、外気をシールするよ
うに設けられたリード線2を有する端子部材5と、他方
の端面に固着されたダイアフラム6と、これらの端子部
材5とダイアフラム6とで積層型圧電素子1を密封して
保持する管7から構成されており、管内の余白の部分に
は乾燥剤8が充填されている。本実施例の積層型圧電素
子1は、従来例で述べた構造と基本的には同様の圧電素
子であって、この積層型圧電素子1の内部電極9と外部
電極3に用いる導電性ペースト材料は、比較実験を行う
上で下表の様に形成した。尚、図1で積層型圧電素子に
ついては模式的に示してあるが実際には以下に記す積層
型圧電素子を用いた。以下、本圧電素子の製法について
簡単に説明する。
[Example] Next, an example of the present invention will be described. Figure 1
1 is a sectional view of an embodiment of a piezoelectric actuator of the present invention. The piezoelectric actuator of this embodiment includes a multilayer piezoelectric element 1 and an external electrode 3 connected to one end surface in the stacking direction via a lead wire 2, and a lead wire provided to seal against outside air. 2, a diaphragm 6 fixed to the other end surface, and a tube 7 that seals and holds the laminated piezoelectric element 1 with these terminal members 5 and diaphragm 6. A desiccant 8 is filled in the blank space. The laminated piezoelectric element 1 of this embodiment is basically a piezoelectric element having the same structure as that described in the conventional example, and the conductive paste material used for the internal electrode 9 and the external electrode 3 of this laminated piezoelectric element 1 is were formed as shown in the table below for comparative experiments. Although the laminated piezoelectric element is schematically shown in FIG. 1, the laminated piezoelectric element described below was actually used. The method for manufacturing this piezoelectric element will be briefly described below.

【0007】[0007]

【表1】 まずチタン酸ジルコン酸鉛を主成分とする圧電薄板をド
クターブレード法にて形成した後、上記の内部電極をス
クリーン印刷により形成し、これらの複数枚を積層焼結
し積層体を形成した。これにより得られた積層型圧電素
子の側面の一面に、少なくとも側面の面積よりも小さく
かつ露出した各層の内部電極の全ての層に接触するよう
にガラス絶縁膜(以下、絶縁膜と記す。)を形成した。 次にダイシングマシンにより絶縁膜上部より内部電極が
絶縁膜上に一層おきに露出するよう溝を入れた。一方そ
の面に直交する側面にも同様にガラス絶縁膜を形成した
後、先に溝入れを行わなかった層にダイシングマシンに
より溝を入れた。これにより絶縁膜を形成した直交面上
で内部電極がそれぞれ交互に絶縁膜上に露出する構造と
した。次にその溝の上に外部電極をスクリーン印刷によ
り形成した。そして両側面の外部電極にリード線(非銀
系心材、すずメッキ)をハンダ(非銀系)で接続した。 以上の工程により得られた積層型圧電素子は断面5mm
×5mm、長さ10mm、積層枚数90枚となった。こ
の積層型圧電素子の側面に一様に粉体コーティングで樹
脂を被覆した。このようにして製作された積層型圧電素
子1に図1に示す端子部材5を接着剤にて取付けた後に
前記リード線2を端子部材の内部端子9にハンダにて接
続し、管7の内部に挿入後、端子部材5を管7に接着す
る。この際に、端子部材5にはテーパーが設けてあるた
め、端子部材5と管7の位置決めは容易に行える。管7
の材料には、その熱膨張係数が積層型圧電素子1に近い
ものが理想的であるため本実施例では、ニッケル鋼(N
i:42%)を用い表面に防錆の為にニッケルメッキを
施した。また管7は図のごとく円筒形のものであるため
積層型圧電素子1の周囲部に空間が出来る。その空間部
に乾燥材8を充填後、積層型圧電素子の変位を管7の外
部に効率よく伝えるべくダイアフラム6を管7のもう一
方の端部より積層型圧電素子1の端部に接着した後に、
管7に固定密封する。尚、本発明では乾燥剤にシリカゲ
ルを用い、接着にはエポキシ系の樹脂を用いたが、他の
乾燥剤および接着剤でも同様の効果が得られることは明
らかである。なお、端子部材5およびダイアフラム6に
は金属部材、本発明ではステンレスを用いたがアルミ等
の金属でも適用できる。このようにしてできあがった圧
電アクチュエータを温度40℃、湿度90〜95%RH
雰囲気中にて、耐久性試験を行った。以下、その結果に
ついて説明する。最初に本発明の優位性を示すために積
層型圧電素子に下表の条件を設定した。
[Table 1] First, a piezoelectric thin plate containing lead zirconate titanate as a main component is formed using the doctor blade method, and then the above internal electrodes are formed by screen printing, and a plurality of these sheets are laminated and sintered to form a laminate. Formed. A glass insulating film (hereinafter referred to as an insulating film) is formed on one side surface of the laminated piezoelectric element thus obtained so as to be at least smaller in area than the side surface and in contact with all layers of the exposed internal electrodes of each layer. was formed. Next, grooves were formed using a dicing machine so that the internal electrodes were exposed every other layer on the insulating film from the upper part of the insulating film. On the other hand, a glass insulating film was similarly formed on the side surface perpendicular to that surface, and then grooves were formed in the layer that had not been grooved using a dicing machine. This resulted in a structure in which the internal electrodes were alternately exposed on the insulating films on the orthogonal surfaces on which the insulating films were formed. Next, external electrodes were formed on the grooves by screen printing. Then, lead wires (non-silver core material, tin plated) were connected to the external electrodes on both sides with solder (non-silver). The laminated piezoelectric element obtained through the above steps has a cross section of 5 mm.
×5 mm, length 10 mm, and number of stacked sheets was 90. The side surfaces of this laminated piezoelectric element were uniformly coated with resin by powder coating. After the terminal member 5 shown in FIG. After the terminal member 5 is inserted into the tube 7, the terminal member 5 is glued to the tube 7. At this time, since the terminal member 5 is provided with a taper, the terminal member 5 and the tube 7 can be easily positioned. tube 7
In this example, nickel steel (N
i: 42%), and the surface was nickel plated for rust prevention. Further, since the tube 7 is cylindrical as shown in the figure, a space is created around the laminated piezoelectric element 1. After filling the space with drying material 8, the diaphragm 6 was glued to the end of the laminated piezoelectric element 1 from the other end of the tube 7 in order to efficiently transmit the displacement of the laminated piezoelectric element to the outside of the tube 7. later,
Fix and seal the pipe 7. In the present invention, silica gel was used as the desiccant and epoxy resin was used for adhesion, but it is clear that similar effects can be obtained with other desiccants and adhesives. Note that the terminal member 5 and the diaphragm 6 are made of metal, and although stainless steel is used in the present invention, metals such as aluminum may also be used. The piezoelectric actuator thus completed was heated at a temperature of 40°C and a humidity of 90 to 95% RH.
A durability test was conducted in an atmosphere. The results will be explained below. First, in order to demonstrate the superiority of the present invention, the conditions shown in the table below were set for a laminated piezoelectric element.

【0008】[0008]

【表2】   それぞれの条件のものを上記の雰囲気中に電圧無印
加の状態で約2時間放置後、100VDCにおける絶縁
抵抗値を測定した。その結果を下表に記す。
[Table 2] After the samples under each condition were left for about 2 hours in the above atmosphere with no voltage applied, the insulation resistance value at 100 VDC was measured. The results are shown in the table below.

【0009】[0009]

【表3】 まず条件■において、内部電極に銀系導電材料を使った
ものは非銀系よりもやや絶縁抵抗が低くなっている。次
に条件■と比較した場合、明らかに金属管に封入したも
のの方が自然放置の場合よりもその値は大きくなってい
る。また条件■の時よりも非銀系の優位性が顕著に現れ
ている。さらに条件■と■を比較すると明らかに乾燥剤
を充填した効果が示されている。以上の結果から銀系材
料、非銀系材料いずれの場合も高湿度雰囲気中ではその
絶縁抵抗の初期値は低下しており、明らかに素子の側面
に付着した水分の影響であることが分かる。また、管内
に封入した場合でも乾燥剤を充填したものの方が絶縁抵
抗が大きくなっている。これは管に封入する際に管内に
残った水分の影響であると思われる。即ち、絶縁抵抗の
初期値を向上させ、より信頼度の高い素子を供給するた
めには、管内に乾燥剤を封入することが適しており、同
時にこれは本発明の優位性を実証している。次に上記の
資料にそれぞれ150VDCの電圧を連続印加し、10
00時間の耐久性試験を行った。その際の絶縁抵抗の劣
化の時間依存性を測定した。その結果を図2から図4に
示す。図2は、アクチュエータNo.1の特性を示した
ものである。内外部ともに電極材料に銀を用いているの
で、自然放置したものは試験開始後すぐに劣化が始まり
約100時間程度で完全短絡してしまった。なお、この
アクチュエータを試験後とりだし充分乾燥した上で再度
絶縁抵抗を測定したが、短絡したままであった。これに
比べて缶に封入したものはその劣化は著しく少ない。し
かし乾燥剤を充填していないものは緩やかに劣化してい
ることが分かる。図3は、アクチュエータNo.2の絶
縁抵抗の劣化特性を示したものである。電極材料に銀−
パラジウム合金を用いているため、純粋な銀を用いたも
のよりもマイグレーションが発生しにくくなっている。 自然放置のもので約200時間後に短絡した。試験後と
りだし前記同様に充分乾燥後絶縁抵抗を測定したが短絡
したままであった。缶に封入したものは、前記と同様の
傾向を示し、その内乾燥剤を充填していないものは明ら
かに劣化していることが分かる。図4は、アクチュエー
タNo.3の特性である。電極材料に非銀系材料を用い
ているので極めて劣化の度合いが小さい。しかし自然放
置したものは図のように絶縁抵抗値が大きく揺らぎなが
ら緩やかに劣化している。このアクチュエータも試験後
とりだし充分乾燥した後に絶縁抵抗を測定した結果、2
.0×1010 Ωとなりほぼもとの状態に戻った。し
たがって、この素子の劣化は電極金属のマイグレーショ
ン等の劣化ではなく水分の付着による絶縁劣化であるこ
とが分かる。この他管に封入した場合には、非銀系材を
用いたアクチュエータは非常に安定した特性を示してい
る。 尚、本実施例ではアクチュエータNo.1〜3の劣化特
性のみ示しているが他のアクチュエータについても同様
、金属管に封入し乾燥剤を充填したものは極めて安定し
た特性を示した。以上の結果、圧電アクチュエータの高
信頼性を得るには、積層型圧電素子を金属管内部に封入
し、かつ乾燥剤を充填すればよいことが明らかになった
。次に本発明の他の実施例について説明する。図5は別
の実施例の断面図である。この実施例が前述の実施例と
異なる点は積層型圧電素子を蓋部材4にて密封し、金属
管の側面をベローズ状に加工し、積層型圧電素子の変位
がベローズを介して外部に伝えられる点である。組立方
法は前述のものと同様であるが管がベローズ状になり管
内の隙間が小さくなった分だけ乾燥材の充填が困難にな
るので本実施例は乾燥剤に粉末状の五酸化リンを用いた
。このようにしてできあがった圧電アクチュエータを前
述の実施例と同一の条件で試験を行ったがほぼ同様の結
果が得られ、不具合は生じなかった。なお、上述した実
施例では金属管内に充填する乾燥材8にシリカゲル、五
酸化リンを用いた例を述べたが、他に過塩素酸マグネシ
ウム、活性アルミナ、塩化カルシウム等の乾燥剤を用い
ても同様に実施可能である。
[Table 3] First, under condition (1), the insulation resistance of the internal electrode using a silver-based conductive material is slightly lower than that of a non-silver-based material. Next, when comparing condition (3), it is clear that the value is larger in the case of the metal tube sealed than in the case of leaving it naturally. Moreover, the superiority of non-silver metals is more pronounced than in condition (■). Furthermore, comparing conditions (2) and (2) clearly shows the effect of filling the desiccant. From the above results, it can be seen that the initial value of the insulation resistance of both silver-based materials and non-silver-based materials decreases in a high humidity atmosphere, which is clearly due to the influence of moisture adhering to the side surfaces of the element. Furthermore, even when sealed inside a tube, the insulation resistance is higher when the desiccant is filled. This is thought to be due to the moisture remaining in the tube when it was sealed. That is, in order to improve the initial value of insulation resistance and provide a more reliable element, it is suitable to enclose a desiccant in the tube, and at the same time, this proves the superiority of the present invention. . Next, a voltage of 150 VDC was continuously applied to each of the above materials, and 10
A durability test was conducted for 00 hours. The time dependence of insulation resistance deterioration at that time was measured. The results are shown in FIGS. 2 to 4. FIG. 2 shows actuator No. This shows the characteristics of No. 1. Since silver is used as the electrode material for both the internal and external electrodes, those left unattended began to deteriorate immediately after the start of the test and were completely short-circuited in about 100 hours. Note that after the test, this actuator was taken out and thoroughly dried, and then the insulation resistance was measured again, but the short circuit remained. Compared to this, those sealed in cans experience significantly less deterioration. However, it can be seen that those not filled with desiccant deteriorate slowly. FIG. 3 shows actuator No. 2 shows the deterioration characteristics of the insulation resistance of No. 2. Silver as electrode material
Because it uses a palladium alloy, migration is less likely to occur than when using pure silver. A short circuit occurred after about 200 hours after being left alone. After the test, it was taken out and thoroughly dried in the same manner as above, and then the insulation resistance was measured, but it remained short-circuited. It can be seen that the cans sealed in cans showed the same tendency as described above, and among them, those not filled with a desiccant were clearly deteriorated. FIG. 4 shows actuator No. This is the characteristic of 3. Since a non-silver-based material is used for the electrode material, the degree of deterioration is extremely small. However, as shown in the figure, those that have been left to naturally deteriorate gradually with insulation resistance values fluctuating greatly. This actuator was also taken out after the test and after being thoroughly dried, the insulation resistance was measured and the result was 2.
.. It became 0x1010 Ω and almost returned to its original state. Therefore, it can be seen that the deterioration of this element is not due to migration of the electrode metal, but due to insulation deterioration due to moisture adhesion. In addition, when enclosed in a tube, actuators using non-silver materials have shown very stable characteristics. In this embodiment, actuator No. Although only the deterioration characteristics of Nos. 1 to 3 are shown, the other actuators, which were sealed in a metal tube and filled with desiccant, showed extremely stable characteristics. As a result of the above, it has become clear that in order to obtain high reliability of a piezoelectric actuator, it is sufficient to encapsulate a laminated piezoelectric element inside a metal tube and fill it with a desiccant. Next, other embodiments of the present invention will be described. FIG. 5 is a cross-sectional view of another embodiment. This embodiment differs from the previous embodiments in that the laminated piezoelectric element is sealed with a lid member 4, and the side surface of the metal tube is processed into a bellows shape, so that the displacement of the laminated piezoelectric element is transmitted to the outside via the bellows. This is the point where it can be done. The assembly method is the same as the one described above, but since the tube becomes bellows-like and the gap inside the tube becomes smaller, it becomes difficult to fill with desiccant, so in this example, powdered phosphorus pentoxide was used as the desiccant. there was. The piezoelectric actuator thus produced was tested under the same conditions as in the previous example, and almost the same results were obtained, with no problems occurring. In addition, in the above-mentioned embodiment, an example was described in which silica gel and phosphorus pentoxide were used as the desiccant material 8 filled in the metal tube, but other desiccant agents such as magnesium perchlorate, activated alumina, and calcium chloride may also be used. The same can be done.

【0010】0010

【発明の効果】以上説明したように本発明は乾燥剤を充
填した金属管内に積層型圧電素子を密閉して封入するた
め外部からの水分の侵入を防ぎ、かつ管内の湿度も低下
させることが可能となるため、圧電アクチュエータの絶
縁信頼性を大きく向上させる効果がある。
[Effects of the Invention] As explained above, the present invention hermetically encapsulates a laminated piezoelectric element in a metal tube filled with a desiccant, thereby preventing moisture from entering from the outside and reducing the humidity inside the tube. This has the effect of greatly improving the insulation reliability of the piezoelectric actuator.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の圧電アクチュエータの一実施例を示す
断面図である。
FIG. 1 is a sectional view showing an embodiment of a piezoelectric actuator of the present invention.

【図2】本発明の一実施例による圧電アクチュエータの
劣化特性を示す図である。
FIG. 2 is a diagram showing deterioration characteristics of a piezoelectric actuator according to an embodiment of the present invention.

【図3】本発明の一実施例による圧電アクチュエータの
劣化特性を示す図である。
FIG. 3 is a diagram showing deterioration characteristics of a piezoelectric actuator according to an embodiment of the present invention.

【図4】本発明の一実施例による圧電アクチュエータの
劣化特性を示す図である。
FIG. 4 is a diagram showing the deterioration characteristics of a piezoelectric actuator according to an embodiment of the present invention.

【図5】本発明の別の実施例を示す断面図である。FIG. 5 is a sectional view showing another embodiment of the invention.

【符号の説明】[Explanation of symbols]

1  圧電アクチュエータ 2  リード線 3  外部電極 4  蓋部材 5  端子部材 6  ダイアフラム 7  金属管 8  乾燥剤 9  内部電極 10  内部端子 1 Piezoelectric actuator 2 Lead wire 3 External electrode 4 Lid member 5 Terminal member 6 Diaphragm 7 Metal pipe 8. Desiccant 9 Internal electrode 10 Internal terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電気機械変換材料からなる薄板と導電
材料からなる内部電極とを各々複数枚交互に積層して積
層体を形成し、この積層体の側面に前記内部電極と一層
おきに接続すべき一対の外部電極を設けてなる積層型圧
電素子を、乾燥剤を封入した金属製の密閉容器に収納し
たことを特徴とする圧電アクチュエータ。
1. A laminate is formed by alternately stacking a plurality of thin plates made of an electromechanical conversion material and a plurality of internal electrodes made of a conductive material, and a plurality of thin plates made of an electromechanical conversion material and internal electrodes made of a conductive material are connected to the side surfaces of the laminate every other layer. 1. A piezoelectric actuator characterized in that a laminated piezoelectric element provided with a pair of external electrodes is housed in a sealed metal container filled with a desiccant.
JP3123511A 1991-05-28 1991-05-28 Piezoelectric actuator Pending JPH04349675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3123511A JPH04349675A (en) 1991-05-28 1991-05-28 Piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3123511A JPH04349675A (en) 1991-05-28 1991-05-28 Piezoelectric actuator

Publications (1)

Publication Number Publication Date
JPH04349675A true JPH04349675A (en) 1992-12-04

Family

ID=14862424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3123511A Pending JPH04349675A (en) 1991-05-28 1991-05-28 Piezoelectric actuator

Country Status (1)

Country Link
JP (1) JPH04349675A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009400A3 (en) * 2001-07-12 2003-11-06 Ceramtec Ag Monolithic multilayer actuator in a housing
JP2004025476A (en) * 2002-06-21 2004-01-29 Matsushita Electric Ind Co Ltd Piezoelectric actuator, ink jet head comprising it and ink jet recorder and inkjet type recorder
JP2004025474A (en) * 2002-06-21 2004-01-29 Matsushita Electric Ind Co Ltd Piezoelectric actuator, its manufacturing process, ink jet head, and ink jet recorder
US7156481B2 (en) 2003-04-28 2007-01-02 Matsushita Electric Industrial Co., Ltd. Ink jet recording apparatus
DE102006006076A1 (en) * 2006-02-09 2007-08-16 Siemens Ag Piezo-actuator has elastic, pre-cast and passive transmitter arranged between piezo-stack and casing, where casing surrounds piezo-stack
US7348715B2 (en) 2004-01-27 2008-03-25 Matsushita Electric Industrial Co., Ltd. Piezoelectric element and method for manufacturing the same, and ink jet head and ink jet recording apparatus using the piezoelectric element
US7358646B2 (en) 2001-12-10 2008-04-15 Denso Corporation Piezoelectric actuator
EP1953839A1 (en) 2007-01-30 2008-08-06 Matsushita Electric Industrial Co., Ltd. Piezoelectric Element, Ink Jet Head, and Ink Jet Recording Device
US7506960B2 (en) 2003-04-28 2009-03-24 Panasonic Corporation Nozzle head, line head using the same, and ink jet recording apparatus mounted with its line head
JP2009189233A (en) * 2008-01-09 2009-08-20 Delphi Technologies Inc Gas pressurized encapsulation for actuator
JP2010258025A (en) * 2009-04-21 2010-11-11 Nec Tokin Corp Laminated piezoelectric actuator
JP4880696B2 (en) * 2005-11-30 2012-02-22 デルファイ・テクノロジーズ・ホールディング・エス.アー.エール.エル. Improvements to the durability of ferroelectrics.
US8147040B2 (en) 2009-02-27 2012-04-03 Fujifilm Corporation Moisture protection of fluid ejector
JP2014225596A (en) * 2013-05-17 2014-12-04 コニカミノルタ株式会社 Manufacturing method of piezoelectric device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943482B2 (en) 2001-07-12 2005-09-13 Ceramtec Ag Innovative Ceramic Engineering Monolithic multilayer actuator in a housing
WO2003009400A3 (en) * 2001-07-12 2003-11-06 Ceramtec Ag Monolithic multilayer actuator in a housing
US7358646B2 (en) 2001-12-10 2008-04-15 Denso Corporation Piezoelectric actuator
JP2004025476A (en) * 2002-06-21 2004-01-29 Matsushita Electric Ind Co Ltd Piezoelectric actuator, ink jet head comprising it and ink jet recorder and inkjet type recorder
JP2004025474A (en) * 2002-06-21 2004-01-29 Matsushita Electric Ind Co Ltd Piezoelectric actuator, its manufacturing process, ink jet head, and ink jet recorder
US7156481B2 (en) 2003-04-28 2007-01-02 Matsushita Electric Industrial Co., Ltd. Ink jet recording apparatus
US7506960B2 (en) 2003-04-28 2009-03-24 Panasonic Corporation Nozzle head, line head using the same, and ink jet recording apparatus mounted with its line head
US8556387B2 (en) 2003-04-28 2013-10-15 Panasonic Corporation Ink jet head unit and ink jet recording apparatus mounted with the same
US7348715B2 (en) 2004-01-27 2008-03-25 Matsushita Electric Industrial Co., Ltd. Piezoelectric element and method for manufacturing the same, and ink jet head and ink jet recording apparatus using the piezoelectric element
JP4880696B2 (en) * 2005-11-30 2012-02-22 デルファイ・テクノロジーズ・ホールディング・エス.アー.エール.エル. Improvements to the durability of ferroelectrics.
DE102006006076A1 (en) * 2006-02-09 2007-08-16 Siemens Ag Piezo-actuator has elastic, pre-cast and passive transmitter arranged between piezo-stack and casing, where casing surrounds piezo-stack
DE102006006076B4 (en) * 2006-02-09 2014-10-02 Continental Automotive Gmbh Piezo actuator, method for producing a piezo actuator and injection system with such
EP1953839A1 (en) 2007-01-30 2008-08-06 Matsushita Electric Industrial Co., Ltd. Piezoelectric Element, Ink Jet Head, and Ink Jet Recording Device
US7837305B2 (en) 2007-01-30 2010-11-23 Panasonic Corporation Piezoelectric element, ink jet head, and ink jet recording device
US8193686B2 (en) 2008-01-09 2012-06-05 Delphi Technologies Holding S.Arl Gas pressurized encapsulation for an actuator
JP2009189233A (en) * 2008-01-09 2009-08-20 Delphi Technologies Inc Gas pressurized encapsulation for actuator
US8147040B2 (en) 2009-02-27 2012-04-03 Fujifilm Corporation Moisture protection of fluid ejector
JP2010258025A (en) * 2009-04-21 2010-11-11 Nec Tokin Corp Laminated piezoelectric actuator
JP2014225596A (en) * 2013-05-17 2014-12-04 コニカミノルタ株式会社 Manufacturing method of piezoelectric device

Similar Documents

Publication Publication Date Title
JPH04349675A (en) Piezoelectric actuator
US5523645A (en) Electrostrictive effect element and methods of producing the same
US6943482B2 (en) Monolithic multilayer actuator in a housing
JPH04340778A (en) Laminated piezoelectric actuator element
US5250868A (en) Piezoelectric effect device
JP2001345161A (en) Tip surge absorber and method of manufacturing thereof
KR100807217B1 (en) Ceramic component and Method for the same
JP2009267114A (en) Laminated piezoelectric ceramic element and manufacturing method of the same
JPS63153870A (en) Electrostrictive effect element
US20140368086A1 (en) Actuator module having a multi-layer actuator arranged in a housing and a continuously extremely low leakage current at the actuator surface
JPS59219972A (en) Electrostriction effect element
JPH01146379A (en) Electrostrictive element assembly
JPH02250678A (en) Laminated piezoelectric actuator
JPH02125674A (en) Electrostrictive element
JPH0234449B2 (en)
JPH04268775A (en) Electrostrictive effect element
JPH02137282A (en) Electrostriction effect element and its sheathing method
JP2508263B2 (en) Electrostrictive effect element and manufacturing method thereof
JPH0312974A (en) Laminated piezoelectric actuator
JPH04239783A (en) Electrostrictive effect device
JP2003347621A (en) Manufacturing method of laminated piezoelectric actuator
JPH07106654A (en) Multilayer displacement element
JPH0653568A (en) Laminated displacement element
JPH09162451A (en) Piezo-electric multilayered body
JPH05275765A (en) Laminated piezoelectric actuator element and its driving method